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ABSTRACT

Background Characterisation of colorectal cancer
(CRC) genomes by next-generation sequencing has led
to the discovery of novel recurrently mutated genes.
Nevertheless, genomic data has not yet been used for
CRC prognostication.

Objective To identify recurrent somatic mutations with
prognostic significance in patients with CRC.

Method Exome sequencing was performed to identify
somatic mutations in tumour tissues of 22 patients with
CRC, followed by validation of 187 recurrent and
pathway-related genes using targeted capture
sequencing in additional 160 cases.

Results Seven significantly mutated genes, including
four reported (APC, TP53, KRAS and SMAD4) and three
novel recurrently mutated genes (CDH10, FAT4 and
DOCK?2), exhibited high mutation prevalence (6—14% for
novel cancer genes) and higher-than-expected number of
non-silent mutations in our CRC cohort. For
prognostication, a five-gene-signature (CDH10, COL6A3,
SMAD4, TMEM 132D, VCAN) was devised, in which
mutation(s) in one or more of these genes was
significantly associated with better overall survival
independent of tumor-node-metastasis (TNM) staging.
The median survival time was 80.4 months in the
mutant group versus 42.4 months in the wild type group
(p=0.0051). The prognostic significance of this signature
was successfully verified using the data set from the
Cancer Genome Atlas study.

Conclusions The application of next-generation
sequencing has led to the identification of three novel
significantly mutated genes in CRC and a mutation
signature that predicts survival outcomes for stratifying
patients with CRC independent of TNM staging.

INTRODUCTION

Colorectal cancer (CRC) is the third most common
cancer and the fourth leading cause of cancer-
related death globally, and its incidence has been
increasing rapidly in some areas of the world,
including Asia." * The molecular pathogenesis of
CRC is characterised by successive acquisition of
genetic alterations that lead to aberrant activation
of proto-oncogenes and inactivation of tumour-
suppressor genes. According to the classical tumour
progression model of sporadic CRC proposed by
Fearon and Vogelstein, APC mutation is involved in

Significance of this study

What is already known on this subject?

» Large-scale mutational analyses by Sanger and
next-generation sequencing has identified a
handful of recurrently mutated genes in patients
with colorectal cancer (CRC) mainly of Caucasian
origin.

» Prognostication of patients with CRC mainly
relies on tumor-node-metastasis (TNM) staging.

» BRAF mutation and microsatellite stability
statuses also predict survival of patients with CRC.

What are the new findings?

» Three novel recurrently mutated genes, namely
CDH10, FAT4 and DOCK2, were identified to
exhibit high mutation prevalence in the Asian
CRC cohort.

» The mutation status of a five-gene-signature
(CDH10, COL6A3, SMAD4, TMEM132D, VCAN)
could predict survival of patients with CRC
independent of TNM staging in two
independent cohorts.

How might it impact on clinical practice in the

foreseeable future?

» Identification of novel recurrently mutated
genes will expand the current list of druggable
targets and thus facilitate the development of
new targeted therapeutics.

» The five-gene-signature will help to stratify
patients with early-stage CRC with different
predicted clinical outcomes.

adenoma formation followed by oncogenic muta-
tion of KRAS that promotes the transition from
intermediate adenomas to carcinomas with TP53
inactivation as a late event.® Since the last decade,
research efforts have shifted from investigation of
mutations of individual genes (eg, SMAD4) to
genome-wide identification of genetic abnormalities
in cancer.* ° Sjoblom et al and Wood et al first
used large-scale PCR-based sequencing to depict
the genomic landscape of CRC, in which a number
of well-known, high-frequency mutated genes iden-
tified as ‘gene mountains’ (ie, APC, KRAS, TP53,
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FBXW?7) were found to be interspersed with many ‘gene hills’
that are mutated at low frequency.’® 7 Leveraging the next-
generation sequencing technology, The Cancer Genome Atlas
(TCGA) Network reported the common occurrence of muta-
tions in additional genes, such as ARID1A, SOX9 and
FAM123B.® These studies also demonstrate that CRC is highly
genetically heterogeneous at the population level.

Identification of somatic mutations is key to understanding
the molecular mechanism of CRC and the development of
novel therapeutics. It is also presumed that genomic data could
be used for disease prognostication to stratify patients with
CRC with different clinical outcomes since mutations of specific
genes are known to correlate with distinct biological behaviours
of tumours.” While adjuvant therapy is recommended for stage
III patients with CRC, such treatment remains controversial for
stage II patients because its toxicities may outweigh its bene-
fits.'% It is therefore pivotal to stratify patients with CRC with
dissimilar predicted outcomes for different treatment regimens.
To date, prognostication of patients with CRC still heavily relies
on tumor-node-metastasis (TNM) staging or similar histoclini-
cal systems.!' Nevertheless, clinical outcomes of patients with
the same histoclinical staging could be heterogeneous.
Endeavours have been put forth to develop novel biological
markers to make up for this insufficiency. To this end, microsat-
ellite instability (MSI) resulting from defects in DNA mismatch
repair is associated with better prognosis.'> BRAF mutation is
also known to be associated with shortened survival in patients
with late-stage CRC.'* Molecular profiling, such as gene expres-
sion patterns, has also been found useful for predicting clinical
outcomes in CRC.'* However, the relationship between somatic
mutation patterns at genome-wide level and clinicopathological
features, including patients’ survival, in CRC has not yet been
thoroughly investigated.

In the present study, we adopted a two-phase approach for
genomic discovery in patients with CRC to identify potential
novel recurrently mutated genes and mutation markers/patterns
of prognostic value. We first performed exome sequencing to
identify somatic mutations in 22 tumour tissues. Targeted
capture sequencing of 187 recurrent and pathway-related genes
in 160 CRC cases with detailed clinicopathological information
was then conducted to evaluate their mutation prevalence and
clinical relevance.

METHODS

Sample collection and genomic DNA preparation

Genomic DNA was extracted from primary CRC tissues and
matched lymphocyte samples using QIAamp DNA Mini Kit
(Qiagen, Germany) and Gentra Puregene Blood Kit (Gentra
Systems, Minneapolis, Minnesota, USA), respectively. All
samples were collected from patients diagnosed with primary
CRC without chemotherapy prior to surgery. After surgery, all
stage | patients did not receive further chemotherapy whereas
stage Il and some stage II patients were treated with the
S-fluorouracil, leucovorin, and oxaliplatin (FOLFOX) regimen.
Stage IV patients received either FOLFOX or 5-fluorouracil,
folinic acid, irinotecan (FOLFIRI) regimen with irinotecan plus
cetuximab as second-line treatment.

Illumina based whole-exome sequencing

and reads alignment

Our bioinformatic pipeline is illustrated in figure 1. Genomic
DNA from tumours and lymophocytes was fragmented and
hybridised to commercially available capture arrays for enrich-
ment. The exome capture procedure was performed with

Agilent’s SureSelect Human All Exon Kit protocol (Agilent
Technologies). Resulting DNA libraries with an insert size of
200 bp on average were sequenced using the 90-bp paired-end
technology on Illumina HiSeq 2000. Real-time image analysis
and base calling were performed by Hiseq Control Software
V1.1.37 and Real Time Analysis V.1.7.45 using standard para-
meters, respectively. Before aligning reads to the Homo sapiens
reference genome, we removed low quality reads that meet the
following criteria: (1) reads include sequencing adaptors; (2) the
ratio of ambiguous bases to read length >0.1; (3) read with
more than five ambiguous bases. The resultant reads were
aligned to reference genome hgl8 by using BWA v0.5.9 (bwa
aln -0 1 -e 50 -m 100 000 -t 4 -i 15 -q 10 -I)."> SAMtools was
used to convert the SAM-formatted alignment results to
BAM-formatted alignment files, followed by Genome Analysis
Toolkit (GATK IndelRealigner) to calibrate alignment accuracy
in local regions and Picard to mark duplicates.'® '”

Detection of somatic mutations and indels

MuTect was used to detect somatic mutations in discovery and
validation cohorts, which is a sensitive tool to detect somatic
point mutations, addressing tumour impurity and heterogen-
eity.'® After manual inspection, mutations found to be located in
regions enriched for ‘mismatches’ were discarded. The minimum
coverage was set at 10X, mutation allele fraction >10% and >5
reads that support this mutation. These somatic mutations were
annotated with ANNOVAR." VarScan2 was used to detect
somatic indels by comparing tumour BAM file against its
matched normal BAM file with following parameters: min-
coverage 10; min-coverage-normal 10; min-coverage-tumour 10;
min-var-freq 0.1; min-freq-for-hom 0.75; somatic-p-value 0.05;
min-avg-qual 0; Q 0.2° False-positive indels were removed
through manual inspection. Significantly mutated genes (SMGs)
were identified by MutSigCV.

Identification of significantly mutated pathways (SMPs)

SMPs are causally implicated in tumorigenesis and therefore
their composing genes exhibit a higher-than-expected variant
count due to selective advantages conferred by driver mutations.
A statistical method as reported by Kan et al with modifications
was e;rllployed to account for accuracy and computational
speed.

Statistical analysis

Relative risks of death associated with mutation(s) in the five-
gene signature and other predictor variables were estimated
from univariate Cox proportional hazards model first.
Multivariate Cox models were also constructed to estimate the
HR for mutation(s) in the five-gene signature. Overall survival
in relation to mutation status was evaluated by the
Kaplan-Meier survival curve and the log-rank test. Patients with
more than 400-day follow-up survival data from TCGA study
were used as an independent cohort for verification of prognos-
tic significance of the five-gene signature. All analyses were per-
formed using open source R software for Linux, V2.15
(http:/www.r-project.org/). A p value of less than 0.05 was
taken as statistical significance. For driver gene prediction,
g-value of less than 0.1 as used by other studies was considered
statistically significant.” *3
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Figure 1 Work flow of identification
of somatic single-nucleotide variation
(SNV) and insertion and deletion
(INDEL) from raw sequencing data.
Low quality reads were removed, and
bwa was used to perform alignment
followed by alignment calibration by
GATK and marked duplicates by
picard. MuTect and VarScan were
employed to detect somatic SNV and
INDEL, processed by further filtering to
eliminate false positives, respectively.
All mutations were annotated with
ANNOVAR.

RESULTS

Identification of somatic mutations by exome sequencing

in a discovery cohort of 22 patients with CRC

To delineate somatic mutations in patients with CRC, tumour
and blood lymphocyte DNA of 21 cases were subject to whole-
exome capture and  massively  parallel  sequencing.
Whole-genome sequencing was also performed in another
CRC case, in which somatic mutations in exomic region were
subject to further analysis. All 22 cases were microsatellite-stable
(MSS) or with low MSI. Shotgun paired-end reads of
72-t0-90-base-pair were generated and aligned onto human ref-
erence genome (UCSC hgl8), resulting in a median haploid
exome coverage of 57-fold and 49-fold from 22 CRC genomes
and 22 matched lymphocyte controls, respectively (see online
supplementary figure S1). At the sequencing depth of 50-fold, it
has been estimated that >85% of somatic mutations with

minimum variant allele frequency of 10% could be detected.'®
As an independent-platform validation, 22 out of 25 (88.0%)
somatic mutations identified by exome sequencing were success-
fully confirmed by Sanger sequencing. An average of 85.7% of
exomic regions in CRC and 85.2% in lymphocyte samples were
covered with more than 10 reads and were used for variant
calling. The variant sets obtained from tumours were compared
with matched lymphocyte DNA and dbSNP132 to establish the
catalogue of cancer-specific, non-germline mutations in each
tumour sample. A total of 1307 (996 non-silent and 311 silent
mutations) somatic mutations were identified in the exomic
regions of the 22 Chinese patients with CRC. The number of
somatic mutations in 22 patients with CRC ranged from 13 to
109 with a median of 52.5 (see online supplementary table S1),
which was not significantly different from that of non-
hypermutated CRC reported by TCGA (ie, 58 per tumour;
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Figure 2 Identification of somatic
mutations by exome sequencing in 22
patients with CRC for genomic
discovery. (A) Spectrum of nucleotide
alterations was determined in each
exome-sequenced patient with CRC.
Nucleotide change was predominated
by C/G>T/A transition. (B) The
landscape of non-silent mutations at
genome-wide scale was depicted with
the height of each gene reflecting the
mutation frequency among 22 patients
with CRC. Three reported gene
mountains (ie, APC, KRAS, TP53) were
interspersed with many novel gene
hills (eg, FAT4, NF1, DOCK2, HERC2)
discovered in our CRC cohort.
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Wilcoxon test, p=0.52).% Figure 2A illustrates that mutational
changes observed in the 22 patients with CRC were predomi-
nated by C/G>T/A transition (49.1%). The number of muta-
tions and the pattern of nucleotide changes were consistent with
previous CRC genomics studies.™® The mutational landscape of
these 22 patients with CRC was illustrated in figure 2B.

Recurrently mutated genes and altered pathways in the
discovery cohort

Identification of recurrently mutated genes is key to the discov-
ery of important proto-oncogenes and tumour-suppressor
genes. We next compiled a list of genes with recurrent somatic
mutations. A total of 996 non-silent mutations (see online sup-
plementary tables S2 and S3 for complete lists of point muta-
tions and small indels, respectively) covering 856 genes (see
online supplementary table S4) were identified in the 22
patients with CRC. By this ‘recurrent gene’ approach, 52 genes
were found to harbour somatic mutations in two or more
patients in the discovery cohort. Among these 52 recurrently
mutated genes, 5 of them (fe, APC, TP53, KRAS, NF1,
FBXW?7) have been recorded as cancer genes in Cancer Gene
Census (database downloaded on 15 March 2012). We success-
fully affirmed APC as one of the most frequently mutated

genes in our colon cancer series, where non-silent mutation
could be detected in 18 out of 22 patients. Non-silent muta-
tions of two other well-known colon cancer-related genes, that
is, TPS3 and KRAS, were also detected in 9 and 6 out of 22
patients, respectively. In addition, another well-reported
CRC-related gene FBXW7 was found to harbour six somatic
mutations, namely two missense mutations, two truncations
and two frameshift insertions/deletions. However, no mutation
was detected in the known CRC driver PIK3CA and the newly
discovered, hypermutation-related gene POLE. Gene ontology
analysis with Database for Annotation, Visualisation and
Integrated Discovery using the data set of 856 genes with non-
silent mutations from 22 patients showed significant enrich-
ment of two classical CRC-related signalling pathways,
namely ErbB signalling and cadherin/Wnt signalling (p<0.01,
false discovery rate (FDR) <5%).

Capture sequencing of 187 genes in a validation

cohort of 160 CRC cases

To establish mutation prevalence and clinical relevance of newly
identified CRC-related genes, we sequenced the exomic regions
of 187 recurrently mutated or pathway-related genes in tumour
and blood lymphocytes in an independent cohort of 160 patients

YuJ, et al. Gut 2015;64:636-645. doi:10.1136/gutjnl-2013-306620
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with CRC with detailed clinicopathological information by tar-
geted capture sequencing (see online supplementary table S5 for
patient information). Target regions were sequenced at a median
depth of 126-fold for 160 pairs of CRC genomes and matched
lymphocyte controls (see online supplementary figure S2). A bio-
informatic approach similar to that of exome sequencing was
then conducted to catalogue somatic mutations of these selected
genes in the validation cohort. The mutation landscape of 187
captured genes in 160 patients was depicted in figure 3A. Among
160 patients with CRC, 140 cases had at least one non-silent
mutation detected in the captured gene set. The number of non-
silent somatic mutations in the targeted capture regions among
160 patients with CRC ranged from 0 to 432 with a median of 5
(see online supplementary table S6). Using somatic mutation rate
>12 per Mb as a boundary,® 15 patients with CRC were
regarded as harbouring hypermutated tumours (see online sup-
plementary figure S3). As expected, APC (56.3%), TP53 (41.9%)
and KRAS (32.5%) were the three most frequently, non-silently
mutated genes among the 160 patients with capture sequenced
CRC. Intriguingly, we observed high prevalence (>5%) of non-

A

silent mutations in multiple genes, including SYNE1 (17.5%),
FAT4 (14.4%), ATM (10.6%), USH2A (10.0%), CDH10 (8.8%)
and MLL3 (8.8%) (see online supplementary tables S7-9).

Significantly mutated genes and pathways in CRC

To identify mutated genes that are causally related to and thus
positively selected in tumorigenesis, we combined data from
exome and capture sequencing to compile a list of SMGs that
exhibit higher-than-expected variant counts due to selective
advantages by MutSigCV. Such analysis revealed 7 SMGs,
namely APC (59.3%), KRAS (31.9%), TP53 (41.8%), FAT4
(14.3%), CDH10 (8.2%), DOCK2 (7.7%) and SMAD4 (6.0%)
in 182 patients with CRC (figure 3B; g-value <0.1). Four of
these genes, namely APC, TP53, KRAS and SMAD4, have been
reported in previous CRC genomic studies whereas the remain-
ing three genes (CDHI10, FAT4 and DOCK2) are novel
CRC-related genes (figure 3C). The number of potentially
protein function-changing mutations identified by SIFT and
PolyPhen2 of these seven SMGs was shown in online supple-
mentary table S10. Using Oncodrive, another method for

Gene nonsyn syn indel freq (%) Q-value
KRAS 58 1 0 31.9% 0
APC 100 1 51 59.3% 3.35E-11
TP53 74 0 6 41.8% 5.51E-11
CDH10 17 2 3 8.2% 1.19E-07
SMAD4 10 0 1 6.0% 7.12E-04
FAT4 38 9 0 14.3% 5.50E-02
DOCK?2 17 2 0 7.7% 6.79E-02

L | | | |

0 45 90 135 182

Numbers of affected samples

C
ee Poee e . a 7y S
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Figure 3

DOCK2

Identification of novel high-frequency and significantly mutated genes by targeted capture sequencing in CRC. (A) Mutation landscape of

160 capture-sequenced patients with CRC was depicted in which several novel mutated genes (ie, SYNET, FAT4, ATM, USH2A) were shown to
exhibit mutation frequency of >10%. (B) Significantly mutated genes (SMGs) in which non-silent mutations were positively selected over silent
mutations were identified in 182 exome-sequenced and capture-sequenced patients with CRC and ranked by g-value. Such analysis reaffirmed APC,
KRAS, TP53 and SMAD4 mutations as major driver events in CRC. Our analysis also revealed three novel SMGs, namely FAT4, CDH10 and DOCK2,
previously undescribed in CRC. (C) Distribution of somatic mutations in the three newly identified SMGs was shown.
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discovering SMGs by assessing functional impacts of muta-
tions,”* additional genes, such as ACTC1, SMAD3 and PIK3R3
were identified (see online supplementary table S11).

Analysis of mutation frequencies of different signalling
pathway components showed that several classical CRC-related
pathways were significantly mutated in CRC (figure 4A).
Figure 4B illustrates the mutation frequencies of major signalling
components in Wnt/B-catenin signalling, ErbB signalling, TGF-8
signalling and DNA damage sensing and repair. Concordant with
previous findings,”> APC (59.3%) and CTNNBI (3.8%) muta-
tions accounted for the major genetic abnormalities in the Wnt/
B-catenin signalling. A major proportion of patients with CRC
(53.9%) also harboured mutations in one or more components
in the DNA damage sensing and repair system, including TP353
(41.8%), ATM (9.9%)/ATR (2.7%) (encoding DNA damage-
sensing proteins), EP300 (2.7%) (encoding a p53 coactivator)
and BRCA1 (2.2%) (encoding a DNA double-strand break repair
enzyme). In the ErbB cascade, aside from the preponderant
KRAS mutation (31.9%), we observed novel recurrent mutations
of NF1 (4.4%), which encodes a putative tumour suppressor
protein known as neurofibromin that accelerates guanosine tri-
phosphate hydrolysis and thus inactivation of Ras.*®

A

Cell cycle: G,/M checkpoint (51.1%)
Apoptotic signaling (48.4%) —

Whnt / B-catenin signaling (63.7%) |

ATM response to DNA damage (50.0%) -
Cell cycle: G,/S checkpoint (53.9%) |
Telomere maintenance (60.4%) |

TGF-B signaling (63.2%) |

RB signaling (48.4%) -

p53 signaling (48.4%) -

A five-gene signature for TNM-staging-independent
prognostication

To develop a mutation signature marker for prognostication in
clinical settings, we constructed a gene signature through com-
bining mutated genes that were associated with better overall
survival. Only genes with mutation prevalence >5% were
included to allow sufficient representation of patients with CRC
in signature-positive and signature-negative groups. Using this
approach, we developed a signature comprising CDHI10,
COL6A3, SMAD4, TMEM 132D, VCAN in which mutation(s) in
one or more of its composing genes occurred in approximately
a quarter of patients with CRC. Mutation(s) in this five-gene sig-
nature significantly predicted a better overall survival in patients
with CRC independent of tumour differentiation and TNM
staging in multivariate analysis (table 1). The median overall sur-
vival of patients with mutation(s) in this gene signature was
80.4 months in the mutant group versus 42.4 months in the
wild type group (p=0.0051; figure 5A). Subgroup analyses in
Stage I+11 patients revealed that this prognostic mutation signa-
ture could be used to stratify patients with CRC with different
survival outcomes in early-stage CRC (p=0.0362; figure 5B).
Moreover, the mutation prevalence and prognostic significance
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Figure 4 Signalling pathways genetically altered in CRC. (A) Significantly mutated pathways with positive selection of non-silent mutations were
ranked by Q-score. (B) Mutation frequencies of individual signalling components of four major signalling pathways, namely, Wnt signalling, ErbB
signalling, transforming growth factor-B signalling and DNA damage sensing/repair, in 182 patients with CRC were shown. These pathways

exhibited genetic alteration in a majority (50-65%) of CRC samples.
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Table 1 Univariate and multivariate Cox regression analyses of

potential correlations between different clinicopathological

parameters and survival of patients with CRC

Variable HR (95% Cl) p Value
Univariate Cox regression analysis
Age 1.02 (0.99 to 1.04) 0.2200
Sex
Male (n=92) 0.64 (0.35 to 1.19) 0.1600
Female (n=56) 1.00
Tumour localisation
Right colon (n=28) 1.03 (0.46 to 2.33) 0.9400
Left colon or rectum (n=120) 1.00
Differentiation
Low (n=4) 0.73 (0.10 to 5.32) 0.7600
Medium (n=139) 1.00
High (n=5) 3.40 (1.04 to 11.06) 0.0400
TNM
1 (n=12) 0.04 (0.006 to 0.33) 0.0024
2 (n=61) 0.08 (0.04 to 0.20) 0.0000
3 (n=55) 0.16 (0.07 to 0.32) 0.0000
4 (n=20) 1.00
Hypermutation
Yes (n=14) 0.53 (0.13 to 2.21) 0.39
No (n=134) 1.00
MSI
Negative (n=111) 1.00
Low (n=18) 0.95 (0.4 to 2.26) 0.9000
High (n=19) 0.34 (0.08 to 1.41) 0.1400
KRAS G12/13X
Negative (n=103) 1.00
Positive (n=45) 0.87 (0.44 to 1.74) 0.6920
Prognostic signature mutation
Yes (n=40) 0.21 (0.064 to 0.67) 0.0091
No (n=108) 1.00
Multivariate Cox regression analysis
Differentiation
Low (n=4) 1.55 (0.20 to 12.0) 0.68
Medium (n=146) 1
High (n=5) 0.99 (0.29 to 3.40) 0.99
TNM
1 (n=12) 0.05 (0.006 to 0.36) 0.0033
2 (n=66) 0.09 (0.04 to 0.21) 0.0000
3 (n=57) 0.16 (0.08 to 0.34) 0.0000
4 (n=20) 1
Prognostic signature mutation
Yes (n=38) 0.27 (0.083 to 0.89) 0.031

No (n=117)

1

p Values <0.05 were bolded.

Low TNM staging and mutation(s) in a five-gene signature composed of CDH10,
COL6A3, SMAD4, TMEM132D and VCAN conferred significantly lower hazard ratios in
both analyses. Patients with undermined MSI status were excluded from univariate
analysis but included in multivariate analysis. Patients with missing survival data were

excluded from both analyses.
MSI, microsatellite instability.

of this five-gene signature in MSS and MSI-low/high patients
with  CRC were similar (see online supplementary
figure S4A, B). Although KRAS mutations by itself did not have
prognostic significance in our cohort, the use of our five-gene
signature for predicting survival seems to be more effective in
patients with CRC with wild type KRAS genotype than those
with mutated KRAS (see online supplementary figure S4C, D).

We next verified our prognostic marker in an independent
cohort by extracting mutation and survival data from TCGA
study.® Concordant with our finding, mutation(s) in one or
more genes in this five-gene signature was significantly asso-
ciated with better survival in TCGA cohort (p=0.0345;
figure 5C). Importantly, such association could be readily
observed in patients with early-stage (ie, Stage I+II) CRC
(p=0.0106; figure 5D). Multivariate analysis revealed that
mutation(s) in the five-gene signature was significantly associated
with better overall survival in patients with CRC of TCGA
cohort independent of TNM staging and MSI status (see online
supplementary table S12). Further subgroup analysis indicated
that, after exclusion of MSI cases from TCGA cohort, a consist-
ent association could still be observed (p=0.0258; see online
supplementary figure S4E). By combining MSS patients from
both cohorts, mutation(s) in the five-gene signature were signifi-
cantly associated with better survival, indicating that the survival
advantage of signature-mutant patients was not secondary to
MSI (p=0.0057; figure SE).

DISCUSSION

Through a two-phase approach for genomic discovery, we
aimed at uncovering genes important for CRC pathogenesis.
Whole-exome sequencing of 22 CRC genomes followed by
large-cohort validation by targeted capture sequencing con-
firmed APC, KRAS and TP53 mutations as predominant genetic
defects in our patient cohort. Our study also identified several
previously reported CRC-associated genes (eg, SMAD4, MLL3,
CTNNBI1, ATM and DCC), which substantiated the importance
of these genes in CRC development.® #° 27 2¥ The mutation
spectrum was also consistent with previous studies in which
C/G>T/A transition was the most frequently observed nucleo-
tide change.® Such predominance has been attributed to several
factors, including deamination of 5-methylcytosine at CpG
islands, deamination of non-methylated cytosines to uracil, and
O°methylation of guanine.”> However, it is worthwhile to
notice that the depth of exome sequencing in the first part of
our study might be relatively suboptimal and tumour samples
were not microdissected and the proportion of ‘contaminating’
normal cells could be high in some cases.

One of the most notable findings of the present study is the
identification of novel SMGs that have not been described in
CRC. Particularly, one SMG (ie, FAT4) exhibited mutation
prevalence of >10% and two SMGs (ie, DOCK2, CDH10)
mutated at frequencies of >7%. All three newly identified
SMGs (ie, FAT4, CDH10, DOCK2) have been implicated in
tumorigenesis. FAT4 is one of the human homologue of
Drosophila FAT, which encodes a cadherin-related protein that
suppresses tumour formation and activates planar cell polarity
signalling (a non-canonical Wnt signalling pathway).*®
Epigenetic and genetic mechanisms are involved in the disrup-
tion of FAT4 function in human cancers. To this end, promoter
hypermethylation of FAT4 has been reported in breast and lung
cancers.>! 3% FAT4 is also recurrently mutated in melanoma and
gastric cancer.”® % In the latter, knockdown of FAT4 reduces
cell adhesion but strongly induces cell migration and invasion.**
Our study demonstrated for the first time that 14.3% of patients
with CRC harbour FAT4 mutation. Similar to FAT4, CDH10
encodes a cadherin protein. Cadherin-10 is a type II classic cad-
herin that functions in cell-cell adhesion. A previous study has
shown that cadherin-10 could bind to B-catenin, a mediator of
canonical Wnt signalling.®>> Consistent with its putative role as a
tumour suppressor, the expression of cadherin-10 is downregu-
lated in prostate cancer in which its expression is extremely low
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Figure 5

Identification of a five-gene signature (CDH10, COL6A3, SMAD4, TMEM132D, VCAN) that was associated with significantly better overall

survival in patients with CRC. Mutation frequency of individual composing genes was >5% in our CRC cohort. (A) Kaplan-Meier survival analysis
showed that patients with mutation(s) in at least one composing gene of this signature had significantly longer overall survival than those patients
with wild type genotype (median survival 80.4 months vs 42.4 months; p=0.005). (B), Subgroup analysis in patients with stage I+l CRC confirmed
the prognostic value of this five-gene signature in early stage CRC. (C) The prognostic significance of this five-gene signature was verified in an
independent cohort by extracting mutation and survival data from The Cancer Genome Atlas (TCGA) study. (D) The five-gene signature readily
differentiated patients with dissimilar survival outcomes in stage I+l CRC in TCGA cohort. (E), The five-gene signature was significantly associated
with survival in microsatellite-stable (MSS) patients (Asian+TCGA cohorts), suggesting that survival advantage of signature-mutant patients was not

conferred by MSI.

or undetectable.*® In contrast to FAT4 and CDH10, DOCK2
may function as an oncogene. DOCK2 is a guanine nucleotide
exchange factor that promotes RAC1 activation. Two recent
studies have shown that aberrant RAC1 activation could induce
nuclear factor-«B and Wnt/B-catenin signalling in CRC
cells.?” 3% To this end, recurrent mutations of DOCK2 and its
partner ELMO1 at multiple loci have been implicated in the

abrogation of their autoinhibitory activities, and thereby enhan-
cing RAC1 function, in oesophageal adenocarcinoma.’® These
findings hint at the possibility that mutations in FAT4, CDH10
and DOCK2 could destabilise canonical and non-canonical Wnt
signalling to promote CRC.

Aside from the identification of novel SMGs and SMPs, we
set out to unravel potential correlation between somatic
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mutation patterns and clinicopathological features so as to
devise a clinically applicable prognostic marker. In this respect,
we developed a five-gene prognostic mutation marker composed
of CDH10, COL6A3, SMAD4, TMEM132D, VCAN. All these
genes had a mutation prevalence of >5% and about a quarter of
patients with CRC in our cohort harboured at least one muta-
tion in these five genes. These patients exhibited excellent prog-
nosis independent of other clinicopathological parameters.
Among these genes, CDH10, TMEM132D and VCAN showed
mutual exclusivity with KRAS mutations (see online supplemen-
tary table S13). These findings suggest that tumours harbouring
mutation(s) in this signature might represent a molecular
subtype of CRC with distinct prognostic and genetic features.
Above all, the prognostic significance of this signature was suc-
cessfully verified in TCGA cohort. The clinical utilisation of our
prognostic marker may help to differentiate patients with CRC
with dissimilar survival outcomes and thus more aggressive adju-
vant chemotherapy could be given to those with predicted
poorer prognosis. Nevertheless, it is noteworthy that heteroge-
neous treatments could be a caveat in our survival analysis. In
clinical settings, the development of a standard kit for targeted
capture and the availability of next-generation sequencing
instruments are also required for facilitating the application of
our prognostic marker.

Taken together, we successfully identified a number of novel
SMGs in CRC. Pertinent to clinical practice, a five-gene muta-
tion signature was devised for predicting survival in patients
with CRC. These findings represent major breakthroughs in our
understanding of the genetic basis of CRC, and have realised
the utilisation of genomic data for prognostication.
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