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Abstract
The IfitmDelmouse lacks all five of the Ifitm genes via LoxP deletion. This animal breeds nor-

mally with no obvious defect in development. The IfitmDel animals exhibit a steady and sig-

nificantly enhanced weight gain relative to wild-type controls beginning about three months

of age and under normal feeding conditions. The increased weight corresponds with elevat-

ed fat mass, and in tolerance tests they are hyporesponsive to insulin but respond normally

to glucose. Both young (4 mo) and older (12 mo) IfitmDelmice have enhanced levels of

serum leptin suggesting a defect in leptin/leptin receptor signaling. Analysis of the gene ex-

pression profiles in the hypothalamus of IfitmDel animals, compared toWT, demonstrated

an altered ratio of Pomc and Npy neuropeptide expression, which likely impairs the satiation

response of the IfitmDel animal leading to an increased eating behavior. Also elevated in hy-

pothalamus of IfitmDel mice were pro-inflammatory cytokine expression and reduced IL-10.

Anatomical analysis of the hypothalamus using immunohistochemistry revealed that micro-

glia exhibit an abnormal morphology in IfitmDel animals and respond abnormally to Poly:IC

challenge. These abnormalities extend the phenotype of the IfitmDel mouse beyond abnor-

mal responses to viral challenge to include a metabolic phenotype and weight gain. Further,

this novel phenotype for the IfitmDelmouse could be related to abnormal neuropeptide pro-

duction, inflammatory status and microglia status in the hypothalamus.

Introduction
The interferon-induced transmembrane gene family (Ifitm) consists of four genes in humans
and five in the mouse that encode very similar proteins of 40–60 residues. Each Ifitm protein
consists of a unique extracellular N-terminus, a highly conserved transmembrane domain, and
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equally well-conserved hydrophilic (cytoplasmic) domain followed by a much more diverse
transmembrane-like domain [1]. Although the Ifitm proteins can be detected with sequences
on the outside of the plasma membrane, an alternative prediction is that they are embedded on
the cytoplasmic side of the membrane [2]. The proteins possess a number of functional sites in-
cluding cysteine residues that are palmitoylated, lysine residues that are ubiquitinylated and
serine/threonine residues that are phosphorylated following cellular activation ([1,2],unpub-
lished data). Ifitm cell location includes on the surface as well as inside the cell where they are
associated with endosomal and golgi membranes [3–5]. As a class, the Ifitm proteins have a
proclivity to bind to multi-spanning/tetraspanin proteins such as CD81 and CD9 [6,7].

Of the Ifitm gene family members, Ifitm3 is the best characterized and it shows the greatest
transcriptional response to type I and type II interferon induction[8]. Ifitm3 was shown in
a broad siRNA screen to be essential for the interferon-induced cellular resistance to viruses
that infect from the endosomal compartment to the cytoplasm such as influenza and dengue
[4,5,9,10]. A defective human IFITM3 allele has been linked to increased severity of human in-
fections to influenza virus [11] and we have recently shown this same allele is linked to coro-
nary heart damage associated with Kawasaki Disease, an immune inflammation of unknown
initiation [12]. A number of models have been proposed to describe the function of Ifitm3 in
providing resistance to cellular infections including building a protein lattice in the membrane
to block endosomal exit, blocking fusion pores during virus-endosome hemifusion, enhancing
the deposition of cholesterol to also block virus exit or by blocking virus entry by enhancing
the stability of the clathrin/vATPase complexes on the endosomal membrane [13–15].

The mouse Ifitm gene family encompasses about 65,000bp on mouse chromosome 7. This sec-
tion of the chromosome has been removed by LoxP mediated deletion to create the IfitmDel
animal which lacks all five of the Ifitm genes [16]. No other coding sequences or functional non-
coding RNA’s are included within this section of the genome. The IfitmDel animal was originally
created to test the necessity of the Ifitm proteins for germinal cell speciation [17–19] and embryo
generation [20]. IfitmDel animals are generated in normal Mendelian numbers and have few if
any obvious defects in development and survival [16]. We have made extensive use of these ani-
mals to study the roles that the Ifitm proteins have in immune signaling pathways. As we maintain
these animals as homozygous deletion lines, over time we have observed a pronounced enhanced
weight gain and an obesity phenotype (e.g., [21–23]) in older IfitmDelmice compared to C57BL/6
controls. In this report we quantify the obesity phenotype and link this to altered leptin/neuropep-
tide signaling, and demonstrate abnormal microglia morphology in the IfitmDel animal.

Materials and Methods

Animals
The mice were housed and used for this study in accordance with protocols approved in advance
by the Institutional Animal Care and Use Committee at the University of Utah (Protocol Num-
ber (09–07003). In all cases animals were maintained in according to the Guide for the Care and
use of Laboratory Animals of the National Institutes of Health. IfitmDelmice were backcrossed
for greater than 10 generations to the C57BL/6 strain. Background- and age-matched littermates
were used as WT controls. These mice were fed ad libitum with normal chow. For food intake
studies, mice were kept individually and a similar amount of normal chow was given to each
mouse. Average three-day consumption of food was measured for 21 days.

Metabolic studies
For insulin and glucose tolerance tests, mice fasted 5 hours followed by intraperitoneal injection
of human recombinant insulin (1U/kg, Novalin R) or glucose (1.5g/kg, Sigma) respectively.
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Blood levels were measured at indicated time points by FreeStyle Lite blood glucose monitoring
system. Blood samples were obtained from tail bleeds.

For blood tests of fasting and fed animals, including blood glucose and leptin, blood was ob-
tained at 10 am and 10 pm (12h) for analysis.

Energy expenditure and locomotor activity were analyzed by indirect colorimetry using
CLAMS metabolic cages, HSC Cores Research Facility at University of Utah. Body composition
was determined by nuclear magnetic resonance (NMR Bruker Minispec).

RNA isolation and gene expression analysis
For RNA isolation, the hypothalamus was dissected, total RNA of the hypothalamus extracted
by using QAIzol reagent kit (Qaigen), and reverse transcribed with Maloney Murine Leukemia
Virus Reverse Transcriptase (M-MLV RT, Invitrogen). For qRT-PCR, 1x FastStart Universal
SYBR Green Master (Roche) was used to analyze gene expression on LightCycler 480 System
(Roche). The accession numbers of genes Ifitm1 (NM_026820.3), Ifitm2 (NM_030694), Ifitm3
(NM_025378), Ifitm6 (NM_001033632.1), NPY (NM_023456.2), POMC (NM_001278581),
TNFα (NM-013693), IFNβ (NM_010510), Ifit1 (NM_008331), iNOS (NM_010927) IL-10
(NM_010548) IL-1β (NM_008361), F4/80 (NM_010130) and actin (M12866.1). Primer
sequences were as follows: Ifitm1, forward: 5’-CTTCAAAAGCCGAGAGATG-3’, reverse: 5’-
CCACCATCTTCCTGTCCCTA-3’; Ifitm2, forward: 5’-CCATCCTCCAGACGGGGCGATTG-
3’, reverse: 5’-TATTCAGGCACTTGGCAGTG-3’; Ifitm3, forward: 5’-CTTTGCTCCGCAC
CATGAACCA-3’, reverse: 5’-AGGCACTTAGCAGTGGAGGCGT-3’; Ifitm6, forward: GAGG
GATCCTGACTCAGC-3’, reverse: 5’-AGCATGGGATTGGGCCCCAGTC-3’; POMC, forward:
CTGCTTCAGACCTCCATAGATGTG-3’, reverse: 5’-CAGCGAGAGGTCGAGTTTGC-3’;
NPY, forward: 5’-TACTCCGCTCTGCGACACTA-3’, reverse: 5’-GATGAGGGTGGAAAC
TTGGA-3’; actin, forward: 5’-GTAACAATGCCATGTTCAAT-3’, reverse: 5’-CTCCATCG
TGGGCCGCTCTAG-3’; IFNβ, forward: 5’-CAAGAAAGGACGAACATTCG-3’, reverse: 5’-
AGACATTCTGGAGCATCTCT-3’; Ifit1, forward: 5’-ATGGGAGAGAATGCTGATGGTG, re-
verse: 5’-TGTCAAGGAACTGGACCTGCTC-3’; TNFα and IL-1β [24], IL-10, [25] F4/80 [26]
and iNOS [27] can be found in indicated citations.

Histology, immunohistochemistry and microscopy
The epididymal fat pads were dissected from animal and fixed immediately in 4% paraformal-
deyde in PBS overnight at 4°C. Next day, tissues were dehydrated with serial alcohol solutions
(50%, 70% and 100%) at room temperature for 2 hours each. Tissues were then infiltrated in
Immuno-bed resin (Polyscience, Inc.) at room temperature overnight. Tissues were moved to
fresh Immuno-bed resin with catalyst (Polyscience, Inc.) at 1:25 ratio and polymerized in the
mold at room temperature overnight. Tissues were carefully removed from the mold and sec-
tioned to 3 microns with a rotary microtome (Thermo Scientific, Microm HM310). Tissue
sections were adhered to microscope slides and proceed to H&E staining according to manu-
facturer's instructions (VWR). Stained slides were mounted with cytoseal mounting medium
(Fisher Scientific) before imaging. Pictures were acquired with Zeiss Axiovert 100 microscope
equipped with a Microfire CCD camera (Optimetrix). Brain sections were prepared as before
[28–30]. Briefly, mice were lethally anesthetized with tribromoethanol (TBE) by intraperitoneal
injection. For perfusion, the right ventricle of the heart was punctured and 10mL of saline was
perfused into the left ventricle, followed by 20mL of 3% paraformaldehyde (PFA, EMS) plus
5% sucrose in PBS. The brains were post-fixed with 3% paraformaldehyde plus 5% sucrose so-
lution and subsequently infiltrated with 15% and then 30% sucrose. Brain tissues were embed-
ded in 2% gelatin (Sigma–Aldrich) and sectioned at 10μmwith the Thermo Scientific HM 550
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Cryostat (ThermoFisher Scientific). Sections were permeabilized with 0.02% Triton (Sigma)
and stained with Iba1 (Abcam), F4/80 (eBioscience), CD11b (eBioscience), GFAP (Abcam),
O2A (Abcam) and MAP-2(Abcam) followed by secondary antibody FITC- or PE-conjugated
anti-rabbit antibodies or Alexa Fluor 546 Goat Anti-Rat IgG (invitrogen) as appropriate.

BMDM were isolated and cultured using standard protocols (14). Cells were fixed with 4%
paraformaldehyde and permeabilized with 0.02% Triton (Sigma) and stained with Iba1.

Results

The IfitmDel animals demonstrate enhanced adiposity
The IfitmDel strain possesses a defined and engineered (via Cre-Lox) chromosomal deletion of
all five of the Ifitm genes on a mouse genetic background of C57BL/6[16]. No coding sequences
or regulatory sequences other than those associated with the Ifitm genes are known to be lost in
this deletion. Mice lacking these Ifitm genes are fertile and thrive in colonies except for the well-
described sensitivity to viral infections. In maintaining such mice in our colony we noted that
the older IfitmDel animals were generally larger than their WT (C57BL/6) age and sex matched
counterparts. To quantify these differences, body weights were taken frommale mice main-
tained in the colony on regular mouse chow. Fig 1A, shows the slow but significant enhanced
weight gain associated with the IfitmDel animals compared to WT. This body weight increase
corresponded with an increased total fat mass as the animals aged (Fig 1B). Measurement of 3
day food intake averages for a period of 21 days shows that the IfitmDelmice consume more
chow than theWT age-matched controls (Fig 1C). Also increased levels of epididymal fat de-
posits were present in these (Fig 1D). Histological examination suggested the adipocyte size was
increased compared to WT adipose tissue (Fig 1E) and this was confirmed by quantitation as
shown in Fig 1F. The same trends were observed for female mice (not shown).

Fig 1. Deletion of Ifitm gene family leads to obesity. (A) Weight of male mice on normal chow, IfitmDel:
Shown is the representative weight of wild-type (n = 10–22 per point) and IfitmDel (n = 4–16 per point). Both
are in the C57BL/6 genetic background. Error bars were not included for clarity. (B) Fat mass was analyzed
by nuclear magnetic resonance (4-month-old, n = 4 per group; 11-month-old is: wt: n = 3, IfitmDel: n = 4). (C)
Food intake was measured every three days and over a period of three weeks for each group (4-month-old
n = 4 for each group; 11-month-old wt: n = 3, IfitmDel: n = 4). (D) The mass of epididymal fat depots of male
mice (7–10 weeks; wt: n = 5, IfitmDel: n = 4). (E) Histological appearance of epididymal fat depots from
8-week-old mice taken from hematoxylin and eosin stained sections. Scale bar: 100 μm. (F) The mean area
of individual adipocytes was determined frommultiple sections of H&E stained sections as shown in Panel E.
For all statistical comparisons the Student’s t-test was used to evaluate significance between like groups
where * = p<0.05; ** = p<0.01; and *** = p<0.0001.

doi:10.1371/journal.pone.0123218.g001
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The IfitmDel animals demonstrate metabolic alterations
We next determined if the enhanced body weight of the IfitmDel animals was associated with
altered physiological stasis. Blood glucose levels of fasting 2 month and 9-month-old male
IfitmDel animals were measured and observed to be consistently higher than WT (Fig 2A).
However, this difference was not observed under normal feeding (fed) schedules. This differ-
ence in fasting blood glucose was clear in the 2 month old animals.

Two standard tests to measure blood glucose levels are the insulin tolerance test (ITT) (Fig
2B) where blood glucose levels are quantified in fasted mice following a single injection of insu-
lin and the glucose tolerance test (GTT; Fig 2C) in which blood glucose levels are quantified
following a single injection glucose[31]. As shown, the IfitmDel animals responded poorly in
the ITT, maintaining higher levels of blood glucose than the WT animals. The IfitmDel and
WT animals were indistinguishable in their response in the GTT. The same trends were ob-
served with female IfitmDel animals (not shown). These results suggest that as the IfitmDel ani-
mals age, they enter into a metabolic syndrome with a more moderate phenotype than animals
displaying morbid obesity [23].

The IfitmDel animals were also analyzed using metabolic chambers that quantify oxygen
consumption (V02), heat production, and activity (movement). As shown in Fig 2D the Ifitm-
Del animals have reduced metabolism compared to the WT animals as reflected by lower oxy-
gen consumption and decreased heat production in both the light and dark cycles. The activity
of the IfitmDel animal in the cage trended towards less than the WT in the 12 month age
group, but these differences were not statistically significant.

The IfitmDel animals possess elevated levels of serum leptin
Mammals with a metabolic syndrome phenotype often have altered levels of leptin in the blood
stream [32]. The leptin cytokine is critical in regulating appropriate food uptake [22,33,34] and
we have shown (Fig 1C) that the IfitmDelmice have increased food intake. This level of food

Fig 2. IfitmDelmice developmetabolic dysfunction. (A) Blood glucose of 2- and 9-month old WT and
IfitmDelmice were measured at 10 AM (fasted) or 10 PM (fed). (B) & (C) Insulin tolerance test and glucose
tolerance test of male mice (20–24 weeks; n = 7 for each group). (D) Leptin levels in the blood collected from
tail veins were determined by ELISA. (E) Oxygen consumption, heat production and activity measured using
metabolic cages (11-month-old male mice; n = 3 for each group). *p<0.05; **p<0.01; ***p<0.0001.

doi:10.1371/journal.pone.0123218.g002
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intake, however, is significantly less than observed with the ob/ob or db/dbmice. To assess lep-
tin levels in the IfitmDel and control mice, two sets of male animals (4 and 12 months) were an-
alyzed (Fig 3A). In order to correct for the differences in body weight, serum leptin levels are
shown as ng per μl per gram of lean body mass. As shown in Fig 3A, the blood leptin levels
were dramatically elevated in the IfitmDel animal compared to WT. When blood leptin levels
in mice of the same weight (e.g., IfitmDel vs WT weighing 35 g), but differing age, were com-
pared the IfitmDel animals still consistently have higher levels of blood leptin compared to WT
controls (not shown). Leptin is primarily produced by fat cells and serves, via the leptin recep-
tor expressed in the hypothalamus, to regulate food intake [23,34,35]. Animals lacking leptin
(ob/ob) or a functional leptin receptor (db/db) become morbidly obese due to their lack of con-
trol over food intake [34].

Leptin’s actions are largely through interaction with leptin receptors expressed in the hypo-
thalamus, which makes this brain region a target for the interaction between leptin and Ifitm.
To confirm that Ifitm genes are expressed by cells of the hypothalamus, the expression of
Ifitm1, Ifitm2, Ifitm3 and Ifitm6 was quantified in the WT hypothalamus samples (Ifitm5 is
only expressed by osteoblasts). As shown in Fig 3B, Ifitm2, Ifitm3 and Ifitm6 are all expressed
in WT tissue, with Ifitm2 and Ifitm3 showing dramatically elevated expression in older ani-
mals. Therefore, the correlation between the deletion of Ifitm genes and leptin levels occurs in
both young and older mice, the older IfitmDelmice have the added impact of not having the
normal increase in these proteins seen during the aging process.

The leptin receptor, expressed by neurons in the hypothalamus, signals through a Stat3 de-
pendent pathway, controlling the expression of two contrasting neuropeptides[34]. These are
the proopiomelanocortin (Pomc) gene whose expression is increased upon leptin signaling
while the transcription of the neuropeptide y (Npy) gene is depressed [36–39]. Bio-active

Fig 3. IfitmDelmice both show hyperleptinemia and alter levels of POMC and NPY transcripts. (A)
Fasted leptin levels of 4-month-old or 12-month-old mice age matchedWT (n = 3 per group) or IfitmDelmice
(n = 4 per group) were compared. (B) RNA was isolated from the hypothalamus of WT young (2 months) or
older (12 month) mice. The transcript levels of Ifitm1, Ifitm2, Ifitm3 and Ifitm6 were then determined using
quantitative PCR as described in methods and the results normalized for transcript levels to copies
expressed per 1000 actin mRNA. (C) Using the same RNA samples, transcript levels of POMC or NPY were
analyzed in a similar manner. *p<0.05; **p<0.01; ***p<0.0001.

doi:10.1371/journal.pone.0123218.g003
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peptides from the Pomc protein serve to dampen eating while those of Npy have the opposite
effect and promote food intake. The expression of Pomc and Npy gene transcripts were ana-
lyzed from hypothalami obtained fromWT and IfitmDel animals of various ages from 1 to 12
months of age. As shown in Fig 3C, IfitmDel animals have significantly reduced Pomc tran-
scripts than WT suggesting that the IfitmDel animals lack appropriate signals to depress
eating. Further, the IfitmDel samples have trending higher levels of Npy transcripts compared
to WT samples suggesting elevated Npy peptides may contribute to the positive signal to
maintain feeding.

IfitmDelmice demonstrated altered responses to chronic Type I
interferon induction
Chronic Poly I:C treatment, via activation of Tlr3 and the RIG-I-like receptors, results in the
production of IL-6 and IFNγ that can, when provided chronically as a model for cachexia, lead
to a progressive weight loss [40]. When administered in vivo, the major cell types responding
to Poly I:C include macrophages, dendritic cells (DC) and microglia. Additionally responding
DC’s can undergo necroptosis that can exacerbate the inflammatory response. Metabolic dys-
function and neurological disorders have also been linked to cachexia, especially as the out-
come of chronic infections and cancer metastasis that can lead to the chronic release of
inflammatory cytokines. Based upon the previously described findings that the absence of the
Ifitm proteins can alter cellular induction pathways following type I interferon treatment, we
tested whether or not the IfitmDel animals would have an altered response, compared to WT,
to chronic Poly I:C treatment. As shown in Fig 4A, 8 week old WT animals treated with Poly I:
C over a time course of 28 days demonstrated the expected progressive weight loss, but age and
sex matched IfitmDel animals were much more resistant to the cachexic effects of the Poly I:C
treatment. While the IfitmDel animals treated with Poly I:C did lose weight, especially com-
pared to their PBS-treated counterparts, the degree of weight loss was much less dramatic. To
determine if the altered response to Poly I:C in the IfitmDel animals was also mirrored in al-
tered cytokine responses, animals were treated with Poly I:C for 10 days (treatment every two
days) weighed and analyzed. The hypothalamus was removed by dissection, total RNA isolated
and cytokine expression by quantitative RT-PCR was measured. As a positive control, the IFN-
induced protein with tetratricopeptide repeats (Ifit1), which is genetically and functionally dis-
tinct from the Ifitm proteins, was measured in response to type I interferon stimulated by Poly
I:C injection. As shown in Fig 4B, WT and IfitmDelmice have equivalent levels of Ifit1 RNA
following Poly I:C treatment indicating these two strains were equally responsive. However,
the IfitmDel andWT animals displayed significant differences in TNFα and IL-1βmRNA levels
with the IfitmDel animal showing significantly elevated levels of these inflammatory cytokines
(Fig 4C and 4D). PBS mock activated mice of the WT and IfitmDel did not induce elevated cy-
tokine levels in the hypothalamus (not shown). The expression of the IFNγ and iNOS genes
was also elevated in the IfitmDel animals (Fig 4E and 4F) with differences trending toward sig-
nificance. Interestingly the expression of the anti-inflammatory cytokine IL-10 showed lower
levels of expression in the IfitmDel animal samples (Fig 4G). Finally the expression of F4/80
(Emr1), a macrophage/microglial marker, was compared between the WT and IfitmDel Poly I:
C treated animals (Fig 4H). The increased level of F4/80 RNA in the hypothalamus of the Poly
I:C treated IfitmDel animals could be for a number of reasons including enhanced recruitment
of blood monocytes/macrophages to that anatomic site compared to similarly activated WT
animals. Similar analyses were performed with RNA obtained from abdominal fat pads (not
shown) which showed the same trend of inflammatory cytokine signature as that obtained
from the hypothalamus samples. In total these cytokine profiles suggest the response to
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interferon induced by the Poly I:C treatment is intact but much more polarized towards a pro-
inflammatory signature in the IfitmDel animal than WT. This is the case even though the
weight loss in these animals upon Poly I:C treatment is less severe.

Immunohistochemistry of the WT and IfitmDelmice hypothalamus
The RNA signaling results (Fig 4) led us to examine the morphology of the hypothalamus which
to our knowledge has not been examined in depth in the IfitmDelmice. We first assessed the hy-
pothalamus in unstimulated mice using markers for microglia/macrophages (Iba1), astrocytes
(GFAP), oligodendrocytes (O2A) and neurons (MAP2). Coronal serial sections from the brains
of saline perfused and paraformaldehyde-fixed tissue of IfitmDel and control animals (Methods)
were prepared from equivalent anatomical locations, stained for cell specific markers and photo-
graphed for visual analysis. Overall no gross abnormalities in brain anatomy were detected (data
not shown), which is consistent with earlier reports [16] that the IfitmDel animals exhibited no
developmental defects (although CNSmorphology was not specifically characterized). The re-
gional distribution, appearance and staining of neurons, astrocytes or oligodendrocytes was also

Fig 4. The IfitmDelmice exhibit an altered response to Poly I:C activation.Mice were injected with PBS
or Poly I:C every two days for the 28 day course. (A) Changes in body weight after mice treatment with PBS
or Poly I:C (12.5mg/kg) injection. (B-I) Comparison of hypothalamic gene expression of selected pro-
inflammatory cytokines in WT versus IfitmDelmice after Poly I:C injection. Hypothalamus tissue was isolated
after injection with PBS or Poly I:C every two days for 8 days of 6- to 8-week-old mice (n = 6 for each group).
(B) Relative transcript levels of Ifit1 (an interferon responsive gene unrelated to Ifitm genes) confirm the
IfitmDelmice respond to this treatment regime similar to WTmice. Additional measurement of the expression
of selected transcripts from the same sample as in panel B show varied responses of: (C) TNFα; (D) IL-1β;
(E) IFNβ; (F) iNOS; (G) IL-10; and (H) F4/80. *p<0.05 and **p<0.01.

doi:10.1371/journal.pone.0123218.g004
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equivalent between animals of both genotypes (Methods). However, microglia revealed by
immunostaining for the expression of the Iba1 antigen exhibited a markedly altered morphology
betweenWT and IfitmDelmice (Fig 5). Among the most notable morphology differences was
the occurrence of dramatically elongated processes that were often observed to extend well over
150 microns (Fig 5B, dotted line). These processes were almost exclusively unipolar, and they ex-
hibited infrequent branching and few varicosities. The cell bodies of these microglia also tended
to appear as smaller and more poorly defined relative to controls in the hypothalamus (Fig 5A–
5D). The altered microglia morphology of the IfitmDelmice was evident in other brain regions
including the cortex and hippocampus (data not shown). Microglia are mesoderm/mesenchy-
mal derivatives that share a bone-marrow macrophage lineage [41]. To determine if the mor-
phological differences observed in the IfitmDelmicroglia are intrinsic to this cell type, bone
marrow macrophages (BMDM) from controls and IfitmDelmice were prepared from culture.
After 10 days, cells were gently rinsed with PBS, cells fixed with paraformaldehyde and
immunostained to reveal Iba1 expression. As shown in Fig 5E and 5F, the morphology of

Fig 5. Microglia from IfitmDelmice exhibit morphologic abnormalities. (A) Immunohistochemical
examination of sections prepared from saline perfused and paraformaldehyde fixed brains stained for the
expression of the microglial marker, Iba1 (red), are shown. (A,B) Comparison of microglia from photographs
taken of the lateral hypothalamic nucleus (region of the ventromedial nucleus shown). Arrow heads point to
typical appearance of (A) microglia in the Ifitmwild-type (WT) mice or (B) IfitmDelmouse. Dotted lines
indicate extending processes of microglia seen in IfitmDel mouse sections. Bar = 30 microns. (C,D) increased
magnification of individual microglia as marked by an arrow head. In (C) IfitmWTmicroglia exhibit numerous
bifurcations (some indicated by asterisks) whereas (D) IfitmDel microglia show few bifurcations and the long
extended processes (dots) with few bifurcations. Bars are 20 microns. (E,F) Cultured bone marrow-derived
macrophages from (E) IfitmWT or (F) IfitmDelmouse (Methods and text). The arrow points to a common cell
morphology where cells are flattened and have fan-shaped lamella. The double arrow identifies a cell with an
elongated cell morphology that also common to cultures prepared from either genotype. Both are typical to
both preparations. The arrow head identifies a cell with morphology unique to the IfitmDel culture that is
characterized by exceptionally long thin processes (dots) that resemble the microglia morphology seen in the
brain. Bar = 20 microns.

doi:10.1371/journal.pone.0123218.g005
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a subpopulation of IfitmDel BMDMs exhibited strikingly similar features to those seen in the
microglia. In particular, these BMDMs from IfitmDel BM produced very thin extensions that ex-
tended for long distances in the cultures. These processes were rare or not detected with the con-
trol cells (Fig 5E). Also evident is the impression that IfitmDel BMDMs were more compact and
in general looked smaller than cells of similar morphology in theWT preparation. This is also
evident in cells producing fan-shaped lamella which are more compact in IfitmDel BMDMs.
Thus the curious morphology of the IfitmDelmicroglia was recapitulated in cultured bone mar-
row derived macrophages possessing the same genetic defect suggesting that common cellular
abnormalities may be associated with the IfitmDel in vulnerable cells.

Having found that microglia exhibit altered morphology in IfitmDel animal and the hypo-
thalamic transcriptional response to Poly I:C is also altered in this mouse (Fig 4), we examined
by immunohistochemistry changes in the CNS induced by Poly I:C. WT and IfitmDel animals
were activated with Poly I:C as above, sacrificed and perfused. A notable difference in the re-
sponse of the WT compared to the Poly I:C treated mice was evident in choroid plexus struc-
tures within ventricles. Macrophages mobilize to the CNS upon inflammation and this is often
evident by increased cellularity of the choroid plexus. In Fig 6 we show that Poly I:C treatment
of WT and IfitmDel animals stimulates an increase in the accumulation of Iba1/CD11b positive
cells (Fig 6C and 6D; i.e., macrophages) in the choroid plexus. Further, these cells are also Iba1/
F4-80 positive (Fig 6G and 6H), indicative of activation of macrophage lineage cells. A striking
difference between WT and IfitmDel animals is the appearance of masses of these cells (Fig 6D

Fig 6. Microglia accumulation in the choroid plexus differs in IfitmDelmice treated with Poly I:C. Sections of the indicated genotype were prepared
from the brains of mice treated with either PBS or Poly I:C (12.5mg/kg) injection as indicated. Shown are typical results of double labeling with either Iba1
(green), CD11b (red; A-D), or F4/80 (red; E- H), respectively. At low magnification (small panels; original magnification of 10x) and the DAPI image staining
for cell nuclei of the same sections is included. Regions showing the choroid plexus (lateral ventricle; Bregma -0.1 to -0.22) are boxed and shown at greater
magnification in the associated images. Images in (A and E) and (B and F) are staining of serial sections separated by approximately 50 microns. The arrows
identify in the often large aggregates of stained cells unique to IfitmDelmice for either (D) Iba1/CD11b or from a different mouse (H) Iba1/F4/80. These
aggregates are not present in similar sections of IfitmWTmice (compare with (C) and (G), respectively). Similar results are common in choroid plexus of all
ventricles (data not shown).

doi:10.1371/journal.pone.0123218.g006
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and 6H) that are not evident in the PBS animals (Fig 6A and 6B), Poly I:C treated WT animals
(Fig 6E and 6F) or the PBS-treated IfitmDel animal (Fig 6C and 6D). Similar data were also ob-
tained from stained sections of the median eminence of the ventral hypothalamic region (Fig
7), again showing enhanced macrophage/microglia staining in the Poly I:C treated IfitmDel an-
imal compared to controls or sham activated IfitmDel animals. Collectively these findings sug-
gest that the enhanced numbers of transcripts encoding for F4/80 in the hypothalamus of Poly
I:C treated IfitmDel animals (see Figs 6H and 7H) may be due to increased recruitment and/or
accumulation of inflammatory macrophages to the brain. Further, the activated macrophages
in these regions at the site of blood-brain interfaces suggests that perhaps the macrophages do
not enter the brain but may become entangled in these regions during normal migration.

Discussion
This report describes novel peripheral and central alterations associated with the lack of the
Ifitm proteins. The IfitmDel animals lack all five of the Ifitm genes via an engineered genetic de-
letion without impact on other coding or control sequences that reside within the gene family
locus. When bred as heterozygotes, the homozygous IfitmDel progeny are produced in the vi-
varium at normal Mendelian ratios and exhibit normal losses of the adult animals compared to
WT C57BL/6 animals. What is clear, however, is that the longer the IfitmDel animals are main-
tained on normal chow diet, the more obese they become. This obesity is due to an enhanced
accumulation of white adipose mass. We have not examined changes in brown adipose tissue
in these animals.

While there are a variety of pathways that can lead to obesity, perhaps the best characterized
are the aberrant feeding behaviors associated with alterations in the leptin/leptin receptor path-
way [34]. Animals deficient in either the ligand or receptor become morbidly obese due to the
uncontrolled feeding behavior of the animals. Leptin, produced by fat cells, binds to leptin
receptor-bearing cells in the hypothalamus and engages the Stat3 signaling pathway to influ-
ence the expression of genes encoding neuropeptides [42]. These include genes that impact
upon feeding behavior such as an increase in Pomc that suppresses feeding and Npy that pro-
motes this activity. Hence, normally low leptin levels allow Pomc expression to drop and NPY

Fig 7. Microglia accumulation in the median eminence and ventral hypothalamus differs in IfitmDel
mice treated with Poly I:C. Coronal sections prepared as described in the Fig 6 are shown for the region of
the median eminence adjacent to the ventral hypothalamus (arcuate nucleus; approximate Bregma -1.58 to
-1.7). Similar to the choroid plexus, increased accumulation of either Iba1/CD11b or Iba1/F4/80 cells are
found in the PolyI:C treated IfitmDelmice. 3V = third ventricle.

doi:10.1371/journal.pone.0123218.g007
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to increase which leads to enhanced feeding. However, IfitmDel animals, even at an early age
(1 month) with normal weight, despite increased leptin levels, exhibit depressed expression of
Pomc that corresponds to the increased feeding behavior of these animals. This reveals a novel
disparity in leptin signaling through its receptor in the hypothalamus. Our preliminary analy-
ses of the Stat3 signaling pathways in the IfitmDel animals revealed no difference with WT ani-
mals (data not shown). Further, other signaling systems that require Stat3 activation such as
the IL-6 receptor is similar in IfitmDel splenocytes to that of WT-responses (data not shown).
However, the elevated expression of certain inflammatory cytokines such as TNFα, which is
often associated with cachexia and weight loss, require further exploration in the IfitmDel
mice. Thus, a future line investigation will be to detail the mechanism(s) through which the
Ifitm proteins contribute to this unique metabolic phenotype.

Because we are unaware of any reports of brain structural anomalies for the IfitmDel animal,
we performed a survey of brain using a histological approach to evaluate whether the altered
Pomc expression regulation could be due to structural deficiencies in the hypothalamus. Over-
all, we observed no abnormal anatomical defects in any brain regions when compared to the
C57BL/6 controls. Additional analyses of these sections stained with cell type specific immuno-
fluorescent markers also failed to reveal any overall gross inconsistencies in the overall distribu-
tion or numbers of neurons, oligodendrocytes and astrocytes. Microglia, however, were
different. The overall numbers appeared to be similar between the IfitmDel and control mice. It
is worth noting that in occasional IfitmDel animals there appeared to be a substantial decrease
in microglia in the cortex (not shown). What did consistently differ was a striking and common
microglial cell morphology throughout the brain tissues of the IfitmDel animal. Most notable
was the reduced elaboration of microglia morphology accompanied by extremely long and usu-
ally mono-polar processes that extended from the cell body with few bifurcations. Also, the cell
bodies appeared smaller and less distinct than their control counterparts. How altered micro-
glia cell morphology could specifically affect leptin signaling and the production of neuropep-
tides such as Pomc or Npy is not known. However, it is possible that IfitmDel microglia are
unable to produce normal interactions with other cells types including neurons and astrocytes
such as trophic interactions or clearance of debris thereby leading to altered and potentially
toxic microenvironments.

The function(s) of the Ifitm proteins in development and maintenance of the central ner-
vous system is a newly developing field. Elevated expression of IFITM family members has
been noted in the brains of schizophrenic patients, patients with autism, bipolar disorders and
Alzheimer’s disease [43–46]. Besides being reported in neurodegenerative diseases, Ifitm3 also
has been shown to respond to Poly I:C as an inducer of type I interferons, by increasing gene
expression in astrocytes [47]. The Ifitm3 protein is found in the endosomes of astrocytes and
knockdown of Ifitm3 expression inhibits clathrin dependent uptake in such cells [47], similar
to our description for cells obtained from the IfitmDel animal [14]. It appears that the expres-
sion of Ifitm proteins is crucial to function in astrocytes. However, our observations failed to
reveal any gross morphological abnormalities in astrocytes of IfitmDel animals (stained by
GFAP, data not shown). This will require further evaluation to assure astrocytes are not func-
tionally compromised despite the overall appearance of normal morphology.

The dysregulation of the signaling pathways in regulating energy homeostasis in the hypo-
thalamus leading to metabolic disorders are well-known. This includes neuronal dysfunctions
or inflammation in certain brain regions may also be linked to metabolic disorders [48–50].
Activated microglia are capable of secreting pro-inflammatory cytokines that serve to recruit
even more microglia to the site of inflammation that can further influence the metabolic re-
sponse in the brain [51–54]. In neuronal dysfunctions such as schizophrenia, autism, bipolar
disorders and Alzheimer’s disease [43–46], the activation of microglia in addition to astrocytes
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can worsen the disease progression by secreting excessive inflammatory cytokines. One by-
product of these activation-dependent cytokines is the development of metabolic syndrome
phenotypes characterized by weight gain and/or leptin resistance [52,55,56]. While there is a
growing body of evidence suggesting the Ifitm proteins may influence neuronal function
through poorly defined mechanism, our study suggests they actually play a role in normal
brain cellular architecture and interaction.

A final point is that the IfitmDel animal is lacking all five of the Ifitm genes. As shown in Fig
4C, the Ifitm1, 2, 3 and 6 genes are expressed in the hypothalamus and the expression of Ifitm2
and Ifitm3 normally increases with age. As the IfitmDel animal does not produce this age-
related alteration in expression, there is the intriguing possibility that these increases produce
normal compensatory functions towards control of the age-related increases in obesity and al-
tered leptin modulation of metabolic homeostasis. Since an obesity phenotype has not been de-
scribed for single Ifitm gene deletions (Ifitm3 deficient or Ifitm1 deficient)[16,53] nor have any
brain anomalies such as the deficiency in microglia as shown in this report been described for
any of these single Ifitm gene deletion strains, this will require further investigation. For exam-
ple, Ifitm6 is primarily expressed in osteoclasts and macrophage lineages (of which microglia
are related [6,57]). But whether or not the microglia deficiency seen in the IfitmDel animal is
due to the lack of Ifitm6 during microglial cell development remains to be evaluated. Also
other possibilities such as the indirect regulation of other modulators of adipose cell signaling
by Ifitm (e.g., regulation of leptin signaling through carbonic anhydrase activation [58]) will
need to be investigated. What does appear important is that Ifitm genes are implicated in mod-
ulating important endocrine functions. In the framework of the microglia and hypothalamic
interactions, our data also suggest that the phenotype could vary depending upon exposure to
Ifitm-specific pathogens.
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