www.nature.com/cdd

Transformer 2β and miR-204 regulate apoptosis through competitive binding to 3' UTR of *BCL2* mRNA

Y Kuwano^{*,1}, K Nishida¹, K Kajita¹, Y Satake¹, Y Akaike¹, K Fujita¹, S Kano¹, K Masuda¹ and K Rokutan¹

RNA-binding proteins and microRNAs are potent post-transcriptional regulators of gene expression. Human transformer 2β (Tra 2β) is a serine/arginine-rich-like protein splicing factor and is now implicated to have wide-ranging roles in gene expression as an RNA-binding protein. RNA immunoprecipitation (RIP) with an anti-Tra2 β antibody and microarray analysis identified a subset of Tra2p-associated mRNAs in HCT116 human colon cancer cells, many of which encoded cell death-related proteins including Bcl-2 (B-cell CLL/lymphoma 2). Tra2 β knockdown in HCT116 cells decreased Bcl-2 expression and induced apoptosis. Tra2 β knockdown accelerated the decay of BCL2a mRNA that encodes BcI-2 and full-length 3' UTR, while it did not affect the stability of *BCL2* β mRNA having a short, alternatively spliced 3' UTR different from *BCL2* α 3' UTR. RIP assays with anti-Tra2 β and anti-Argonaute 2 antibodies, respectively, showed that Tra2 β bound to BCL2 α 3' UTR, and that Tra2 β knockdown facilitated association of miR-204 with $BCL2\alpha$ 3' UTR. The consensus sequence (GAA) for Tra2 β -binding lies within the miR-204-binding site of BCL2 3' UTR. Mutation of the consensus sequence canceled the binding of Tra2^b to BCL23' UTR without disrupting miR-204-binding to BCL2 3' UTR. Transfection of an anti-miR-204 or introduction of three-point mutations into the miR-204-binding site increased BCL2 mRNA and Bcl-2 protein levels. Inversely, transfection of precursor miR-204 reduced their levels. Experiments with Tra2 β -silenced or overexpressed cells revealed that Tra2 β antagonized the effects of miR-204 and upregulated Bcl-2 expression. Furthermore, TRA26 mRNA expression was significantly upregulated in 22 colon cancer tissues compared with paired normal tissues and positively correlated with BCL2 mRNA expression. Tra2 β knockdown in human lung adenocarcinoma cells (A549) increased their sensitivity to anticancer drugs. Taken together, our findings suggest that Tra2 β regulates apoptosis by modulating Bcl-2 expression through its competition with miR-204. This novel function may have a crucial role in tumor growth. Cell Death and Differentiation (2015) 22, 815–825; doi:10.1038/cdd.2014.176; published online 24 October 2014

Transformer 2β (Tra 2β) is a prototypical serine/arginine-rich (SR)-like protein splicing factor (SRSF) that is ubiquitously expressed in metazoan genomes.^{1,2} The human *TRA2* β gene consists of 10 exons and generates five mRNA isoforms (TRA2\beta1-TRA2\beta5) through alternative splicing.³ A functional, full-length Tra2*b* protein encoded by *TRA2b1* mRNA contains two SR domains separated by one RNA recognition motif (RRM).⁴ Tra2^β maintains protein-protein interactions with other SR-containing proteins through the SR domains.^{5–7} The SR domains also interact with RNA and support RNA-RNA base pairing.⁸ RRM is mainly responsible for the specific interaction with RNA. A key priority to understand the biological functions of Tra2 β is to identify target RNAs and their associated pathways. Grellscheid et al.9 used highthroughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) and determined the specific G/A-rich motifs as frequent targets in the mouse genome. Cléryl et al.10 demonstrated that Tra2 RRM specifically recognized a 5'-AGAA-3' motif in the target RNAs. Tra2 β is considered to bind directly to the target RNA sequences and to activate splicing inclusion of alternative exons. One well-known target is the survival motor neuron 1 (SMN1) pre-mRNA. Tra2 β specifically binds to the splicing

enhancer within exon 7 of SMN1 pre-mRNA and facilitates inclusion of exon 7 in the mature SMN1 mRNA in neuroblastoma cell lines.¹¹ Similarly, Tra2 β as well as SRSF1 (also known as ASF/SF2) and SRSF9 (SRp30c) promote inclusion of exon 10 of tau pre-mRNA.^{12,13} Tra2ß also facilitates alternative splicing of the CD44 gene via binding to CD44 exons v4 and v5, which is associated with breast cancer progression.^{14,15} Alternative splicing is regulated in a developmental stage- or tissue-specific manner.³ As Tra2β-deficient mice resulted in early embryonic lethality around E7.5, Tra2 β -mediated regulation of alternative splicing was considered to be essential for mouse embryogenesis and spermatogenesis.¹⁶ On the other hand, deletion of $TRA2\beta$ in murine embryonic fibroblasts derived from mice carrying a human SMN2 transgene on murine Smn-null background did not change the splicing pattern of SMN2. This finding suggests that in addition to the regulation of alternative splicing, $Tra2\beta$, similar to SRSF family members, has wide-ranging roles in gene expression.

SRSFs regulate transcription and post-splicing processes, including chromatin modification, transcription elongation, mRNA export, translation, and protein modification.^{17–20} For example, SRSF1 associates with interphase chromatin, and

¹Department of Stress Science, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima 770-8503, Japan

^{*}Corresponding author: Y Kuwano, Department of Stress Science, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan. Tel: +81 88 633 9004; Fax: +81 88 633 9008; E-mail: kuwanoy@tokushima-u.ac.jp

Abbreviations: Tra2 β , Transformer 2 β ; RIP, RNA immunoprecipitation; SRSF, serine/arginine-rich splicing factor; RRM, RNA recognition motif

Received 27.3.14; revised 16.9.14; accepted 17.9.14; Edited by C Borner; published online 24.10.14

small interference RNA (siRNA)-mediated knockdown of SRSF1 causes retention of heterochromatin protein 1 on mitotic chromatin.¹⁸ SRSF1 promotes translation initiation by suppressing the activity of eukaryotic translation initiation factor 4E-binding protein, a competitive inhibitor of cap-dependent translation.¹⁹ SRSF1 directly interacts with the primary miR-7 transcript and promotes the maturation of miR-7 by facilitating cleavage by Drosha in a splicing-independent manner.²¹ This finding suggests potential coordination between splicing factors and microRNA (miRNA) (miRNA)-mediated gene repression in gene regulatory networks. Similar to the SRSF proteins, Tra2 β may regulate both transcription and post-transcriptional processes.

Tra2 β is overexpressed in lung, cervical, and ovarian cancers, and is thought to have an important role in their growth.^{15,22,23} We also reported that Tra2ß was expressed preferentially in the proliferative compartment of normal human colonic glands and adenocarcinomas, and that knockdown of Tra2^β facilitated apoptosis of human colon cancer cells.²⁴ However, the precise role of Tra2 β in tumor growth still remains unclear. To better understand how Tra2ß regulates apoptosis of cancer cells, we used mRNA-protein immnoprecipitation and microarray analyses to investigate potential mRNA targets of Tra2_β. We identified *B-cell CLL/lymphoma 2* (BCL2) mRNA as a potential target responsible for the regulation of apoptosis. Tra2ß regulated turnover of BCL2 mRNA by competing with miR-204 for binding to the 3' UTR. This novel splicing-independent function underscores a potential role of Tra2 β in tumor growth.

Results

Identification of Tra2β-associated mRNAs. RNA immunoprecipitation (RIP) using an anti-Tra2 β antibody (Tra2 β immunoprecipitation (IP)) or control IgG (IgG IP) was used to identify Tra2_b-associated mRNAs in HCT116 cells (Figure 1a). The antibody effectively immunoprecipitated endogenous Tra2 β (Figure 1b). Total RNA was isolated from the Tra2ß IP or IgG IP samples and subjected to transcriptome analysis using a human whole-genome microarray. From this analysis, we selected 470 genes in total, whose fluorescence intensities in Tra2 β IP samples were > 100- and also >5-fold higher than those in IgG IP samples. The raw and normalized values for these samples by microarray analysis were deposited in the Gene Expression Omnibus database (accession number: GSE60904). Biological processes or molecular functions related to the selected mRNAs were analyzed using Ingenuity Pathway Analysis. Consistent with the previous finding that Tra2 β knockdown induced apoptosis of HCT116 cells,²⁴ 'Cell death (P = 4.46E - 5)' was the top-scored biological function related to the Tra2βassociated mRNAs (Figure 1c). Among the cell deathassociated genes extracted, we selected BCL2, BIRC5, PTMA, ATF4, NPM1, SH3KBP1, HSPA8, MYC, CASP8, CFLAR, and HMGB1, and then used quantitative real-time reverse transcription PCR (qPCR) to measure the amounts of these mRNAs in the Tra2 β IP and IgG IP samples. The primer sequences used for gPCR are listed in Supplementary Table S1. The results shown in Figure 1d are the fold enrichment of

Figure 1 Identification of Tra2 β target mRNAs by RNA immunoprecipitation and microarray analysis. (a) Lysates were prepared from HCT116 cells and subjected to IP assays with an anti-Tra2 β antibody or normal rabbit IgG as described in Materials and Methods section. (b) The relative amount of Tra2 β protein the anti-Tra2 β IP or IgG IP materials was measured by western blotting. (c) mRNAs in the Tra2 β IP materials were subjected to Ingenuity Pathway Analysis. The top 10-scored biological functions are listed. The level of significance was set at a *P*-value of 0.05 by the Fisher's exact test. (d) The abundance of mRNAs present in the Tra2 β IP materials after the RIP assay was validated using qPCR with *GAPDH* and 18S as background controls. The values shown are the mean \pm S.D. (n=3). IP, immunoprecipitation; HC, heavy chain; LC, light chain

expression in the Tra2 β IP samples relative to expression in the IgG IP samples (Figure 1d). The fold enrichment of expression of *GAPDH* mRNA or *18S* RNA between the Tra2 β IP and IgG IP samples was used as a negative control. Among the mRNAs that we analyzed, *BCL2* mRNA was most abundantly recovered from the Tra2 β IP samples, and its levels in Tra2 β IP were > 50-fold higher in Tra2 β IP samples than in the IgG IP samples (Figure 1d).

Binding of Tra2 β to *BCL2* 3' UTR. To confirm the association of Tra2 β with *BCL2* mRNA, we prepared biotinylated transcripts spanning the 3' UTR, coding region (CR), or 5' UTR of *BCL2* mRNA (Figure 2a). The 3' UTR was subdivided into five overlapping fragments of ~1000 nucleotides (nt) in length (these fragments are referred to

Time in Actinomycin D (h) Time in Actinomycin D (h) Figure 2 Tra2β binds to BCL2 3' UTR. (a) Schema of the 5' UTR, coding region (CR), and 3' UTR fragments of BCL2 mRNA that were used for in vitro binding assays. (b) A biotin pull-down assay was carried out using lysates prepared from HCT116 cells and biotinylated RNA fragments. RNA-protein complexes were isolated with paramagnetic streptavidin-conjugated Dynabeads (Dynal), and bound Tra2 β or HuR was detected by western blotting. (c) After biotin pull-down using biotinylated fragments of the 3' UTR of BCL2, bound Tra2 was analyzed by western blotting. (d, left) Forty-eight hours after transfection with 10 nM control (ctrl) or TRA2 siRNA, the amounts of BCL2 and GAPDH mRNA were determined by qPCR. The values shown are the mean ± S.D. (n = 5). *Significantly decreased compared with control siRNA-treated cells (P<0.05 by unpaired Student's t-test). (d, right) After treatment of HCT116 cells with 10 nM control or TRA2 siRNA for 48 h, levels of Tra2 and Bcl-2 were measured by western blotting. A-actin was used as a loading control. (e) After HCT116 cells were transfected with control or TRA2\$ siRNA for 48 h, they were treated with actinomycin D (2.5 µg/ml) for the indicated times. BCL2 and GAPDH mRNA levels were measured by qPCR. (f) Schema of two BCL2 mRNA isoforms, BCL2α and BCL2β. The arrow indicates the transcriptional start site. The 3' UTRs of these isoforms are underlined. (g) After a 48-h transfection of control or TRA2p siRNA, HCT116 cells were treated with actinomycin D (2.5 µg/ml) for the indicated times. BCL2a and BCL2b mRNA levels were measured by qPCR and the percentage of mRNA that remained was plotted. (h) qPCR was used to measure the abundance

4

2 3

0

of $BCL2\alpha$ or $BCL2\beta$ mRNAs present in the Tra2 β -IP materials after the RIP assay was measured by qPCR

1

Ó 1 2 3 4 0

BCL2 α BCL2 β

as 3' UTR -1 to -5). After the biotinylated RNAs were incubated with lysates from HCT116 cells, the RNA–protein complexes were precipitated with streptavidin-coated beads, and the precipitated Tra2 β was examined by western blotting. As shown in Figure 2b, Tra2 β specifically interacted with 3' UTR-1, but not with CR or 5' UTR of *BCL2* mRNA or with biotinylated 3' UTR of *GAPDH* mRNA (Figure 2b). *BCL2* mRNA bears an AU-rich 3' UTR and was reported to be a target of an RNA-binding protein, ELAV-like protein 1 (HuR).^{25,26} Consistent with this report, HuR bound to *BCL2* 3' UTR-4 (Figure 2b). We further divided 3' UTR-1 into four overlapping fragments (3' UTR-A, -B, -C, and -D) and found that Tra2 β predominantly bound to the region within 3' UTR-B (nt 1294–1541; Figure 2c).

Next, we examined whether Tra2ß knockdown affected the stability of BCL2 mRNA. Treatment of HCT116 cells with 10 nM Tra2β siRNA for 48 h effectively reduced Tra2β protein levels (Figure 2d, right panel). At the same time, $Tra2\beta$ knockdown decreased the expression of both BCL2 mRNA (Figure 2d, left panel) and Bcl-2 protein (Figure 2d, right panel). As shown in Figure 2e, the rate of decay for BCL2 mRNA in Tra2ß siRNA-treated cells in the presence of actinomycin D ($t_{1/2} = 2.1 \pm 0.3$ h) was faster than that of control siRNA-treated cells ($t_{1/2} = 7.5 \pm 0.6$ h). To exclude the possibility that Tra2 β might change the efficiency of transcription of BCL2, we used a luciferase reporter assay and confirmed that Tra2ß knockdown did not affect the activity of the BCL2 promoter (Supplementary Figure S1). The BCL2 gene is alternatively spliced to generate long (BCL2a) and short (BCL2B) mRNA isoforms (Figure 2f). Full-length and functional Bcl-2 protein is translated from BCL2a mRNA. We compared alternative splicing events between Tra2ß and control siRNAtreated cells using the GeneChip Human Exon 1.0 ST Array (Affymetrix, Santa Clara, CA, USA). The splicing indices (SIs) of BCL2 were not affected by Tra2 β knockdown (SI < 1.0 and P > 0.05). Treatment with a Tra2 β siRNA accelerated the decay of BCL2a mRNA containing full-length 3' UTR, while it did not modify the stability of BCL2ß mRNA having short, alternatively spliced 3' UTR (Figure 2g). RIP using an anti-Tra2 β antibody determined that Tra2 β associated with BCL2a more specifically than BCL2ß mRNA (Figure 2h). These results suggest that Tra2ß may stabilize BCL2 mRNA by binding to BCL2a 3' UTR.

Tra2β stabilizes BCL2 mRNA. To further confirm that BCL2 mRNA is stabilized by associating with Tra2 β (Figure 2b), we prepared an YFP reporter construct of a chimeric RNA that spanned the YFP gene and BCL2 3' UTR-1 (YFP-BCL2; Figure 3a), and transfected HCT116 cells with this construct. RIP assay demonstrated the association between Tra2ß and the chimeric RNA containing BCL2 3' UTR-1 in the transfected cells (Figure 3b). The rate of YFP mRNA degradation in the presence of actinomycin D was monitored by qPCR. Tra2 β silencing significantly shortened the half-life of the chimeric YFP-BCL2 3' UTR-1 mRNA (Figure 3c, left panel) and significantly decreased YFP mRNA levels (Figure 3d), but it did not change the degradation rate of YFP mRNA lacking BCL2 3' UTR (Figure 3c, right panel). Together, these findings suggest that Tra2ß stabilizes BCL2 mRNA through interacting with BCL2 3' UTR-1.

Binding of miR-204 to BCL2 3' UTR. We used the TargetScan (http://www.targetscan.org/) and miRNA org (http://www.microrna.org/microrna/) programs to search for miRNAs that could potentially interact with BCL2 3' UTR-1. Both programs cited putative binding sites for miR-448 (nt 1258-1281) and miR-204 (nt 1405-1429; Figure 4a). One miR-204-binding site lies within the 3' UTR-B region (nt 1294-1541). Transfection of precursor miR-204 (pre-miR-204) reduced BCL2 mRNA (Figure 4b) and Bcl-2 protein (Figure 4c) levels. Conversely, transfection of an antisense RNA complementary to miR-204 (anti-miR-204) increased their levels (Figures 4b and c). In contrast, overexpression or reduction of miR-448 did not lead to changes in the levels of BCL2 mRNA (Figure 4d). We also confirmed that neither overexpression nor knockdown of miR-204 affected TRA2B1 mRNA levels (Supplementary Figures S2a and b), and that Tra2ß knockdown did not affect miR-204 levels (Supplementary Figure S2c).

To precisely examine the interaction between $Tra2\beta$ and miR-204 on BCL2 3' UTR-1, we prepared reporter plasmids that expressed chimeric RNAs containing the sequence for YFP and one of two mutated BCL23' UTR-1 sequences. One mutant, YFP-BCL2_204mt, harbored three-point mutations within the binding site for miR-204; the other, YFP-BCL2 GAAmt, contained three-point mutations that replaced the consensus Tra2β-binding motif (GAA) with UUU (Figure 4e). In control siRNA-treated cells, the amount of YFP mRNA produced by the YFP-BCL2 3' UTR-1 construct was significantly less than that of the control YFP construct, probably because of regulation by miR-204 (Figure 4f). Knockdown of Tra2ß additionally enhanced the BCL2 3' UTR-1-dependent reduction of YFP mRNA levels (Figure 4f). In contrast, the reduction was eliminated and levels of YFP mRNA were increased in cells expressing YFP-BCL2_204mt (Figure 4f). Tra2β knockdown also decreased the amount of YFP mRNA produced by the YFP-BCL2_204mt construct (Figure 4f). The mutations in the GAA site (YFP-BCL2_GAAmt) significantly reduced YFP mRNA levels and eliminated the effect of Tra2ß siRNA (Figure 4f). RIP assays with an anti-Argonaute 2 (Ago2) antibody showed that miR-204 actually bound to BCL2 3' UTR-1, and this binding was eliminated by the mutations in YFP-BCL2_204mt that altered of the miR-204-binding site (Figure 4g). The miR-204 seed sequence is partially overlapped with the GAA sequence (Figure 4e). We therefore examined whether the GAA mutation (YFP-BCL2_GAAmt) also disrupted miR-204 binding to BCL2 3' UTR. Ago2-IP experiments demonstrated that YFP-BCL2 GAAmt rather enhanced its association with miR-204 (Figure 4g). Thus, the GAA mutation did not likely disrupt miR-204 binding to BCL23' UTR. As shown in Figure 4h, miR-204 bound to BCL2a, but not BCL2^β, mRNA. We also confirmed that BCL2_GAAmt significantly blocked Tra2 β binding to the *BCL2*3' UTR (Figure 4i). These results suggest that the binding sites of Tra2 β and miR-204 overlap and these two factors competitively regulate degradation of BCL2a mRNA.

Antagonistic regulation of Bcl-2 expression by Tra2 β and miR-204. To further confirm the competitive effect of Tra2 β and miR-204 on the expression of Bcl-2, we examined the effects of Tra2 β siRNA in HCT116 cells overexpressing

Figure 3 Tra2 β regulates Bcl-2 expression through *BCL2* 3' UTR. (a) Constructs were prepared to express chimeric RNAs spanning the *YFP* CR and *BCL2* 3' UTR-1 (nt 1213–2121 of *BCL2a* 3' mRNA) as described in Materials and Methods section. (b) After a 24-h transfection with the YFP or YFP-BCL2 construct, the amounts of Tra2 β binding to the chimeric RNAs were analyzed by RIP assay followed by measurement of *YFP* mRNA levels by qPCR. *Significantly increased compared with cells transfected with the YFP construct (*P*<0.05 by unpaired Student's *t*-test). (c) After HCT116 cells were treated with control (ctrl) or *TRA2* β siRNA for 24 h, the YFP or YFP-BCL2 vector was transfected for 24 h. These cells were then treated with actinomycin D (2.5 μ g/ml) for the indicated times. *YFP* mRNA levels were measured by qPCR and the percentage of *YFP* mRNA that remained was plotted. (d) After the cells were treated with control or *TRA2* β siRNA for 24 h, the YFP mRNA levels were measured by qPCR. *Significantly decreased compared with control siRNA-treated cells (*P*<0.05 by unpaired Student's *t*-test)

miR-204 (Figure 5a). Overexpression of miR-204 significantly decreased *BCL2* mRNA levels (Figure 5b). Tra2 β knockdown in cells transfected with pre-miR-204 enhanced the over-expressed miR-204-mediated degradation of *BCL2* mRNA (Figure 5b) and resulted in decreased levels of Bcl-2 protein (Figure 5c). The miR-204 overexpression facilitated the association between Ago2 and *BCL2* mRNA, and this association was further enhanced by silencing of Tra2 β (Figure 5d). We also confirmed the specific downregulation of the *BCL2a* mRNA isoform by overexpression of miR-204, but not miR-448 (Figure 5e).

Next, we examined effects of anti-miR-204. Transfection with anti-miR-204 reduced miR-204 levels by 50% in cells treated with control or Tra2 β siRNA (Figure 5f). Anti-miR-204 significantly increased levels of *BCL2* mRNA (Figure 5g) and Bcl-2 protein (Figure 5h) in control siRNA-treated cells. However, the anti-miR-204-mediated increases in *BCL2* mRNA (Figure 5g) and Bcl-2 protein (Figure 5h) levels were canceled when Tra2 β was silenced. This discrepancy suggests that the regulatory mechanism for Bcl-2 expression may be more complex than simply competitive binding between Tra2 β and miR-204. However, our results suggest that Tra2 β may regulate Bcl-2 expression at least in part by acting as a competitive inhibitor of miR-204.

Regulation of Bcl-2 expression by Tra2 β . Using qPCR, we measured the expression of *TRA2* β 1 mRNA in cDNA libraries prepared from 22 patients with colon cancer (HCRT103; OriGene, Rockville, MD, USA). As shown in Figure 6a, colon cancer tissues expressed significantly higher levels of *TRA2* β 1 mRNA than did paired normal tissues. The correlation between *TRA2* β 1 and *BCL2* expression in qPCR arrays of the colon tissues was analyzed by determining the Pearson product moment correlation coefficients. The levels of *TRA2* β 1 mRNA were positively correlated with those of *BCL2* mRNA in human colon tissues and cancers (Figure 6b).

Both mRNA and protein levels of Tra2 β and Bcl-2 were also monitored in colon cancer cells (RKO and HCT116), breast cancer cells (BT549), lung cancer cells (A549), lung epithelial cells (BEAS-2B), and diploid fibroblasts (TIG-3). Among these cell lines, cancer cells expressed higher levels of both *TRA2\beta1* and *BCL2* mRNAs, whereas the expression of miR-204 was downregulated (Figure 6c). Tra2 β and Bcl-2 proteins were overexpressed in all of the cancer cell lines tested (Figure 6d). This limited survey suggests that Tra2 β may contribute to Bcl-2 overexpression in cancer cells. In fact, when Tra2 β siRNA was transfected into A549 cells, which expressed higher amounts of Tra2 β (Figure 6d), it reduced the expression of *BCL2* mRNA and Bcl-2 protein as effectively as it reduced that of *TRA2\beta* UPE

Figure 4 miR-204 targets *BCL2* 3' UTR. (a) Schema of miR-204- and miR-448-binding sites on the *BCL2* 3' UTR. (b) After a 48-h transfection of 25 nM control (ctrl), precursor (pre)-miR-204, or anti-miR-204, the amounts of *BCL2* and *GAPDH* mRNA were determined by qPCR. The values are mean \pm S.D. (n=5). *Significantly decreased compared with control siRNA-treated cells (P<0.05 by unpaired Student's *t*-test). (c) Whole-cell lysates were prepared from HCT116 cells after treatment with control, pre-miR-204, or anti-miR-204 for 48 h. The expression levels of Bcl-2 and β -actin were measured by western blotting. (d) After a 48-h transfection of control, pre-miR-448, or anti-miR-204 for 48 h. The expression levels of Bcl-2 and β -actin were measured by western blotting. (d) After a 48-h transfection of control, pre-miR-448, or anti-miR-204 site (YFP-BCL2), a mutated miR-204 site (YFP-BCL2_204mt), or a mutated GAA site (YFP-BCL2_GAAmt) were generated. The mutated sequences are underlined. (f) After the cells were treated with control or *TRA2* β siRNA for 24 h, each construct was transfected and then *YFP* mRNA levels were measured by qPCR. *Significant changes compared with the cells (P<0.05 by unpaired Student's *t*-test). (g) YFP mRNA enrichment in Ago2-IP materials was analyzed by RIP assay with an anti-Ago2 antibody followed by qPCR. *Significant changes compared with the cells transfected with the YFP construct (P<0.05 by unpaired Student's *t*-test). (i) The interaction between Tra2 β and *YFP* mRNA was measured by RIP assay followed by qPCR. Values are mean \pm S.D. (n=3). * Significant changes compared with the YFP construct (P<0.05 by unpaired Student's *t*-test). (i) The interaction between Tra2 β and *YFP* mRNA was measured by RIP assay followed by qPCR. Values are mean \pm S.D. (n=3). * Significant changes compared with the YFP-transfected cells (P<0.05 by unpaired Student's *t*-test).

820

Regulation of BCL2 mRNA turnover by Tra2*β* Y Kuwano et al

Figure 5 Co-regulation of Bcl-2 expression by Tra2 β and miR-204. (**a** and **b**) After treatment with 10 nM control (ctrl) or *TRA2\beta* siRNA for 24 h, HCT116 cells were transfected with 25 nM control or pre-miR-204 was transfected for 24 h. The levels of mature miR-204 and *BCL2* mRNA were measured by qPCR. *Significant changes compared with control siRNA-treated cells (P < 0.05 by unpaired Student's *t*-test). (**c**) After treatment of HCT116 cells with 10 nM control or *TRA2\beta* siRNA for 24 h, they were transfected with the indicated concentrations of pre-miR-204 for 24 h. The levels of Tra2 β and Bcl-2 were measured by western blotting. β -actin was used as a loading control. Bcl-2 signals were quantified by densitometry. Changes in relative intensities (Bcl-2 β -actin) are shown in the lower panel. Values are mean \pm S.D. from three independent experiments. *Significant changes compared with cells treated with control siRNA (P < 0.05 by unpaired Student's *t*-test). (**d**) HCT116 cells were treated as in **a** and **b**. RIP assay was performed using an anti-Ago2 antibody or control IgG and lysates from cells transfected with the indicated oligonucleotides, and then *BCL2* mRNA levels were measured by qPCR. *Significant change compared with cells transfected with the YFP construct (P < 0.05 by unpaired Student's *t*-test). (**e**) HCT116 cells were treated with 10 nM control or *TRA2\beta* siRNA for 24 h, they were transfected with control siRNA for 24 h, and then transfected with 25 nM pre-miR-204 or pre-miR-448. *BCL2\alpha* and *BCL2\alpha* mRNA levels were measured by qPCR. *Significant change compared with control siRNA for 24 h. The levels of mature miR-204 and *BCL2* mRNA were measured by qPCR. *Significant change compared with control or *TRA2\beta* siRNA for 24 h, they were transfected with 25 nM control or anti-miR-204 was transfected or 24 n. The levels of mature miR-204 and *BCL2\alpha* mRNA were measured by qPCR. *Significant change compared with control siRNA-treated cells (P < 0.05 by unpaired Stu

mRNA and Tra2 β protein (Figure 6e). In contrast, transient expression of FLAG-tagged Tra2 β at a level that was similar to that of endogenous Tra2 β in BEAS-2B cells, which expressed limited amounts of Tra2 β (Figure 6d), led to doubling in the levels of *BCL2* mRNA (Figure 6f). Consequently, BEAS-2B cells increased expression of Bcl-2 protein (Figure 6f).

Tra2\beta knockdown increases apoptosis in A549 cells. We used A549 lung carcinoma cells to examine whether the

decline of Bcl-2 induced by Tra2 β knockdown actually increased the susceptibility to apoptotic cell death. Treatment with Tra2 β siRNA promoted activation of caspase 3 and cleavage of poly (ADP-ribose) polymerase (PARP; Figure 7a). Moreover, exposure of the Tra2 β siRNA-treated cells to 5-fluorouracil (5-FU) or adriamycin (ADR) further enhanced the cleavages of caspase 3 and PARP (Figure 7a). As a result, the numbers of cells that survived after treatment with 5-FU (Figure 7b) or ADR (Figure 7c) were significantly

Cell Death and Differentiation

upg and

Figure 6 Tra2 β regulates Bcl-2 levels. (a) Using TissueScan Tissue qPCR Arrays (HCRT103), *TRA2\beta1* and *ACTB* mRNA levels in cDNAs prepared from tumors and paired normal tissues of 22 patients with adenocarcinomas of the colon were measured by qPCR. (b) The correlation between *TRA2\beta1* and *BCL2* expression in the array of the colon was analyzed by determining the Pearson product moment correlation. (c) The amounts of *TRA2\beta1* and *BCL2* mRNAs in colon cancer cell lines (HCT116 and RKO), breast cancer cells (BT549), lung carcinoma cells (A549), lung epithelial cells (BEAS-2B), and diploid fibroblasts (TIG-3) were measured by qPCR. *ACTB* mRNA was used as an endogenous quantity control. The values shown are the mean \pm S.D. from three independent experiments. (d) Whole-cell lysates were prepared from the indicated cell lines, and the amounts of Tra2 β and Bcl-2 were measured by western blotting. β -actin was using as a loading control. (e, left) After A549 cells were treated with 10 nM of the indicated siRNA for 48 h, changes in the expression of *BCL2* mRNA were measured by qPCR. *GAPDH* mRNA was used as an endogenous quantity control. The values (mean \pm S.D., *n* = 3) are expressed as fold changes, compared with those of control siRNA-treated cells. **P* < 0.05 by unpaired Student's *t*-test. (e, right) The amounts of Tra2 β and Bcl-2 proteins in these cells were measured by qPCR. *GAPDH* mRNA was used as an endogenous quantity control. The values (mean \pm S.D., *n* = 3) are expressed on f *BCL2* mRNA were measured by qPCR. *GAPDH* mRNA was used as an endogenous quantity control. The values (mean \pm S.D., *n* = 3) are expressed as fold changes, compared with those of control siRNA-treated cells. **P* < 0.05 by unpaired Student's *t*-test. (e, right) The amounts of Tra2 β and Bcl-2 proteins in these cells were measured by qPCR. *GAPDH* mRNA was used as an endogenous quantity control. The values (mean \pm S.D., *n* = 3) are expressed of *BCL2* mRNA were measured by qPCR. *GAPDH* mRNA was used

822

Figure 7 Tra2 β knockdown increases susceptibility to anticancer drugs. (a) Whole-cell lysates were prepared from A549 cells that had been treated with 10 nM control or Tra2 β siRNA for 48 h. The levels of unprocessed or cleaved caspase 3 and PARP were measured by western blotting. β -actin was used as a loading control. (b and c) A549 cells were treated with control (ctrl) or Tra2 β siRNA for 36 h, and then these cells were exposed to the indicated concentrations of 5-fluorouracil (FU) or adriamycin (ADR) for 24 h. Subsequently, growing cells were harvested and counted. The values shown are the mean \pm S.D. (n=3). *Significantly different by ANOVA and the Bonferroni test (P < 0.05)

less in the Tra2 β siRNA-treated cells than in the control siRNA-treated cells. These results suggest that Tra2 β function may be one of the crucial regulators of the anti-apoptotic properties of Bcl-2 in various types of cancer cells.

Discussion

The present study suggests that Tra2ß functions as an RNAbinding protein to regulate the turnover of distinct target mRNAs. In agreement with the previous finding that $Tra2\beta$ knockdown induced apoptosis in HCT116 cells,²⁴ microarray analysis of Tra2β-associated mRNAs isolated by Tra2β-RNA IP identified a group of mRNAs encoding cell death-related proteins. Among the potential mRNA targets for Tra2β, BCL2 mRNA may be a critical regulator of the apoptosis induced by Tra2β knockdown. Knockdown of SRSF1 is known to affect the alternative splicing of pre-mRNAs of several BCL2 family members to yield their proapoptotic forms.²⁷ Although Tra2ß knockdown did not change the alternative splicing pattern and promoter activity of BCL2, it decreased BCL2 mRNA levels through accelerating the degradation of BCL2a, but not BCL2β mRNA. BCL2a mRNA encodes functional Bcl-2 protein and contains the full-length 3' UTR, whereas BCL2ß mRNA isoform contains a short, alternatively spliced 3' UTR, whose sequence differs from that of the full-length 3' UTR. Tra2ß bound to the consensus Tra2β-binding motif (GAA) within the miR-204binding site of BCL2a 3' UTR and stabilized the transcript.

Post-transcriptional stabilization of mRNA is regulated by RNA-binding proteins and non-coding RNAs. miRNAs associate with the RNA-induced silencing complex (RISC) and recognize target mRNAs containing 3' UTRs with partially complementary sequence.²⁸ RNA-binding proteins influence mRNA stability and translation by interacting mainly with the 3' UTR. Nucleolin and heterogeneous nuclear ribonucleoprotein E associate with the 3' UTR of beta-globin mRNA and extend its half-life.²⁹ Several RNA-binding proteins (HuR, nuclear factor 90, tristetraprolin, butyrate response factor 1, and K homology-type splicing regulatory protein) preferentially interact with U/AU-rich sequences in the 3' UTR of the target transcripts and regulate their stability, whereas nucleolin preferentially binds to G-rich sequences.³⁰ SR proteins also participate in the regulation of mRNA turnover. For example, SRSF1 selectively enhances the decay of target mRNAs by binding to their 3' UTRs. ³¹ SRSF2 (SC35) not only promotes inclusion of tau exon 10 but also stabilizes the tau mRNA.32 However, further evidence is needed to fully understand how SR or SR-like proteins regulate RNA turnover.

Several lines of evidence suggest that RNA-binding proteins post-transcriptionally regulate target mRNAs via the joint influence of miRNAs. For instance, HuR binds to the 3' UTR of *Topoisomerase Ila* mRNA and increases its translation by antagonizing the binding of miR-548-3p.³³ In contrast, HuR downregulates c-Myc expression by recruiting let-7-loaded RISC to the *MYC* 3' UTR.³⁴ Thus, when miRNA-binding sites overlap with or present near binding sites for RNA-binding proteins, RNA-binding proteins could either compete or cooperate with miRNAs via their physical interactions. In a recent high-throughput study of HuR-mRNA interactions using photoactivatable-ribonucleoside-enhanced crosslinking and IP, Lebedeva *et al.*³⁵ observed that miRNA-binding sites are

preferentially located toward the boundaries of 3' UTR, whereas HuR-binding sites are distributed uniformly along the 3' UTR, with the exception of the regions surrounding the stop codon and the polyadenylation site.^{35,36} Bioinformatic analysis has revealed that most of the miRNA-binding sites are found in the immediate vicinity of the HuR-binding sites.³⁵ Direct competition between miRNAs and HuR for the overlapping binding sites is thought to be possible, whereas in the context of non-overlapping sites, competition could occur by steric hindrance or by non-steric hindrance involving changes in the secondary structure of the RNA. Tra2 β is likely to use at least one GAA sequence within the miR-204-binding site to bind to the *BCL2* 3' UTR and may compete with miR-204 to regulate the stability of *BCL2* mRNA.

Tra2 β likely has wide-ranging roles in gene expression, and the regulatory mechanism for Bcl-2 expression may be more complex than simply competitive interaction between Tra2 β and miR-204. However, the competitive interactions between Tra2 β and miR-204 may provide new insight into the regulation of BCL2 expression in colon cancer cells. Importantly, the increased levels of BCL2 mRNA could act in concert with other oncogenes such as TRA2ß to inhibit cancer cell apoptosis. In fact, the levels of BCL2 and TRA2\$1 mRNAs were significantly elevated in colon cancers and several cancer cell lines, and TRA2β1 levels were positively correlated with those of BCL2 mRNA in cancerous tissues. Knockdown and overexpression experiments demonstrated that BCL2 expression is regulated by Tra2 β in various cancer cell lines. In addition, downregulation of miR-204 has been documented in several types of cancers. 37-41 Decreased expression of miR-204 results in overexpression of its target. mveloid cell leukemia sequence 1 (Mcl-1) mRNA, and induces anti-apoptotic signaling in pancreatic cancers.⁴² miR-204 also regulates expression of an oncogene, neurotrophic receptor tyrosine kinase B, and promotes metastasis in endometrial carcinoma.43 Imam et al.44 showed that the genomic locus encoding miR-204 is frequently lost in multiple cancers, including breast and ovarian cancers, and pediatric renal tumors. They suggest that miR-204 targets distinct genes involved in tumorigenesis including BDNF. Binding to the target mRNAs is followed by activation of a small GTPase, Rac1, and actin reorganization through the AKT/mTOR signaling pathway, both of which facilitate cancer cell migration and invasion.45 These studies suggest an important role of miR-204 as a potent tumor suppressor.

Here, we show that not only miR-204 but also Tra2 β levels affect post-transcriptional regulation of their target, *BCL2* mRNA. Increased expression of Tra2 β in cancer cells prevents decay of *BCL2* mRNA by competitive inhibition of miR-204 binding to *BCL2* 3' UTR. Consequently, Tra2 β induces resistance to the apoptosis caused by anticancer drugs. Our findings disclose a novel function of the splicing factor Tra2 β in mRNA turnover and may provide mechanistic insight into the role of Tra2 β in tumor growth.

Materials and Methods

Cell culture. Human colon cancer HCT116 and RKO cells were cultured in McCoy's 5A medium (Gibco, Grand Island, NY, USA) supplemented with 5% (v/v) heat-inactivated fetal calf serum (FCS) and antibiotics. Human lung BEAS-2B and A549 cells were maintained in RPMI-1640 medium (Gibco) supplemented with 10%

FCS. Human embryonic kidney 293T (HEK293T) and HeLa cells were cultured in Dulbecco's modified Eagle's medium supplemented with 10% FCS. Human diploid fibroblasts (TIG-3) cells were cultured in minimal essential medium (Gibco) supplemented with 10% FCS. All cells were cultured at 37 °C in 5% CO_2 .

Reporter constructs. The 3' UTR of *BCL2* mRNA was cloned into the pd2EYFP-N1 reporter vector (Clontech, Palo Alto, CA, USA). In brief, *BCL2* 3' UTR-1 (1–968 nt of the 3' UTR) was amplified by PCR using the following primer set: 5'-GCGGCCGCGATGCCTTTGTGGAACTGTACG-3' (forward) and 5'-GCGGC CGCATGCGGAAGTCACCGAAATGTTC-3' (reverse). The amplified fragment was subcloned into pd2EYFP-N1 (YFP) using a *Not*1 site located downstream of the *YFP* stop codon (a *Not*1 sequence is underlined). Three-point mutations in the miR-204-binding site or the GAA site in *YFP-BCL2* were introduced by using a site-directed mutagenesis kit (Agilent Technologies, Palo Alto, CA, USA) and the following primers: YFP-BCL_204mt, 5'-GCTATTTACTGCCAACCGAAATACATTTATTTTTACT3' and 5'-AAATAATGATATTTGGTGTGTGGGAGTAAATAGC-3'; YFP-BCL2 _GAAmt, 5'- GCTATTTACTGCCAAAGGTTTATATCATTTATATAATGATATAAATGATATAAACCTTTGGCAGTAAATAGC-3' (the mutated sites are underlined).

Western blotting. HCT116 cells were treated with 10 nM Tra2 β siRNA (Invitrogen, Carlsbad, CA, USA) or control siRNA (AllStars; Invitrogen) for 24 or 48 h. These cells were also transfected with 25 nM pre-miR-204 or -448 (Applied Biosystems, Foster City, CA, USA) or 25 nM anti-miR-204 or -448 (Applied Biosystems) for 24 h. Whole-cell lysates were prepared using RIPA buffer (Thermo Scientific, Rockford, IL, USA) containing a protease inhibitor cocktail (Roche Applied Science, Indianapolis, IN, USA). The extracted proteins were separated by SDSpolyacrylamide gel electrophoresis and then transferred onto a polyvinylidene difluoride membrane (Bio-Rad, Hercules, CA, USA). After blocking with 5% nonfat milk (Cell Signaling Technology, Danvers, MA, USA) for 1 h at room temperature, the membrane was incubated with anti-Tra2 β (Abcam, Cambridge, UK), anti-Bcl-2 (Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-FLAG (Sigma-Aldrich, St. Louis, MO, USA), or anti-β-actin (Abcam) antibody overnight at 4 °C. Following incubation with an appropriate secondary antibody for 1 h at room temperature, the bound antibodies were detected with an ECL Western Blotting Detection System (GE Healthcare, Piscataway, NJ, USA). The intensities of the bound antibodies were quantified by using the Image J software.

Quantitative PCR. Total RNAs were extracted from cells using the miRNeasy mini kit (Qiagen, Valencia, CA, USA), and contaminating DNA was removed using RNase-free DNase (Qiagen). One microgram of isolated RNA was reverse-transcribed using the PrimeScript RT reagent kit (Takara, Otsu, Japan). *TRA2β1, BCL2, GAPDH*, and *18S* mRNA levels were measured using a specific primer set and SYBR Green Master Mix (Applied Biosystems) as previously described.²⁴ Total RNA (10 ng) was used as a template to generate specific first-strand cDNA for miRNAs by using a TaqMan-specific miRNA reverse transcription kit (Applied Biosystems). miRNA levels were normalized by using U6 snRNA as an endogenous quantity control.

Biotin pull-down assay. PCR fragments containing the T7 RNA polymerase promoter sequence were used as templates for *in vitro* transcription. Biotinylated transcripts were prepared using T7 polymerase (Invitrogen) and biotin-CTP (Perkin-Elmer-Cetus, Norwalk, CT, USA), and purified with ssDNA/RNA Clean & Concentrator (Zymo Research, Orange, CA, USA). Biotin pull-down assays were carried out by incubating 40 μ g of cell lysates with 1 μ g of biotinylated transcripts in TENT buffer (10 mM Tris-HCl buffer, pH 8.0, containing 1 mM EDTA, 250 mM NaCl, and 0.5% Triton X-100) for 1 h at room temperature. The RNA–protein complexes were isolated with paramagnetic streptavidin-conjugated Dynabeads (Dynal, Oslo, Norway), and the bound proteins in the pull-down materials were analyzed by western blotting with an anti-Tra2 β or anti-HuR antibody.

RIP assay. Analysis of mRNA in RIP materials was performed as described previously.^{34,46,47} In brief, HCT116 cells were lysed with 25 mM Tris-HCI buffer (pH 7.5) containing 150 mM NaCl, 1 mM EDTA, 1% (v/v) Nonidet P-40, 5% (v/v) glycerol, and 100 U/mI RNase inhibitor (Promega, Madison, WI, USA), and then whole-cell extracts were incubated with protein-A Sepharose beads precoated with 3 μ g anti-Tra2 β antibody or control rabbit IgG for 2 h at 4 °C. After washing with NT2 buffer (50 mM Tris-HCI buffer, pH 7.4, containing 150 mM NaCl₂, 1 mM MgCl₂, and 0.05% Nonidet P-40), the beads were incubated with 20 U of RNase-free DNase I

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgements. This research was supported by a research grant (nos. 22790649 and 24659370) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (to Y.K) and Takeda Science Foundation.

- Mayeda A, Zahler AM, Krainer AR, Roth MB. Two members of a conserved family of nuclear phosphoproteins are involved in pre-mRNA splicing. *Proc Natl Acad Sci USA* 1992; 89: 1301–1304.
- Tacke R, Tohyama M, Ogawa S, Manley JL. Human Tra2 proteins are sequence-specific activators of pre-mRNA splicing. *Cell* 1998; 93: 139–148.
- Nayler O, Cap C, Stamm S. Human transformer-2-beta gene (SFRS10): complete nucleotide sequence, chromosomal localization, and generation of a tissue-specific isoform. *Genomics* 1998; 53: 191–202.
- 4. Shepard PJ, Hertel KJ. The SR protein family. Genome Biol 2009; 10: 242.
- Daoud R, Da Penha Berzaghi M, Siedler F, Hübener M, Stamm S. Activity-dependent regulation of alternative splicing patterns in the rat brain. *Eur J Neurosci* 1999; **11**: 788–802.
- Dauwalder B, Amaya-Manzanares F, Mattox W. A human homologue of the Drosophila sex determination factor transformer-2 has conserved splicing regulatory functions. *Proc Natl* Acad Sci USA 1996; 93: 9004–9009.
- Beil B, Screaton G, Stamm S. Molecular cloning of htra2-beta-1 and htra2-beta-2, two human homologs of tra-2 generated by alternative splicing. DNA Cell Biol 1997; 16: 679–690.
- Shen H, Kan JL, Green MR. Arginine-serine-rich domains bound at splicing enhancers contact the branchpoint to promote prespliceosome assembly. *Mol Cell* 2004; 13: 367–376.
- 9. Grellscheid S, Dalgliesh C, Storbeck M, Best A, Liu Y, Jakubik M *et al.* Identification of evolutionarily conserved exons as regulated targets for the splicing activator $tra2\beta$ in development. *PLoS Genet* 2011; **7**: e1002390.
- Cléry A, Jayne S, Benderska N, Dominguez C, Stamm S, Allain FH. Molecular basis of purine-rich RNA recognition by the human SR-like protein Tra2-β1. Nat Struct Mol Biol 2011; 18: 443–450.
- Hofmann Y, Lorson CL, Stamm S, Androphy EJ, Wirth B. Htra2-beta 1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). *Proc Natl Acad Sci USA* 2000; **97**: 9618–9623.
- Kondo S, Yamamoto N, Murakami T, Okumura M, Mayeda A, Imaizumi K. Tra2 beta, SF2/ASF and SRp30c modulate the function of an exonic splicing enhancer in exon 10 of tau pre-mRNA. *Genes Cells* 2004; 9: 121–130.
- Tsuda K, Someya T, Kuwasako K, Takahashi M, He F, Unzai S et al. Structural basis for the dual RNA-recognition modes of human Tra2-β RRM. Nucleic Acids Res 2011; 39: 1538–1553.
- Watermann DO, Tang Y, Zur Hausen A, Jäger M, Stamm S, Stickeler E. Splicing factor Tra2-beta1 is specifically induced in breast cancer and regulates alternative splicing of the CD44 gene. *Cancer Res* 2006; 66: 4774–4780.
- Fischer DC, Noack K, Runnebaum IB, Watermann DO, Kieback DG, Stamm S et al. Expression of splicing factors in human ovarian cancer. Oncol Rep 2004; 11: 1085–1090.
- Mende Y, Jakubik M, Riessland M, Schoenen F, Rossbach K, Kleinridders A et al. Deficiency of the splicing factor Sfrs10 results in early embryonic lethality in mice and has no impact on full-length SMN/Smn splicing. *Hum Mol Genet* 2010; 19: 2154–2167.
- Long JC, Caceres JF. The SR protein family of splicing factors: master regulators of gene expression. *Biochem J* 2009; 417: 15–27.
- Loomis RJ, Naoe Y, Parker JB, Savic V, Bozovsky MR, Macfarlan T et al. Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation. *Mol Cell* 2009; 33: 450–461.
- Michlewski G, Sanford JR, Cáceres JF. The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E-BP1. *Mol Cell* 2008; **30**: 179–189.
- Pelisch F, Gerez J, Druker J, Schor IE, Muñoz MJ, Risso G *et al*. The serine/arginine-rich protein SF2/ASF regulates protein sumoylation. *Proc Natl Acad Sci USA* 2010; 107: 16119–16124.
- Wu H, Sun S, Tu K, Gao Y, Xie B, Krainer AR et al. A splicing-independent function of SF2/ASF in microRNA processing. *Mol Cell* 2010; 38: 67–77.

- Tsukamoto Y, Matsuo N, Ozawa K, Hori O, Higashi T, Nishizaki J et al. Expression of a novel RNA-splicing factor, RA301/Tra2beta, in vascular lesions and its role in smooth muscle cell proliferation. Am J Pathol 2001; 158: 1685–1694.
- Gabriel B, Zur Hausen A, Bouda J, Boudova L, Koprivova M, Hirschfeld M et al. Significance of nuclear hTra2-beta1 expression in cervical cancer. Acta Obstet Gynecol Scand 2009; 88: 216–221.
- Kajita K, Kuwano Y, Kitamura N, Satake Y, Nishida K, Kurokawa K *et al.* Ets1 and heat shock factor 1 regulate transcription of the Transformer 2β gene in human colon cancer cells. *J Gastroenterol* 2013; **48**: 1222–1233.
- Ishimaru D, Ramalingam S, Sengupta TK, Bandyopadhyay S, Dellis S, Tholanikunnel BG et al. Regulation of Bcl-2 expression by HuR in HL60 leukemia cells and A431 carcinoma cells. *Mol Cancer Res* 2009; 7: 1354–1366.
- Filippova N, Yang X, Wang Y, Gillespie GY, Langford C, King PH et al. The RNA-binding protein HuR promotes glioma growth and treatment resistance. Mol Cancer Res 2011; 9: 648–659.
- Moore MJ, Wang Q, Kennedy CJ, Silver PA. An alternative splicing network links cell-cycle control to apoptosis. *Cell* 2010; 142: 625–636.
- Baltimore D, Boldin MP, O'Connell RM, Rao DS, Taganov KD. MicroRNAs: new regulators of immune cell development and function. *Nat Immunol* 2008; 9: 839–845.
- Jiang Y, Xu XS, Russell JE. A nucleolin-binding 3' untranslated region element stabilizes beta-globin mRNA in vivo. *Mol Cell Biol* 2006; 26: 2419–2429.
- Abdelmohsen K, Tominaga K, Lee EK, Srikantan S, Kang MJ, Kim MM et al. Enhanced translation by Nucleolin via G-rich elements in coding and non-coding regions of target mRNAs. Nucleic Acids Res 2011; 39: 8513–8530.
- Sun D, Novotny M, Bulek K, Liu C, Li X, Hamilton T. Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). *Nat Immunol* 2011; 12: 853–860.
- Qian W, Iqbal K, Grundke-Iqbal I, Gong CX, Liu F. Splicing factor SC35 promotes tau expression through stabilization of its mRNA. FEBS Lett 2011; 585: 875–880.
- Srikantan S, Abdelmohsen K, Lee EK, Tominaga K, Subaran SS, Kuwano Y et al. Translational control of TOP2A influences doxorubicin efficacy. *Mol Cell Biol* 2011; 31: 3790–3801.
- Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M. HuR recruits let-7/RISC to repress c-Myc expression. *Genes Dev* 2009; 23: 1743–1748.
- Lebedeva S, Jens M, Theil K, Schwanhäusser B, Selbach M, Landthaler M et al. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 2011; 43: 340–352.
- Mukherjee N, Corcoran DL, Nusbaum JD, Reid DW, Georgiev S, Hafner M et al. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol Cell 2011; 43: 327–339.
- Chung TK, Lau TS, Cheung TH, Yim SF, Lo KW, Siu NS et al. Dysregulation of microRNA-204 mediates migration and invasion of endometrial cancer by regulating FOXC1. Int J Cancer 2012; 130: 1036–1045.
- Lam EK, Wang X, Shin VY, Zhang S, Morrison H, Sun J et al. A microRNA contribution to aberrant Ras activation in gastric cancer. Am J Transl Res 2011; 3: 209–218.
- Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF et al. VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell 2012; 21: 532–546.
- Pignot G, Cizeron-Clairac G, Vacher S, Susini A, Tozlu S, Vieillefond A et al. microRNA expression profile in a large series of bladder tumors: identification of a 3-miRNA signature associated with aggressiveness of muscle-invasive bladder cancer. Int J Cancer 2013; 132: 2479–2491.
- Sacconi A, Biagioni F, Canu V, Mori F, Di Benedetto A, Lorenzon L *et al.* miR-204 targets Bcl-2 expression and enhances responsiveness of gastric cancer. *Cell Death Dis* 2012; 3: e423.
- Chen Z, Sangwan V, Banerjee S, Mackenzie T, Dudeja V, Li X et al. miR-204 mediated loss of Myeloid cell leukemia-1 results in pancreatic cancer cell death. Mol Cancer 2013; 12: 105.
- Bao W, Wang HH, Tian FJ, He XY, Qiu MT, Wang JY et al. A TrkB-STAT3-miR-204-5p regulatory circuitry controls proliferation and invasion of endometrial carcinoma cells. *Mol Cancer* 2013; 12: 155.
- Imam JS, Plyler JR, Bansal H, Prajapati S, Bansal S, Rebeles J et al. Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/ mTOR/Rac1 signaling and actin reorganization. PLoS One 2012; 7: e52397.
- Imam SZ, Trickler W, Kimura S, Binienda ZK, Paule MG, Slikker W *et al.* Neuroprotective efficacy of a new brain-penetrating C-Abl inhibitor in a murine Parkinson's disease model. *PLoS One* 2013; 8: e65129.
- Kurokawa K, Akaike Y, Masuda K, Kuwano Y, Nishida K, Yamagishi N *et al.* Downregulation of serine/arginine-rich splicing factor 3 induces G1 cell cycle arrest and apoptosis in colon cancer cells. *Oncogene* 2013; 33: 1407–1417.
- Masuda K, Kuwano Y, Nishida K, Rokutan K. Application of DNA microarray technology to gerontological studies. *Methods Mol Biol* 2013; **1048**: 285–308.

Supplementary Information accompanies this paper on Cell Death and Differentiation website (http://www.nature.com/cdd)