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ABSTRACT In brains ofhigher vertebrates, the functional
segregation of local areas that differ in their anatomy and
physiology contrasts sharply with their global ination dur-
ing perception and behavior. In this paper, we introduce a
measure, called neural complexity (CN), that captures the
interplay between these two dental aspects of brain
organization. We express functional segregation within a neu-
ral system in terms of the relative statistical independence of
small subsets of the system and functional integration in terms
of signicant deviations from independence oflarge subsets. CN
is then obtained from estimates of the average deviation from
statistical independence for subsets of increasing size. CN is
shown to be high when functional segregation coexists with
integration and to be low when the components of a system are
either completely independent (segregated) or completely de-
pendent (integrated). We apply this complexity measure in
computer simulations of cortical areas to examine how some
basic principles of neuroanatomical organization constrain
brain dynamics. We show that the connectivity patterns of the
cerebral cortex, such as a high density of connections, strong
local connectivity ornizing cells into neuronal groups, patch-
iness in the connectivity am neuronal groups, and prevalent
reciprocal connections, are associated with hi values of CN.
The approach outlined here may prove useful in analyzing
complexity in other biological domains such as gene regulation
and embryogenesis.

A long-standing controversy in neuroscience has set local-
izationist views of brain function against holist views. The
former emphasize the specificity and modularity of brain
organization, whereas the latter stress global functions, mass
action, and Gestalt phenomena (1). This controversy mirrors
two contrasting properties that coexist in the brains of higher
vertebrates: the functional segregation of different brain
regions and their integration in perception and behavior. In
this paper, we attempt to provide a measure that reflects their
interaction. The understanding of these two aspects of brain
organization is central to any theoretical description of brain
function (2-4).

Evidence that the brain is functionally segregated at mul-
tiple levels of organization is overwhelming. Developmental
events and activity-dependent selection result in the forma-
tion of neuronal groups-local collectives of strongly inter-
connected cells sharing inputs, outputs, and response prop-
erties (2). Each group tends to be connected to a specific
subset of other groups and, directly or indirectly, to specific
sensory afferents. Different groups within a given brain area
(e.g., a primary visual area) can show preferential responses
for different stimulus orientations or retinotopic positions.
Moreover, at the level of areas or subdivisions of areas, there
is functional segregation for different stimulus attributes such
as color, motion, and form (5-7). Further evidence for
functional segregation in a variety of systems is provided by

the analysis of the specific deficits produced by localized
cortical lesions (8).

In contrast to such local specialization, brain activity is
globally integrated at many levels ranging from the neuron to
interareal interactions to overall behavioral output. The
arrangement of cortical pathways guarantees that any two
neurons, whatever their location, are separated from each
otherby a small number of synaptic steps. Furthermore, most
of the pathways linking any two areas are reciprocal and,
hence, provide a structural substrate for reentry-a process
of ongoing recursive signaling among neuronal groups and
areas across massively parallel paths (2, 3, 9-11). One of the
dynamic consequences of reentry is the emergence of wide-
spread patterns of correlations among neuronal groups (10-
14). Accordingly, perceptual scenes appear unified and are
globally coherent, a property essential for the unity of
behavior. Disconnection of various cortical areas often leads
to specific disruptions of these integrative processes (8).
We have shown (10, 11) that a balance between the

functional segregation of specialized areas and their func-
tional integration arises naturally through the constructive
and correlative properties of reentry. Computer simulations
of the connectivity and physiological characteristics of the
visual system showed that neuronal activity in segregated
areas simultaneously responding to different stimulus at-
tributes can be integrated to achieve coherent perceptual
performance and behavior even in the absence of a master
area (10, 11). These models provide a parsimonious theoret-
ical solution to the so-called "binding problem" (15).

In the present paper, we consider the relationship between
functional segregation and integration in the brain from a
more general theoretical perspective. By making certain
simplifying assumptions, we show that these two organiza-
tional aspects can be formulated within a unified framework.
We consider neural systems consisting of a number of
elementary components that can be brain areas, groups of
neurons, or individual cells. In this initial analysis, we choose
the level of neuronal groups (2) and study their dynamic
interactions as determined by the topology of their intercon-
nections. We assume that the statistical properties of these
interactions do not change with time (stationarity) and that
the anatomical connectivity is fixed. Moreover, we concen-
trate on the intrinsic properties ofa neural system and, hence,
do not consider extrinsic inputs from the environment.
By following these assumptions, functional segregation

and integration are characterized in terms of deviations from
statistical independence among the components of a neural
system, measured using the concepts of statistical entropy
and mutual information (16). Different neuronal groups are
functionally segregated if their activities tend to be statisti-
cally independent when these groups are considered a few at
a time. Conversely, groups are functionally integrated if they
show a high degree of statistical dependence when consid-
ered many at a time. This leads to the formulation of a
measure, called neural complexity (CN), that reflects the
interplay between functional segregation and integration
within a neural system. In accord with recent attempts in
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physics and biology to provide rigorous definitions of com-
plexity (17), we show that CN is low for systems whose
components are characterized either by total independence
or total dependence and high for systems whose components
show simultaneous evidence of independence in small sub-
sets and increasing dependence in subsets of increasing size.
Using computer simulations, we then investigate the in-

fluence on CN of certain fundamental properties of neuroan-
atomical organization. These include high connectivity,
dense local connections that produce locally coherent neu-
ronal groups, sparse but overlapping projective fields of
neurons belonging to the same groups yielding axonal
patches, and the prevalence of short reentrant circuits. We
compare the computed values of CN for simulated neural
circuits that do or do not incorporate such properties and
show that the connectivity patterns of the cerebral cortex are
reflected in high CN values.

Theory

Consider an isolated neural system X with n elementary
components (neuronal groups). We assume that its activity is
described by a stationary multidimensional stochastic pro-
cess (16). The joint probability density function describing
such a multivariate process can be characterized in terms of
entropy and mutual information, used here purely in their
statistical connotation (16, 18); i.e., no assumption is made
about messages, codes, or noisy channels. If the components
of the system are independent, entropy is maximal. If there
are constraints intrinsic to the system, the components
deviate from statistical independence and entropy is reduced.
The deviation from independence can be measured in terms
ofmutual information. For instance, consider a bipartition of
the systemX into ajth subsetx composed of k components
and its complement X - . The mutual information (MI)
between j and X - 4 is

MI(X;Xk-X ) = H(XJk) + H(X -X)-H(X), [1]

where H(Xjk-) and H(X - Xjk) are the entropies ofX4 andX -
4 considered independently, and H(X) is the entropy of the
system considered as a whole (16). MI = 0 ifXjkandX - Xjk
are statistically independent and MI > 0 otherwise. Impor-
tant properties ofMI are symmetry [UI(XjX - j) = MI(X
-4X;Xj4)] and invariance under a change of variables (16).
The concept of mutual information can be generalized to

express the deviation from independence among the n com-
ponents of a system X by means of a single measure, which
we call its integration I(X). I(X) is defined as the difference
between the sum of the entropies of all individual compo-
nents {x,} considered independently and the entropy of X
considered as a whole:

n
l(X) = z H(xi) - H(X). [2]

For a bipartition, rearranging Eqs. 1 and 2 leads to:

I(X) = I(XJ ) + I(X - Xj) + MI(Xk_;X - X). [3]

Since MI - 0, (X) I(Xj4) + I(X - Xj), with equality in the
case of independence. Note that, from Eq. 3, I(X) is also
equal to the sum ofvalues of the mutual information between
parts resulting from the recursive bipartition ofXdown to its
elementary components. In particular, by eliminating one
component at a time, I(X) = nin1 MI({X,}; {X,+1,...

Instead of considering the whole system X, we now con-
sider subsets Xk composed of k-out-of-n components (1 5 k
c n; see ref. 19). The average integration for subsets of size
k is denoted as (I(X,)), where the index i indicates that the

average is taken over all n!/(k!(n - k)!) combinations of k
components. Note that (I(Xj7)) = I(X), while (I(Xjl)) = 0.
Given Eq. 3, (I(Xk+l)) 2 (I(X)); i.e., (I(Xk*)) increases
monotonically with increasing k.
We now define the complexity CN(X) of a systemX as the

difference between the values of (I(Xj*)) expected from a
linear increase for increasing subset size k and the actual
discrete values observed:

n

CN(X) = Z [(k/n)I(X) - (I(X>))].
k=l

[4J

Note that, like I(X), CN(X) 2 0. According to Eq. 4, CN(X)
is high when the integration of the system is high and at the
same time the average integration for small subsets is lower
than would be expected from a linear increase over increasing
subset size.
CN(X) can also be expressed in terms of entropies or, like

I(X), as a sum of MI values. Following Eq. 2,

CN(X) = ± [(H(X4))- (k/n)H(X)]. [E5

Furthermore, following Eq. 3, CN(X) corresponds to the
average mutual information between bipartitions of X,
summed over all bipartition sizes:

CN(X) = k (MI(X ;X Xj)). [6]

Thus, according to Eq. 6, CN(X) is high when, on the average,
the mutual information between any subset ofthe system and
its complement is high. Note that, with respect to measure-
ments of integration and complexity, it is meaninghil to
consider individual systems only. In such systems, no bipar-
tition yields two statistically independent subsets (i.e.,
MI(Xk;X - Xj*) #O for allj andk).

Computer Implementations

To examine the influence of various neuroanatomical pat-
terns on CN, we implemented different connectivity schemes
in simulations of a visual cortical area, based on a previous
model of perceptual grouping and figure-ground segregation
(11). Neuronal activity was triggered by uncorrelated Gaus-
sian noise rather than by patterned external input. Activity
values of individual cells or average activities of neuronal
groups were recorded and the resulting distributions were
rendered approximately Gaussian. Simulations were carried
out using the CORTICAL NETWORK SIMULATOR program run
on an nCUBE (Foster City, CA) parallel supercomputer (11).

In addition, for the systematic testing of thousands of
connectivity patterns, we instantiated them in simple linear
systems that allowed us to derive their covariance matrices
analytically. Each linear system X consisted of n compo-
nents, each of which received connections from m other
components (1 - m _ n - 1, no self-connections) resulting
in a connection matrix CON(X). CON(X) was normalized so
that the sum of the afferent synaptic weights per component
was set to a constant value w. If we consider the vector A of
random variables that represents the activity of the compo-
nents ofX, subject to uncorrelated Gaussian noise R, we have
that, when the components settle under stationary condi-
tions, A = CON(X) * A + R. By substituting Q = [1 -
CON(X)'-l and averaging over the states produced by suc-
cessive values ofR, we obtain the covariance matrix COV(X)
= (AT * A) = (QT * RT * R * Q)= QT * Q.

In practice, various strategies can be used to calculate I(X)
and CN(X) from a set of data. Under the assumption that the
multidimensional stationary stochastic process describing
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the activity of the n components is Gaussian, all deviations
from independence among the components are expressed by
their covariances and the entropy can be obtained from the
covariance matrix according to standard formulae (16). In
particular, l(X) can be derived from the covariance matrix
COV(X) or from the correlation matrix CORR(X) or its
eigenvalues Ai according to the relationship: I(X) = X
ln(2rev,)/2 - ln[(21re")ICOV(X)j)] = -ln(ICORR(X)1)/2 =
-Xi ln(Ai)/2, where vi is the univariate variance ofcomponent
i and 1.1 indicates the determinant. Covariance matrices
obtained from the simulations or from the analytic solution of
linear systems were analyzed using MATLAB 4.1 (Mathworks,
Natick, MA). (I(Xj)) was obtained from the eigenvalue
spectrum of the correlation matrix by using all combinations
for k s 8 or a small random sample for k > 8. Numerical
analysis showed that this approximation consistently yielded
highly accurate values for CN(X).

Results

We first illustrate some essential properties of neural com-
plexity by calculating CN for a set of covariance matrices
used to exemplify its general behavior. We then show how CN
is affected by some key aspects of neuroanatomical organi-
zation.

Intuitively, complexity should be low if the components of
a system are completely independent or uniformly depen-
dent, and complexity should be high if there is evidence of
various degrees of dependence and independence. CN shows
this characteristic behavior. As an example, in Fig. 1A, we
plot the value of CN for a series of Toeplitz covariance
matrices (with constant coefficients along all subdiagonals) of
Gaussian form having increasing correlation length oc (n =
64). As a was varied from 10-0.5 (complete independence, all
coefficients 0; Fig. 1B, case a) to 105 (complete depen-
dence, all coefficients 1; Fig. 1B, case c), CN was maximal
(Fig. 1C) for intermediate values of o,, when the coefficients
in the matrix spanned the entire range between 0 and 1 (Fig.
1B, case b). Fig. 1D shows that CN increased with the
integration I from 0 up to a maximum and then decreased to
a low value.

Connectivity. As indicated in Fig. 1, a necessary although
not sufficient condition for high complexity is high integra-
tion. In neuroanatomical terms, this means that a complex
neural system must be highly interconnected. Fig. 2 shows
results obtained from simulations of a primary visual area
(11). In Fig. 2A, cases a and b represent a pattern of
connectivity that, as implemented in the model, closely
resembles neuroanatomical data. This pattern (11) is char-
acterized by (i) strong local connections between neurons of
similar specificity forming neuronal groups, (ii) weaker local
connections between groups belonging to different functional
subdomains (orientation preferences), (iii) preferential hori-
zontal connections between groups belonging to the same
functional subdomain, and (iv) a limited spatial extent of
axonal arborizations, characterized by a marked fall-off of
connection density with distance. Such a specific connec-
tivity scheme results in "axonal patches" as seen in the
visual cortex-i.e., axon terminals originating from neurons
within a given group are concentrated in a few discrete
clusters. Ifthe connection density among the neuronal groups
is significantly reduced with respect to the original model
(Fig. 2A, case a), the groups behave quite independently and
do not synchronize (Fig. 2B, case a). The corresponding
covariance matrix contains uniformly low values (Fig. 2C,
case a), the system is only minimally integrated, and CN(X)
is very low (Fig. 2D, case a). At the connection density of the
original model (Fig. 2A, case b), neuronal groups synchro-
nize in ever changing combinations (Fig. 2B, case b). The
corresponding covariance matrix (Fig. 2C, case b) shows
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FIG. 1. Complexity CN obtained from Gaussian Toeplitz cova-
riance matrices (n = 64) with constant mean and varying o. Uncor-
related noise (10%) was added to the matrix diagonal. (A) CN (solid
line), I (dashed), and H (dash-dotted line) as a function of log o. (B)
Covariance matrices for cases a, b, and c as marked in A and D. (C)
Average integration for increasing subset size for cases a, b, and c.
Complexity is the area (shaded) between the linear increase of
integration and the curve linking discrete values of average integra-
tion for increasing subset size. (D) CN as a function of I. In case a,
for very low values of I, CN is very low; the components are
independent. In case b, for intermediate values of I, CN is high; the
components are correlated in a heterogeneous way. In case c, for
very high values of I, CN is low; the components are completely and
uniformly correlated.

significant correlations distributed in a heterogeneous pattern
and both CN(X) and I(X) are high (Fig. 2D, case b).
Axonal Patches and Neuronal Groups. Despite the large

number of cortical connections, the overall connectivity of
cortex is sparse as compared to a complete matrix of n2
connections among n neurons. It is instructive to compare
cortical connectivity patterns with other equally sparse but
differently arranged patterns. The pattern of connectivity
modeled after the organization of a primary visual area
characterized by the presence of specific axonal patches
yielded high CN(X) (Fig. 2, case b). In case c, the same
number and strength ofconnections as in case b were present
but intergroup connectivity was arranged in a completely
uniform (i.e., random) way (Fig. 2A, case c). Dynamically, all
neuronal groups were found to be locked in a globally
synchronized state (Fig. 2B, case c); accordingly, their
covariances were uniformly high (Fig. 2C, case c). In this
case, although l(X) was higher than that obtained with the
more specific "patchy" connectivity, CN(X) was consider-
ably lower (Fig. 2D, case c).
For a more systematic test ofthe influence of "patchiness"

on CN(X), we implemented thousands of different connec-
tivities as linear systems. Each system consisted of n = 8
components that received a fixed amount w of synaptic
weights distributed over m connections per component. This
connectivity could be distributed uniformly across all com-
ponents (m -* 7) or restricted to progressively more specific
sets of components (m -* 1). Fig. 3A shows that the evenly
distributed connectivities (e.g., Left Inset) gave rise to con-
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FIG. 2. Integration and complexity obtained from simulations of
a primary visual area for different patterns of connectivity. All cases
shown contain 512 neuronal groups in two arrays (16 X 16) and were
modeled as collections of40 excitatory and 20 inhibitory neurons that
are mutually interconnected (11). No external input is provided to the
network; neuronal group activity is triggered by intrinsic Gaussian
noise. The groups tend to discharge in an oscillatory fashion. To
compute CN, we sampled the mean activity traces of groups forming
the central 12 x 12 portion ofthe two arrays (one for each orientation
preference) for 10,000 time steps (discarding an initial transient) and
derived the covariance matrix. (A) Schematic connectivity patterns.
(B) Mean activity traces ofthe entire array for the first 400 time steps
after the initial transient. Large amplitude is an indicator of coherent
activity within the array. (C) Covariance matrices. (D) Average
integration and complexity derived from the covariance matrices.
Cases a, b, and c (compare Fig. 1) explore the variation ofCN(X) with
different patterns of intergroup connections. In case b, intergroup
connections are clustered in local patches around the group of origin
(details in ref. 11); connections are spread within a 5 x 5 region for
the same orientation domain, and within a 3 x 3 region for a different
orientation domain. Case a is identical to b, but the connection
density is reduced 2-fold. In case c, the same amount of intergroup
connections as in case b are distributed uniformly within the array.
While 1(X) increases from case a to b to c, CN(X) is highest for case
b and lower for cases a and c.

siderably lower CN(X) than patchy connectivities (e.g., Right
Inset), even after normalizing the complexity measure to take
account of A(X).
These models demonstrate that, under constraints of spar-

sity, higher values of CN(X) are obtained when neuronal

4 . I 0 - 1Cr 1 2 0
ntegration

FIG. 3. (A) Normalized complexity CN(X)/I(X) for linear sys-
tems composed of eight components (groups) and a varying number
m of connections (axonal patches). Total amount of connectivity is
constant (w = 0.9). Each point gives the mean ± SD for 1000
randomly generated networks, each representing an individual sys-
tem. Normalized complexity increases as connectivity patterns go
from uniform to patchy. (Insets) Connection matrices (open squares,
no connection; shaded squares, low synaptic weight; solid squares,
high synaptic weight), corresponding to a uniform (Left) and a patchy
(Right) connectivity. (B) Distribution of CN(X) and I(X) for 10,000
randomly generated linear networks of eight components with m =
2 (w = 0-9). Both CN(X) and I(X) vary over broad numerical ranges.
Vertical lines indicate the subpopulation ofnetworks at constant1(X)
that was analyzed for the presence of reciprocal connections be-
tween pairs of components. (Inset) CN(X) of these networks grows
on average with the number of such reciprocal connections.

groups have specific anatomical projective fields, as opposed
to uniformly distributed projections. Many studies suggest
that such "patchiness" is a general property of the neuroan-
atomical organization of intraareal connections. For in-
stance, intrinsic connectivity within visual cortical areas is
characterized by preferential connectivity between groups
sharing similar functional properties and by limited spatial
extent of arborizations. Synaptic contacts are concentrated
in patches of relatively constant size (see e.g., ref. 20).
Patchiness and specificity seem to be equally characteristic of
many thalamocortical, commissural, and long corticocortical
connections (especially "forward" connections; see ref. 7).
A prominent "patch" of axon terminals is due to axon

collaterals branching in the immediate vicinity of the cell
body (20). Such strong local connectivity contributes to the
organization ofneurons into neuronal groups (2). To examine
the influence of group structure on CN, we sampled single
neurons from two or more groups. For many sets of param-
eters, dissolving the group structure (e.g., by taking local
collaterals within a group and redistributing them uniformly
among all other groups) resulted in a marked decrease of CN
(data not shown). Thus, it appears that the organization of a
brain region into neuronal groups will, through local coop-
erative effects, contribute to higher levels of CN.

Reciprocal Connectivity. Most intra- and interareal neu-
ronal pathways are reciprocal, thus allowing for the process
of reentry (2-4). It is therefore informative to investigate the
impact of reciprocal connectivity on CN(X). In linear models
we noticed that, for constant n, m, and w, different connec-
tivity patterns produced a wide range of values for CN(X)
(Fig. 3A). There were many cases for which the values of
CN(X) and l(X) were dissociated. For example, Fig. 3B
shows a population distribution of 10,000 randomly generated
and sparsely interconnected linear systems with n = 8, m =
2, and w = 0.9. Closer analysis of this population revealed
that, for constant values of l(X), an increase in CN(X) tended
to correlate (Fig. 3B Inset) with the number of reciprocal
connections between pairs of components; it is notable that
such connections are a key structural substrate for reentry.
I(X) did not show this tendency. At lower values of w, both
l(X) and CN(X) tended to increase (data not shown) with the
number of reentrant circuits.

.-I



Proc. Natl. Acad. Sci. USA 91 (1994) 5037

Discusion

Traditionally, localizationist and holist views of brain func-
tion (1) have exclusively emphasized evidence for either
functional segregation or for functional integration among
components of the nervous system. Neither of these views
alone adequately accounts for the multiple levels at which
interactions occur during brain activity (2). Previously, we
illustrated the interplay of functional segregation and inte-
gration in a series of computer simulations of the visual
system (10, 11). In this paper, we introduce a general mea-
sure, called neural complexity CN, that encompasses these
two fundamental aspects of brain organization and at the
same time resolves many issues raised by conflicting views
on local vs. global functions.
CN measures how much the increase of integration with

increasing subset size deviates from linearity-i.e., roughly
speaking, how much more integrated the whole is than its
parts (see Eq. 4). Equivalently, CN can be seen as a measure
of the mutual information between each part of a neural
system and the rest, summed over all possible bipartitions
(see Eq. 6). Consistent with intuitive notions and with current
attempts in physics and biology to conceptualize complex
systems, CN is high for systems such as the vertebrate brain
that conjoin local specialization with global integration. On
the other hand, CN is low for systems that are composed
either of completely independent parts (e.g., in physics,
dilute gases) or of parts that show completely homogeneous
behavior (e.g., crystals).
A major aim of this paper was to make use ofCN to analyze

some principles of neuroanatomical organization. This anal-
ysis pointed to certain structural characteristics of the brain
associated with high values of CN. These include a high
density of connections, strong local connectivity helping to
organize cells into neuronal groups, patchiness in the con-
nectivity among neuronal groups, and a large number of
reentrant circuits. A broader exploration of this arena of
theoretical neuroanatomy will require the extension of the
present analysis to other important characteristics not con-
sidered here-for example, the diffuse terminations of back-
projections and the distribution of inhibitory connections.

In these initial attempts to characterize functional segre-
gation and integration within the unified framework of neural
complexity, we have not confronted many issues raised by
the richness of brain organization and function. For example,
the present measure of complexity does not explicitly con-
sider the heterogeneity of the actual components of a neural
system. Moreover, to measure their deviation from statistical
independence in terms of the statistical notions of entropy
and mutual information, we have considered neural systems
under stationary conditions only. It is not yet apparent to
what degree the present measure can usefully be extended to
nonstationary conditions. If this extension proved feasible,
the hypothesis that the brain is uniquely organized in such a
fashion as to achieve the integration of functionally special-
ized areas and neuronal groups within the few hundreds of
milliseconds needed for conscious perception and behavior
(3, 10) could be rigorously tested.

In the present work, our conclusions were drawn on the
basis of various computer simulations. A full validation of the
measures introduced here requires their application to data
obtained directly from brains in vivo. Preliminary investiga-
tions seem to bear out the prediction that the covariance
matrices provided by functional neuroimaging in human
subjects are associated with high values of CN (K. J. Friston,
G.T., O.S., and G.M.E., unpublished data). We also expect
that CN should be strongly altered under different neural
states: for example, we predict that, during conscious aware-
ness (3), heterogeneous patterns of short-term correlations
within the corticothalamic system will result in high values of

CN, and during globally synchronized states, such as slow-
wave sleep, CN will have lower values.
A number of other biological systems exhibit complexity

and appear to be susceptible to the kind of analysis described
here. The circuits of gene regulation in prokaryotes and
eukaryotes, various endocrine loops, and the coordinative
events observed during embryological development are sig-
nificant examples. It remains to be seen whether our ap-
proach will also prove useful in more widespread applications
such as the analysis of parallel computation and communi-
cation networks. It is also an open question whether our
measure of complexity might be extended to a consideration
of temporal patterns, particularly since complex dynamical
systems have time evolutions that, especially near phase
transitions, are in between the two extremes of complete
randomness (e.g., a coin flip) and complete regularity (e.g.,
a clock; references in ref. 17).

Finally, it should be stressed that in the present work we
have examined only the intrinsic characteristics of complex
neural systems, without considering the influence ofextrinsic
inputs or the question of how those characteristics arose
during evolution, development, and experience. Viewed
more broadly from a selectionist perspective, however, the
main reason why the brain of a higher organism is complex
is that the environment it samples is complex. It remains to
be seen how neural complexity is altered by a succession of
diverse signals from the world to yield adaptive behavior.
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