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Abstract

Background—Lignans in plant foods are metabolized by gut bacteria to the enterolignans, 

enterodiol (END) and enterolactone (ENL). Enterolignans have biologic activities important to the 

prevention of cancer and chronic diseases. We examined the composition of the gut microbial 

community (GMC) as a contributor to human enterolignan exposure.

Methods—We evaluated the association between the GMC in stool, urinary enterolignan 

excretion, and diet from a 3-day food record in 115 premenopausal (ages 40–45 y) women in the 

United States. Urinary enterolignans were measured using GC/MS. The GMC was evaluated using 

454 pyrosequencing of the 16S rRNA gene. Sequences were aligned in SILVA (www.arb-

silva.de). Operational taxonomic units (OTU) were identified at 97% sequence similarity. 

Taxonomic classification was performed and alpha and beta diversity in relationship to ENL 

production were assessed. Multivariate analysis and regression were used to model the association 

between enterolignan excretion and the GMC. Bacteria associated with ENL production were 

identified using univariate analysis and ridge regression.

Results—After adjusting for dietary fiber intake and adiposity, we found a significant positive 

association between ENL excretion and either the GMC (p=0.0007), or the diversity of the GMC 

(p=0.01). The GMC associated with high ENL production was distinct (UNIFRAC, p<0.003, 

MRPP) and enriched in Moryella spp., Acetanaerobacterium spp., Fastidiosipila spp., and 

Streptobacillus spp.

Conclusion—Diversity and composition of the GMC are associated with increased human 

exposure to enterolignans.
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Impact—Differences in gut microbial diversity and composition explain variation in gut 

metabolic processes that impact environmental exposures and influences human health.
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Introduction

Epidemiologic studies have shown that the consumption of foods of plant origin is 

associated with lower risk of several cancers (1). In particular, the intake of lignans, which 

are polyphenolic compounds concentrated in woody portions of plants, seed coats, and the 

bran layer of grains, has been inversely associated with risk of breast (2–7) and colon cancer 

(8, 9). Lignans are converted by the gut microbiota to enterolignans, which are bioactive 

chemicals found in measurable quantities in plasma and urine. Evidence from in vitro and in 

vivo studies suggest that enterolignans possess a variety of biologic activities relevant to 

human health, including weak estrogenic and anti-estrogenic properties, inhibition of 

enzymes involved in hormone metabolism, and anti-tumor activities (10). High inter-

individual variation in excretion, circulating concentrations, and extent of metabolism of 

enterolignans exists (11). Dietary factors account for a modest amount of the variation in 

enterolignan excretion; and often unaccounted for sources of variation include 

gastrointestinal transit time, sex, and the composition of the gut microbiome (12, 13). We 

hypothesize that variation in the composition of the microbiome influences the exposure of 

the host to lignan metabolites and that this may ultimately influence health outcomes.

Several biochemical steps are required to transform plant lignans into enterolignans and 

each step is likely catalyzed by consortia of bacteria that share metabolic intermediates (14). 

To date, no one bacteria has been identified that can completely metabolize the plant lignan, 

secoisolarisiresinol diglucoside (SDG) to ENL. For example, isolated Eggerthella lenta 

cannot reduce SECO; however, it can dehydroxylate 2, 3-bis-(3, 4-dihydroxy-benzyl) 

butane-1, 4-diol to END, one of the intermediary steps in ENL production (12, 15). END 

can then be converted to ENL by different bacteria (16, 17). Several more bacterial groups 

likely play similarly unique and complex biochemical roles in the transformation of plant 

lignans to enterolignans (16). Hence, the complexity and diversity of the GMC is essential 

for maximizing conversion of plant lignans into enterolignans and likely influences human 

exposure to these bacterial compounds. The objective of this study was to evaluate the 

association between GMC and urinary enterolignan excretion in a well-characterized group 

of premenopausal women.

Material and Methods

Research design and study participants

This observational study was conducted in premenopausal women who were part of a larger 

study designed to evaluate the relationship between bacterial metabolic phenotypes, diet, 

and biomarkers of sex steroid hormone status (18). Of the 203 women in the parent study, 

120 collected a fecal sample. Of the 120 women that donated fecal samples, 116 filled out a 
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3-day food record (3-DFR) and 101 of the samples were taken within 1 month of the 3DFR. 

One woman who provided a stool sample and 3DFR did not have an ENL measurement. 

Although all participants were premenopausal, with normal menstrual cycles, we did not 

collect urines in conjunction with time in menstrual cycle. Previous work by Lampe et al 

(19) showed no difference in enterodiol or enterolactone by phase of cycle in a carefully 

controlled study of flaxseed supplementation. The aims of this study are addressed in this 

subset of women. The women were recruited from Group Health, a large integrated health 

plan in Western Washington, and were eligible to participate if they were 40–45 years and 

had undergone a screening mammogram in the last 10 months (18). Women were excluded 

if they had more than one prescription for hormone therapy (i.e., oral contraceptives) within 

18 months of the sampling date; had any history of breast cancer; had breast implants; had a 

hysterectomy or oophorectomy; used tamoxifen or raloxifene; had any diagnosis of 

gastrointestinal disorders or gastrointestinal surgeries 10 years before their mammogram; or 

if they had prescriptions for antibiotics, bisphosphonates, or corticosteroids within 3 months 

of their sampling date. All study parameters were approved by the FHCRC and Group 

Health IRB and all participants provided written informed consent.

Specimen and data collection

Participants completed a health and demographics questionnaire and recorded all food and 

drink consumed for 3 consecutive days (18). Completed food record booklets were 

submitted and dietary intake was analyzed for nutrient content. Body composition (% 

adiposity) was measured using dual energy X-ray absorptiometry (DXA; Hologic Delphi, 

Hologic Inc. Bedford, MA). The fecal sample was collected in RNAlater (Ambion, Austin, 

TX) using a method described previously (20). A protocol was developed to allow 

participants to collect samples in the privacy of their own home. The stool sample was 

collected in a plastic tub and a portion scooped directly into a collection tube containing 

approximately 5 mls of RNAlater and glass beads. The sample was shaken vigorously to 

enhance dispersal of the stool in the preservative. Specimens were immediately brought to 

FHCRC where they were frozen at −80 °C until further analysis. Morning first void urines 

were collected from the participants and frozen at −80 °C upon receipt until further analysis.

Urinary lignan analysis

The first-void urine samples were analyzed for the enterolignans, END and ENL, by GC-

MS, with deuterated internal standards (21). All enterolignan measurements were adjusted 

for creatinine concentration to account for urine dilution. The lowest level of quantification 

(LOQ) for END and ENL in 2 ml urine was 70 μg/l.

Gut microbial community analysis

DNA extraction—DNA was extracted from stool that had been stored in RNAlater at 

−80°C (20). The 16S rRNA gene was amplified and sequenced using 454 pyrosequencing 

primers 27f and 519r (V1–V3) (22) for amplicon pyrosequencing (bTEFAP) (23–27) at 

Research and Testing (Shallowater, TX) using Roche 454 FLX titanium instruments and 

reagents and following manufacturer’s guidelines. Sequences have been deposited in the 

Sequence Read Archive of NCBI under accession number SRP028900.
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16S rRNA gene sequencing and curation—Sequences were compiled and processed 

using MOTHUR (v.1.28.0) (28). Sequences were converted to standard FASTA format 

from .sff files. Sequences were removed if they were < 300 bp, had homopolymers > 8 bp, 

more than one mismatch to the forward primer, more than 1 mismatch to the barcode, or 

ambiguous bases. Sequences were denoised (29), and aligned to the Silva 16S rRNA gene 

reference alignment (www.arb-silva.de) using the NAST algorithm (28, 30, 31). Sequences 

that did not align to the appropriate 16S rRNA gene region were removed. Low abundance 

sequences were merged to the high abundant sequences using the pre.cluster option in 

MOTHUR to minimize the effect of pyrosequencing errors in overestimating microbial 

diversity (32). Potentially chimeric sequences were removed using ChimeraSlayer (33, 34).

Analysis of the microbiome—Sequences were clustered into OTUs at 97% similarity 

based on the average neighbor-joining algorithm. The sequences were classified using the 

naive Bayesian Classifier trained against a RDP training set as implemented in MOTHUR 

(27). Classified sequences were assigned to phylum and genus-level phylotypes (35) to 

characterize the community structure. To characterize the alpha diversity, we used OTUs 

rarefied to 1265 sequences per sample since uneven sampling depth biases diversity 

estimates. Diversity of the microbial community within an individual (alpha diversity), was 

calculated from OTUs (at 3% divergence) using the inverse Simpson’s index (36). Similarity 

in the GMC between individuals (beta diversity) was calculated using the Theta YC (ΘYC) 

distance metric which accounts for shared and unshared OTU’s between (37), and weighted 

and unweighted UniFrac (38, 39). The UniFrac approaches create a distance metric based 

upon a combined phylogenetic tree and compares which branches the two individuals have 

in common. We used a relaxed Neighbor-Joining algorithm implemented in Clearcut (40) to 

generate the phylogenetic trees.

Statistical analysis

Anthropometrics, demographics, dietary and lifestyle factors—The association 

of ENL and END excretion with anthropometric measurements, demographics, and dietary 

and lifestyle factors was calculated using linear regression.

Microbiome data cleaning—Bacterial taxa were removed if they represented less than 

0.08% of the total sequences in a sample based on empirical data (background was 4 

sequences/10,000 and 2x background) and appeared in 20 % or more of the subjects as also 

established in the literature (41–43). The number of sequences in each genera was converted 

to relative percent of the total sequence abundance per individual for multivariate analysis.

Multivariate analysis—Distance estimates between each pair of samples were calculated 

using the Jensen-Shannon Divergence (44, 45). Data dimension reduction was performed 

using non-metric multidimensional scaling (NMS) on the matrix of JSD distances generated 

between each pair of samples (44, 45). A joint plot was used to visualize the relative 

strength and magnitude of the association between each genera and the NMS axes (r2> 0.49) 

(46) (Figure 1). To model the variation in ENL excretion and the microbiome, the NMS axes 

used to describe the microbial community were included in separate models of the GMC 

(Axis 1, Axis 2, or Axis 3) and anthropometric, dietary, and lifestyle factors. Three models 

Hullar et al. Page 4

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



incorporating each NMS axes separately and using urinary ENL as the response variable 

were investigated.

Identification of bacterial enterotypes—To investigate whether the gut microbiome of 

our study participants clustered by enterotype, the Jensen-Shannon Divergence (JSD) (44) 

was computed on pairs of samples followed by clustering using partitioning around medoids 

(PAM) clustering. Optimal numbers of clusters were determined using the Calinski-

Harabasz (CH) index (47).

Identification of bacterial genera associated with ENL production—To reveal 

which, if any, taxa were associated with ENL production, we used two regression 

approaches. The first approach was a univariate regression model where each taxon was 

considered individually. The second approach was a penalized regression approach where 

all of the taxa were considered simultaneously (48) (see Supplementary Data). OTUs 

associated with ENL production using both regression approaches were considered the most 

parsimonious.

Microbial diversity and ENL production—ANOVA was used to test the null 

hypothesis that there was no statistical difference in the alpha diversity of the GMC between 

high or low ENL excreters based on tertiles of excretion. Multiple response permutation 

procedure (MRPP) was used to test the null hypothesis that there was no statistical 

difference in the composition of the GMC between high or low ENL excreters based on 

tertiles of excretion. Differences in the GMC by tertiles of ENL excretion were visualized by 

cluster analysis from a Θyc based distance matrix and clustered using Unweighted Pair 

Group Method with Arithmetic Mean (UPGMA) (Figure 2).

Statistical analyses were implemented in PC-ORD version 6.14, vegan (49), and R version 

3.1 and visualized using iTOL 2.1 (50).

Results

Anthropometrics, demographics, diet, and phenotype

The mean age of participants (n=115) was 42 years, and the majority were white, with at 

least some college education (Table 1). All women had urinary ENL concentrations above 

the LOQ (>70 μg/l); mean (± SD) urinary ENL was 3.08 ± 4.44 μg/mg creatinine. 58 

participants had urinary END concentrations above the detection limit (>70 μg/l); mean 

END in these women was 0.23 ± 0.53 μg/mg creatinine (Table 1). Between the highest and 

lowest tertiles of ENL excretion, there were significant decrease in BMI (p<0.003) and 

adiposity (p<0.004), and a significant increase in dietary fiber intake (p=0.0008), education 

(p=0.03), and self-reported frequency of diarrhea (p=0.03) (Table 1). Significant increases in 

dietary fiber intake (p<0.002), ENL excretion (p=0.003), and education (p=0.0004) were 

observed between participants above and below the LOQ for urinary END (data not shown).

Evaluation of gut microbial community

Using 454 pyrosequencing of the V1–V3 region, a total of 1.4 million raw sequences were 

processed. The resulting pool of 644,956 sequences, which averaged 5201 ± 2741 sequences 
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per participant, was analyzed. The sequences were, on average, 367 ± 29 bp long. The 

trimmed sequences represented a total of 342 bacterial genera (phylotypes), of which, 133 

OTUs met the microbiome data cleaning criterion (see Methods). We used this multivariate 

matrix containing 133 OTU’s for statistical analysis.

Bacteria were distributed across phyla: Firmicutes (68%), Bacteroidetes (27%), 

Proteobacteria (2%), Synergistes (1.0%), Actinobacteria (0.5%), Fusobacterium (0.4%), 

Verrucomicrobia (0.02%), Ternicutes (0.1%), and Lentisphaerae (0.05%). Good’s coverage 

was 0.996 ± 0.003.

NMS on the matrix of JSD distances was used to describe the microbiome associated with 

variation in ENL excretion (44, 51, 52). The final solution for NMS analysis of the GMC 

patterns had a stable stress value of 13.32, after 400 iterations using a random seed of 2564. 

The 3 axes cumulatively accounted for 87 % of the variation in the GMC measured using 

16S rRNA gene data; Axes 1, 2, and 3 accounted for 35, 13, and 39 %, respectively (Figure 

1). Bacteroides was negatively correlated with Axis 3 (r = −0.79), Prevotella was negatively 

correlated with Axis 1 (r=−0.82), and Oscillibacter (r= 0.94), Dethiosulfatibacter (r=0.86), 

and Pyramidobacter (r= 75) were positively correlated with Axis 3 (Figure 1). We also 

identified three clusters in the microbial community (Figure 1). Each cluster was 

subsequently observed to be associated with different dominant microbial genera: 1) 

Bacteroides, 2) Prevotella, or 3) a combination of Pyramidobacter, Dethiosulfatibacter, and 

Oscillibacter (Supplementary Figure S1, S2, and S3). The distribution of the relative percent 

of these groups showed discrete grouping for some of the dominant genera (Supplementary 

Figure S3). The NMS axes were used in regression models to relate the gut microbial 

community to ENL excretion and dietary intake.

We fit a linear regression model for the association of ENL excretion with NMS axis 1 

(JSD), adiposity, and fiber (tertiled, using the third tertile as reference) and adjusted for 

calories (n=101). ENL excretion was significantly positively associated with GMC 

described by NMS axis 1 (p=0.0007), and fiber adjusted for energy intake (p=0.02), and 

significantly negatively associated with % adiposity (p=0.02). ENL production was also 

significantly positively associated with microbial alpha diversity (p=0.01), and fiber intake 

adjusted for energy intake (p=0.01). In contrast, there was no significant association between 

END excretion and the GMC composition or diversity (data not shown).

To reveal individual OTU that were associated with ENL, we additionally considered two 

regression approaches. Using either univariate or Ridge regression, we identified four 

bacterial genera, Moryella (53), Acetanaerobacterium (54), Fastidiosipila (55), and 

Streptobacillus (56, 57) that were significantly increased in the high ENL excreter tertile 

(see Supplementary Data). Genera associated with ENL excretion represented between 0.03 

and 0.7 % of the total microbiome (Table 2; see Supplemental Material for more details).

Bacterial diversity was positively associated with high ENL excretion. The bacterial alpha 

diversity, a measure of the variation of the composition of the GMC within a person, was 

significantly different between women in ENL excreter groups (Inverse Simpson’s Index, 

ANOVA, F=12.90, n=115, p<0.0001). More specifically, there was a significant difference 
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in the alpha diversity between low and high (Tukey’s, q=6.5, p<0.0001) excreters. Beta 

diversity, a comparison of bacterial diversity between subjects, was significantly different in 

women in the low ENL group as compared to those the high ENL group using weighted 

Unifrac, which normalizes for the number of sequences in an OTU cluster (MRPP; 

A=0.014, p=0.003; 999 permutations), unweighted Unifrac (MRPP; A=0.005, p=0.001; 999 

permutations) or using the Θyc (MRPP, A=0.02, p<0. 001; 999 permutations) as visualized 

in Figure 2.

Discussion

In this cross-sectional study, we evaluated differences in GMC in relation to lignan 

metabolizing-phenotypes. We found that GMC differed by tertile of ENL but not END 

excretion. GMC diversity increased with greater ENL excretion. We identified components 

of the microbiome associated with excretion of ENL. These data suggest that the 

environmental exposures from dietary intake can be altered by the metabolic capacity of the 

more minor components of the gut microbiome to influence health outcomes.

Pharmacokinetic studies have shown a wide variation in enterolignan excretion, in both 

magnitude and time of excretion (13). These excretion patterns have been shown to vary 

within different human populations. In our study, we found a wide range of excretion in both 

ENL and END (Table 1). END, an intermediate compound in the conversion of some plant 

lignans to ENL, was 10 fold lower than ENL in our study participants. Enterolignan 

excretion (END+ENL) ranged from 0 to 30 μg/mg creatinine. These ranges encompass or 

are higher than other study populations consuming a predominantly western diet (58–60).

The metabolism of lignans in the gut occurs by a consortia of microorganisms through a 

series of reactions (61–65) and can result in a measurable amount of bacterial metabolites in 

host systemic circulation. There was a significant difference in the composition of the 

microbiome between the highest and lowest tertiles of ENL excretion (Figure 2). Genera 

representing median values between 0.03% and 0.34% of the microbiome were associated 

with ENL production (Table 2). While each bacterial population may represent a minor 

component of the microbiome, when considered across the sum of the entire metabolic 

transformation from plant lignans to enterolignans, they had a measurable impact on ENL 

excretion. These findings are in keeping with those of Clavel et al. (12) who reported that in 

vitro lignan degradation was associated with minor components (<1%) of the gut 

microbiome.

In humans, the microbiome plays an essential role in the catabolism of dietary fibers since 

the human genome does not encode the range of enzymes required to degrade the 

biochemical structural diversity found in plant materials. We found that microbial diversity 

was significantly different (Simpson Index, p<0.05) between high and low ENL excreters 

and was positively associated with fiber intake. The association between ENL excretion and 

microbial diversity may reflect the complexity of the microbial metabolism involved in ENL 

metabolism since there are several transformations involved in the production of 

enterolignans from lignans and different bacteria species can catalyze each step (15–17, 66–

68). In a recent study comparing human populations consuming either a western diet or a 
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rural sub-Saharan traditional diet, dietary fiber intake was also associated with gut microbial 

diversity (69). The association between intake of dietary fiber as plant material and gut 

microbiome diversity may not be apparent because most studies of the human microbiome 

have been conducted in human populations consuming a western diet, which is traditionally 

low in fiber. Furthermore, microbial functional gene diversity may be associated with long 

term dietary patterns that include a high fruit and vegetable intake and therefore a higher 

fiber intake (70). In addition to being associated with a beneficial phenotype, high microbial 

diversity associated with dietary fiber intake may provide a key to maintaining resilience of 

the host to infection and other environmental impacts. For example, dietary patterns that 

were associated with decreased microbiome structural and functional diversity have been 

associated with obesity (70), reduced cognitive function in the elderly (41), Clostridium 

difficile-associated disease (CDAD) (71), and irritable bowel disease (IBD) (26).

Dietary intake of lignans is a major factor that influences variation in urinary ENL. A high 

plant-food diet, rich in whole grains, nuts, seeds and fruits, and vegetables, has been 

associated with higher production of enterolignans (72). We found that dietary fiber intake 

was significantly associated with ENL production (Table 1). This has been observed in 

previous studies and supports the findings that lignan content and dietary fiber content of 

foods are often highly correlated (73–75). In-vitro incubations have also shown that the type 

of fiber may influence ENL production (62). Insoluble fiber includes lignan-rich categories, 

such as seed coats and bran layers. Higher rates of ENL production were associated with 

insoluble fiber in other cross-sectional studies (76).

Obesity in adults has been linked to the gut microbiome and the altered functional potential 

of the obesidogenic microbiome influences myriad negative health outcomes (77). 

Consistent with previous studies (78, 79), we found that adiposity was inversely associated 

with ENL production even after controlling for fiber intake. Kilkkinen et al (79) found an 

inverse association between ENL production and BMI. More specifically they found that 

normal weight women produced significantly higher ENL than their underweight or obese 

counterparts. Frankenfeld (11) found that overweight and obese individuals were less likely 

to excrete high levels of ENL. This association was potentially stronger in women than in 

men. In our study, the inverse association between adiposity and ENL production could 

reflect the lower intake of high-fiber foods (Table 1) and therefore a lower intake of plant 

lignans by women with higher percent body fat.

Although ENL is produced by bacterial consortia, identification of the bacteria involved in 

ENL production has previously been based on isolation of a pure culture of the organism 

associated with a specific part of the metabolic pathway (16, 67, 80). We found four 

bacterial genera (Moryella, Streptobacillus, Fastidiosipila, and Acetanaerobacterium) 

associated with the high ENL producers (Table 2). Although they have not been identified 

before in ENL production (81), the bacteria we identified are closely related to genera that 

have been previously associated with the bacterial metabolism of lignans. For example, the 

initial production of secoisolariciresinol from secoisolariciresinol diglucoside is associated 

with glucosidase activity. Bacteria related to the genera Streptobacillus produce extracellular 

enzymes involved in glucose cleavage from complex molecules (56, 57) as do the genera 

Fastidiosipilia (55). Once these sugars are made available, members of the genera 
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Acetanaerobacterium and Moryella are able to ferment glucose to acetate or butyrate (53, 

54). Also, Clostridia closely related to Oscillibacter are involved in anaerobic ring cleavage 

and ring cleavage of methoxylated compounds (82, 83).

Diet can influence the gut microbiome in humans (70, 77, 84–87). Enterotypes dominated 

by Bacteroides (Enterotype 1) or Prevotella (Enterotype 2) have been associated with diets 

rich in fats and carbohydrates (52, 88, 89). In our study of healthy women, the bacterial 

composition of groups 1 and 2 is similar to previous findings (52) although the composition 

of a third group of bacteria varied from other published report (Figure 1; Supplementary 

Figure S2) (90–92). Enterotype groupings have been identified in several studies, but studies 

have found either fewer than three enterotypes (87) or no pattern (93) when considering 

adults consuming western diets. A classification system based upon functional genes instead 

of the dominant members of the gut microbiome may be more appropriate since enterotypes 

do not necessarily reflect the complexity of metabolism catalyzed by microbial consortia 

involved in phytochemical metabolism that influences health (52, 94).

This study has several strengths. This study was conducted in a sample of premenopausal 

women selected originally for a study of isoflavone metabolism and hormonal factors (18). 

As a result, factors that could affect GMC (e.g., antibiotic use) were considered in 

participant selection. Dietary intake was measured using a3DFR rather than relying on a 

food frequency questionnaire. Body fat was measured using DXA, providing a more 

accurate measure of adiposity. High throughput sequencing was used to characterize the 

GMC, which given that ENL is produced by metabolic consortia of bacteria, was able to 

capture the complexity of the GMC-ENL association.

Our study has some weaknesses. Most of the women recruited in this study were white, 

well-educated and were recruited to achieve a wide range of breast density. Therefore, the 

findings may not be applicable to the general population. However, despite this, the ranges 

of enterolignan excretion encompass or were slightly higher to those found in predominantly 

white populations and data associated with lignan metabolism by gender is equivocal (59, 

60, 73, 74, 95, 96). Dietary data were not collected at the same time as the urine for 

enterolignan phenotyping or as the stool sample. However, to optimize sample size and 

minimize lag time in sampling we excluded participants whose 3DFR was taken greater than 

one month apart from stool samples. Our study is also limited by the fact that participants 

were consuming their habitual diets which contributed to variation in the amounts and types 

of plant lignans consumed and therefore also contributed to the variation in END and ENL 

excretion.

The gut microbiome can influence the magnitude and flux of dietary metabolites to which 

the host is exposed. Major bacterial parameters to consider in enterolignan bioavailability 

include how dietary fiber influences diversity, community composition, and functional 

activity of the microbiome that appears to be altered in the metabolic phenotypes studied 

here. We observed differences in GMC in relation to ENL excretion in a group of 

premenopausal women. Bacterial diversity and community structure were significantly 

associated with ENL excretion and we identified several bacterial groups newly associated 

with in-vivo ENL production. Future studies of the microbial response to diet will further 
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our understanding of how environmental exposures may be altered by the gut microbiome 

and influence health outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The characterization of the gut microbial community in a cross-sectional analysis of 

premenopausal women. The first three axes of the NMS analysis of the gut microbial 

community accounts for up to 85% of the variation in the data. The vectors radiating from 

the centroid and overlain on the NMS plot represent the relative association of the genera of 

bacteria and the axes (r2>0. 49) and the magnitude of the association. Cluster 1 

(Bacteroides); Cluster 2 (Prevotella,); ▲ Cluster 3 (Dethiosulfitibacter, Pyramidobacter, 

Oscillibacter)
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Figure 2. 
The composition of the gut microbial community is significantly different between high and 

low enterolactone (ENL) excreters (MRPP; P<0.001). Cluster analysis of beta diversity 

(Θyc) of the microbiome in tertiles of ENL excretion. Bars are the amount of urinary ENL 

(μg/mg creatinine) color –coded for tertile. (Low = Light gray, Medium = white and High = 

black). The three samples without bars are technical replicates.
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Table 1

Study participant anthropometrics, demographics, and diet and lifestyle factors by tertiles of ENL excretion.

1st tertile
n = 38

2nd tertile
n = 38

3rd tertile
n = 39

p.value

Continuous Descriptive Statistics, Mean (SD)

Urinary ENL (μg/mg creatinine) (ENL) 0.46 (0.37) 1.86 (0.91) 5.66 (4.52) NA

Urinary END (μg/mg creatinine) (END) 0.06 (0.13) 0.09 (0.13) 0.56 (1.33) 0.35

Age (y) 42.49 (1.41) 42.05 (1.35) 42.59 (1.32) 0.78

BMI (kg/m2) 27.10 (4.18) 25.61 (4.56) 24.82 (5.2) 0.003

Adiposity (% fat) 35.33 (5.68) 34.82 (7.19) 30.85 (7.07) 0.004

Energy (kcal/d) 1937.22 1894.27 1956.14 0.84

Carbohydrate (g/d) 230.18 (67.32) 220.59 245.65 (62.93) 0.38

Protein (g/d) 78.02 (19.54) 76.57 (15.81) 79.07 (19.73) 0.81

Fat (g/d) 77.09 (25.22) 76.44 (19.85) 72.24 (21.2) 0.32

Dietary fiber (g/d) 18.51 (6.4) 18.12 (6.1) 24.40 (8.87) 0.0008

Bowel Movements (n/week) 8.76 (4.83) 7.14 (4.11) 7.22 (2.5) 0.59

Categorical Descriptive Statistics, n(%)

Education, n (%)

≤ 12 y 1 (2.7%) 4 (11.11%) 1 (2.7%)

13–16 y 26 (70.27%) 20 (55.56%) 15 (40.54%)

17+ y 10 (27.03%) 12 (33.33%) 21 (56.76%) 0.03

Residence at Birth, n (%)

Rural 9 (25.71%) 6 (18.75%) 13 (34.21%)

Not Rural 26 (74.29%) 26 (81.25%) 25 (65.79%) 0.34

Ethnicity, n (%)

White 28 (82.35%) 29 (90.62%) 34 (94.44%)

Asian 4 (11.76%) 2 (6.25%) 0 (0%)

Other 2 (5.88%) 1 (3.12%) 2 (5.56%) 0.29

Breast Fed as an infant, n (%)

Yes 17 (58.62%) 12 (42.86%) 20 (58.82%)

No 12 (41.38%) 16 (57.14%) 14 (41.18%) 0.37

Self-Reported IBS, n (%)

Yes 2 (5.71%) 3 (9.09%) 3 (7.89%)

No 33 (94.29%) 30 (90.91%) 35 (92.11%) 0.90

Diarrhea, n (%)

Yes 15 (42.86%) 12 (36.36%) 6 (15.79%)

No 20 (57.14%) 21 (63.64%) 32 (84.21%) 0.03

Laxative Use, n (%)

Yes 3 (8.57%) 0 (0%) 1 (2.63%)

No 32 (91.43%) 33 (100%) 37 (97.37%) 0.21

Constipation, n (%)

Yes 7 (20%) 12 (36.36%) 10 (26.32%)
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1st tertile
n = 38

2nd tertile
n = 38

3rd tertile
n = 39

p.value

No 28 (80%) 21 (63.64%) 28 (73.68%) 0.35

Enterolactone, ENL; enterodiol, END, irritable bowel syndrome, IBS.
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Table 2

List of genera whose abundances exhibit an association with ENL excretion in 115 women. The list includes 

OTU that exhibit an association with ENL by way of a confidence interval that does not include zero in either 

a univariate model (upper part of table) or a multivariate model (lower part of table); four OTUs appear in 

both. Underlined genera were common to both methods.

N1 OTU2 Low High

Univariate Estimates

Acetanaerobacterium 100 0.1850 0.0006 0.0063

Acetitomaculum 29 0.0190 0.0006 0.0069

Acetivibrio 99 0.3990 0.0004 0.0063

Bacteroides 115 13.7820 −0.0064 −0.0002

Cerasibacillus 43 0.1610 0.0006 0.0221

Dethiosulfatibacter 76 1.1360 0.0039 0.0113

Ethanoligenens 64 0.0660 0.0016 0.0101

Eubacterium 84 0.1010 0.0016 0.0103

Fastidiosipila 109 0.3420 0.0007 0.0099

Holdemania 74 0.0440 −0.0200 −0.0012

Moryella 68 0.0320 0.0055 0.0147

Pseudobutyrivibrio 115 9.6760 −0.0071 −0.0021

Pyramidobacter 81 0.7040 0.0018 0.0117

Reichenbachiella 77 0.5940 0.0002 0.0067

Ruminococcus 96 0.2900 0.0010 0.0083

Sarcina 27 0.0370 0.0011 0.0064

Sedimentibacter 56 0.0380 0.0029 0.0101

Streptobacillus 70 0.3260 0.0000 0.0137

Synergistes 26 0.1000 0.0006 0.0044

Victivallis 38 0.1010 0.0015 0.0140

Ridge Regression

Acetanaerobacterium 100 0.185 0.0009 0.0076

Butyricimonas 61 0.112 0.0019 0.0076

Clostridium 77 0.072 0.0006 0.0066

Coprococcus 115 10.836 0.0093 0.0518

Fastidiosipila 109 0.342 0.0001 0.0101

Moryella 68 0.032 0.0001 0.0010

Oscillibacter 115 2.934 0.0015 0.0388

Prevotella 54 0.639 0.0002 0.0421

Sharpea 29 0.161 0.0016 0.0060

Streptobacillus 70 0.326 0.0036 0.0174

1
Number of subjects for whom a non-zero OTU abundance was observed

2
Median of the relative abundance of each OTU (*100)
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