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a b s t r a c t

Lyme borreliosis is transmitted through the bite of a tick that is infected by the bacterial spirochete
Borrelia burgdorferi. Clinical manifestation of the disease can lead to heart conditions, neurological dis-
orders, and inflammatory disorders. Oxidative stress has been implicated in the pathogenesis of many
human diseases. The aim of this study was to investigate the mechanisms of oxidative stress and
intracellular communication in Lyme borreliosis patients. Mitochondrial superoxide and cytosolic ionized
calcium was measured in peripheral blood mononuclear cells (PBMCs) of Lyme borreliosis patients and
healthy controls. Mitochondrial superoxide levels were significantly higher (po0.0001) in Lyme bor-
reliosis patients (n¼32) as compared to healthy controls (n¼30). Significantly low (po0.0001) levels of
cytosolic ionized calcium were also observed in Lyme borreliosis patients (n¼11) when compared to
healthy controls (n¼11). These results indicate that there is an imbalance of reactive oxygen species and
cytosolic calcium in Lyme borreliosis patients. The results further suggest that oxidative stress and
interrupted intracellular communication may ultimately contribute to a condition of mitochondrial
dysfunction in the immune cells of Lyme borreliosis patients.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Introduction

In North America, Borrelia burgdorferi is the predominant bac-
terial species responsible for infection leading to the emerging
health threat of Lyme borreliosis (Lyme disease) [1,2]. In 2013
there were more than twenty-five thousand new cases of Lyme
borreliosis reported by the Centers for Disease Control and Pre-
vention (CDC) across the United States [3]. The currently accepted
practice for clinical diagnosis of Lyme disease is using the two-tier
testing of ELISA and Western Blot analysis [4]. These tests are
limited in both sensitivity and specificity, often providing both
false negative and false positive results [5–8]. To overcome this
limitation, our laboratory has developed an enhanced T cell-based
immunospot assay which bridges the gap between the ability to
detect humoral immunity and cellular immunity to B. burgdorferi.
B.V. This is an open access article
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We have been able to simultaneously increase the number of true
positive diagnoses while decreasing the number of false positive
and negative results [9].

When an infected tick bites a host, B. burgdorferi is transmitted
through the infected tick's saliva. Once transferred, B. burgdorferi
stimulates the host's immune system to activate a localized
inflammatory response [10]. Consequently the infection often
presents itself by the presence of a “bulls-eye” rash called ery-
thema migrans (EM) within 3–30 days post infection [11]. Once
infected, B. burgdorferi disseminates and causes a variety of
immunological and inflammatory reactions throughout the body.
Early manifestations of infection can lead to heart complications
(e.g. carditis, dizziness, palpitations), neurological disorders (e.g.
Bell's and/or cranial nerve palsy, peripheral neuropathy), and other
inflammatory disorders (e.g. head and neck aches (meningitis),
arthritis) [11]. If treatment is ineffective (Post-Treatment Lyme
Disease Syndrome) or if infected individuals remain undiagnosed
and untreated, some symptoms can persist for months to years.
These symptoms may include muscular pains, arthritis, neurolo-
gical disorders, fatigue, etc. [10,11].

In order to combat an infection the host's immune cells will
generate reactive oxygen species (ROS) through NADPH Oxidase
(NOX; producing superoxide anion radical), and nitric oxide syn-
thase (NOS; producing nitric oxide) [12]. The predominant gen-
erator of ROS within the cells is the mitochondria and it is believed
that the major contributor to cellular oxidative damage is
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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mitochondrial superoxide [13]. Upon the generation of superoxide
(O2

��) and nitric oxide (NO), the reactive nitrogen species (RNS)
peroxynitrite (ONOO�) can be formed. An example of this process
is the neutrophil defense mechanism of oxidative burst which
results in the mobilization of calcium and activation of NADPH
oxidase leading to the subsequent generation of superoxide.
Superoxide dismutase (SOD) then converts superoxide to hydro-
gen peroxide (H2O2), which is bactericidal [14]. These reactive
species are normally kept in balance by endogenous antioxidant
enzymes such as SOD and glutathione peroxidase which converts
H2O2 to water [15]. However, if an imbalance occurs between ROS/
RNS and the antioxidant enzymes, oxidative stress will ensue
causing a toxic environment that can lead to damage of DNA,
protein, and lipids [16]. In addition to creating a toxic environment
for pathogens, ROS and RNS activate NF-κB. One of the major roles
of the NF-κB pathway is generation of pro-inflammatory cytokines
such as Interleukins 1 & 6, TNFα, and IFNγ [17]. Individuals
infected by B. burgdorferi present with significantly increased
levels of TNFα in their sera and synovial fluid [18,19]. This obser-
vation is similar to what is found in patients diagnosed with
rheumatoid, suppurative, and reactive arthritis [19]. A number of
studies have shown that in vitro stimulation of an infected indi-
viduals immune cells by either B. burgdorferi or associated proteins
results in an induction of pro-inflammatory cytokines (IL-1β, IL-6,
IL-17, IL-23, TNFα, and TGF β) [19–22]. Importantly, studies have
shown that during an active Lyme infection or with in vitro sti-
mulation with B. burgdorferi, both NOS and ROS are generated
[22,23].

However, the specific mechanisms of how these reactive spe-
cies interact with and change intracellular communication of
immune cells during an infection by B. burgdorferi are still
unknown. In a previous study we addressed antigen specific T cell
response to B. burgdorferi by measuring release of IFNγ [9]. The
goal of this study was to explore the immune stimulated, inflam-
matory response to the oxidative stress state in PBMCs of Lyme
borreliosis patients. To accomplish this we compared levels of
mitochondrial superoxide and cytosolic ionized calcium in Lyme
borreliosis patients with those in healthy controls.
Materials and methods

Reagents

Unless otherwise stated, all reagents were purchased from
Sigma Aldrich (St. Louis, MO).

Clinical study population

Healthy control subjects in this study were either healthy
adults without known inflammatory conditions or history of Bor-
relia infection. Subjects suspected for Lyme borreliosis infection
were classified by CDC surveillance definition of Lyme disease,
including clinical signs and symptoms, history of possible expo-
sure to infected blacklegged ticks, with or without a positive
antibody response to B. burgdorferi by ELISA and Western Blot,
interpreted according to CDC and the Infectious Disease Society of
America (IDSA) criteria [11]. In addition, any subject known to be
on antibiotic therapy was omitted from this study. Study subjects
were tested further to confirm their negativity or positivity of B.
burgdorferi infection by a Lyme ELISpot assay [9]. Collection of
blood, isolation of PBMCs, and determination of infection by B.
burgdorferi were all performed as described previously [9]. All
individuals gave their informed consent. The studies were per-
formed following a protocol approved by the internal clinical
ethics committee.
Mitochondrial superoxide

Levels of mitochondrial superoxide, in PBMCs, were measured
using the fluorogenic dye MitoSOXTM Red (Life technologies;
Eugen, OR). Measurements were made following the manufac-
turer's suggested protocol with slight modifications. Isolated
PBMCs were incubated with MitoSOXTM Red for 10 min at 37 °C
with 5% CO2 at a ratio of 5 fmol MitoSOX per Cell, in Hanks’
Balanced Salt Solution (HBSS). Cells were then washed once in
HBSS at room temperature with centrifugation at 250g for 5 min
followed by resuspension in HBSS. Fluorescence was measured at
37 °C with an excitation λ of 510 nm and an emission λ at 595 nm.

Cytosolic ionized calcium

Cytosolic ionized calcium (Ca2þI ) levels were measured in
PBMCs by using the calcium specific fluorogenic dye Fura2 AM
ester (Molecular Probes/Life technologies; Eugen, OR). Measure-
ments were made following the manufacturer's suggested proto-
col and for details read work of Carruthers et al. [27]. Briefly,
isolated PBMCs were incubated with Fura2 for 30 min at room
temperature at a ratio of 0.5 ƒmol Fura2 per Cell, in HBSS. Cells
were then washed three times in HBSS, at room temperature, with
centrifugation at 250g for 5 min, once the washes were completed
cells were resuspended in HBSS and incubated at room tempera-
ture for 10 min to allow de-esterification of AM ester by intracel-
lular esterase. Cells were washed three times again as before to
remove any dye that may have leaked. Fluorescence was measured
at room temperature with an excitation λ of either 335 nm (Ca2I
Bound Fura2) or 363 nm (Ca2þI Free Fura2) and an emission λ
being read at 510 nm. Calibrators were used for each subject to
measure the minimal (Ca2þI Free Fura2) and maximal (Ca2þI Bound
Fura2) signals. The calibration for measuring the minimal level
was achieved by post-de-esterification addition of 10 mM EGTA
and 0.05% Triton X100. The calibration for measuring the maximal
level was achieved by post-de-esterification addition of 5 mM
Ionomycin and 20 mM Calcium. Assuming the Kd of Ca2þI -Fura2 at
room temperature in the cytosol to be 143 nM the equation sug-
gested by the manufacturer was used to determine [Ca2þI ].

Statistical analysis

Student's t test was used to compare results of healthy controls
with Lyme borreliosis patients. A p-value of o0.05 was considered
statistically significant. The analyses were done by Prism 6.0 ana-
lysis software (GraphPad Software Inc., La Jolla, CA).
Results and discussion

Excessive mitochondrial superoxide is believed to be one of the
main contributors to oxidative stress and damage within the cell.
Oxidative stress can damage DNA, proteins, and lipids, this damage
has been proposed to contribute to diseases and disorders such as
cancer, Parkinson's, Alzheimer's, atherosclerosis, chronic fatigue
syndrome, and possibly Lyme borreliosis [12,17]. Our goal was to
assess if mitochondrial superoxide is a contributing factor to oxi-
dative stress within PBMCs of Lyme borreliosis patients (Table 1A).
We measured the level of mitochondrial superoxide in PBMCs
using the mitochondrial targeted and superoxide specific fluoro-
genic dye MitoSOXTM Red. Significantly higher levels of mito-
chondrial superoxide were observed in Lyme borreliosis patients
when compared to healthy controls (Fig. 1).

A feed forward-cycle during pathophysiological conditions has
been proposed by Dikalov et al. in which they suggest that
“NADPH oxidases increase mitochondrial ROS, which further



Table 1
Characteristics of the cohorts used in each analysis.

Analysis Demographic Healthy controls Lyme borreliosis
patients

A. Mitochondrial
superoxide

Sex Male 6 9
Female 24 23

Age Median 7 SD 40715 (10–75) 40719 (8–79)
B. Cytosolic
calcium

Sex Male 3 3
Female 8 8

Age Median 7 SD 40712 (25–58) 41715 (23–69)

Fig. 1. Mitochondrial superoxide levels of PBMCs. Dashed blue lines (left) represent
healthy controls (x̄¼1.14 RFU), where red dots (right) represent Lyme borreliosis
patients (x̄¼1.59 RFU). Significant difference between groups was measured by
Student's t-test (****po0.0001). Box-and-whisker plots are represented with max/
min outliers, 25th and 75th on the hinges, and middle line representing the
median.

Fig. 2. Cytosolic ionized calcium levels of PBMCs. Dashed blue lines (left) represent
healthy controls (x̄¼46 nM), where red dots (right) represent Lyme borreliosis
patients (x̄¼26 nM). Significant difference between groups was measured by Stu-
dent's t-test (****po0.0001). Box-and-whisker plots are represented with max/min
outliers, 25th and 75th on the hinges, and middle line representing the median.
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activates cytoplasmic NADPH oxidases and increases cellular
superoxide production…” [24]. This cycle could be the link
between our observation of significantly increased mitochondrial
superoxide and B. burgdorferi induced activation of NADPH oxidase
resulting in oxidative burst [23]. Dikalov also cites findings that by
reducing mitochondrial ROS a resulting down regulation of
NADPH oxidase occurred which ultimately broke the cycle causing
oxidative stress in the cell [24]. As mentioned in the introduction,
the cell has enzymatic antioxidants that serve this function.
However, B. burgdorferi has been shown to passively absorb the
host's cysteine [25]. Cysteine is one of the main amino acids
required to synthesize glutathione (GSH), so depletion of cysteine
concomitantly lowers the levels of glutathione in the host, in
which GSH is a powerful antioxidant that plays a critical role in
scavenging excess ROS and RNS (Fig. 3).

Another integral molecule of cellular communication is ionized
calcium (Ca2þI ). Ionized calcium has a plethora of roles within the
cell including maintenance of the cellular and mitochondrial
membrane potentials, gene regulation, cell proliferation, and
apoptosis. The level of Ca2þ in the cytosol is highly regulated and
to maintain homeostasis reserves are stored in the endoplasmic
reticulum or mitochondria [26]. This homeostasis can fluctuate in
response to inflammation or infection. In regards to inflammation,
rheumatoid arthritis patient’s PBMCs present with an approximate
22% decrease in resting cytosolic calcium when compared to un-
afflicted patients [27]. However, an infection can stimulate neu-
trophils to activate NADPH oxidase which requires the mobiliza-
tion of calcium. Since Lyme borreliosis is an infection that can lead
to a severe inflammatory state, we assessed the levels of cytosolic
Ca2þI in infected patient PBMCs compared with uninfected indi-
viduals (Table 1B). Our observations (Fig. 2) have shown a sig-
nificant decrease in the levels of cytosolic Ca2þI in PBMCs of Lyme
borreliosis patients when compared to healthy controls.

Besides the role of Ca2þI mobilization in NADPH activation, it is
also necessary for chemotaxis and cell migration [28]. Chemotaxis
is mediated by cyclic ADP-ribose (cADPR) which regulates intra-
cellular calcium release. Sanchez et al. have shown that the che-
moattractant formyl-methionyl-leucyl-ribose (fMLP) released by
bacteria initiates chemotaxis of neutrophils by stimulating cADPR
to induce intracellular Ca2þ release and sustains extracellular
calcium influx [28]. The synthesis and hydrolysis of cADPR from
nicotinamide adenine dinucleotide (NADþ) is catalyzed by cyclic
ADP ribose hydrolase (CD38) [29]. A recent study has shown the
effect of Lyme borreliosis on chemotaxis and migration of den-
dritic cells (DC) through interference of DC CD38 expression,
resulting in an almost negligible level of CD38 protein [30]. These
Fig. 3. Proposed scheme of the effect of Borrelia infection on metabolic and sig-
naling pathways within host cells. This scheme shows the cells normal processes
(solid arrows) used to scavenge free radicals and maintain calcium homeostasis.
The proposed effect of Borrelia infection is shown (dashed arrows) by the induced
state of oxidative stress, disrupted calcium homeostasis, increased pro-inflamma-
tory cytokines, and ultimately, mitochondrial dysfunction.
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findings suggest that Borrelia may inhibit dendritic cell migration
to lymph nodes through limiting calcium mobility and ultimately
inhibiting further response by the host's immune cells to the site
of infection [30]. This could possibly explain the significant
decrease in levels of cytosolic Ca2þI we observed in Lyme borre-
liosis patient PBMCs (Fig. 3).

Another possible effect of B. burgdorferi infection may be an
alteration to the mitochondrial density of infected cells. Studies of
other bacterial infections have shown that there is a similar out-
come of oxidative stress and mitochondrial dysfunction in infected
cells, but the mitochondrial density remains unchanged. Suliman
et al. have shown that when rats were injected with Escherichia
coli Lipopolysaccharides (LPS), their cardiac cells showed signs of
LPS-induce oxidative stress, but there was no change in the
mitochondrial density [31]. Garrabou et al. have shown similar
findings with PBMCs of septic patients. They found significant
evidence of mitochondrial dysfunction and oxidative stress in
these patient's PBMCs, but the number of mitochondria remained
unaltered [32]. The effect of infection by B. burgdorferi on mito-
chondrial density is unknown, but considering the aforemen-
tioned studies, we speculate that a change in the mitochondrial
density is unlikely.

In conclusion, our results have shown a significant rise in
mitochondrial superoxide, indicative of a state of oxidative stress
in the PBMCs of Lyme borreliosis patients. In these same patients
we have presented evidence of a significant decrease in levels of
cytosolic ionized calcium in PBMCs. Taken together, we hypothe-
size that these imbalances could cause oxidative stress, depolar-
ization of the mitochondrial membrane, disruption of intracellular
communication, and a release of pro-inflammatory cytokines [33].
All of which could ultimately contribute to a condition of mito-
chondrial dysfunction (Fig. 3). It is our intent to explore this
mechanism in Lyme borreliosis patients further by expanding on
our preliminary data and assessing additional markers for oxida-
tive stress, intracellular communication, and the inflammatory
pathways.
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