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Abstract

Many popular Bayesian nonparametric priors can be characterized in terms of exchangeable 

species sampling sequences. However, in some applications, exchangeability may not be 

appropriate. We introduce a novel and probabilistically coherent family of non-exchangeable 

species sampling sequences characterized by a tractable predictive probability function with 

weights driven by a sequence of independent Beta random variables. We compare their theoretical 

clustering properties with those of the Dirichlet Process and the two parameters Poisson-Dirichlet 

process. The proposed construction provides a complete characterization of the joint process, 

differently from existing work. We then propose the use of such process as prior distribution in a 

hierarchical Bayes modeling framework, and we describe a Markov Chain Monte Carlo sampler 

for posterior inference. We evaluate the performance of the prior and the robustness of the 

resulting inference in a simulation study, providing a comparison with popular Dirichlet Processes 

mixtures and Hidden Markov Models. Finally, we develop an application to the detection of 

chromosomal aberrations in breast cancer by leveraging array CGH data.
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1. INTRODUCTION

All authors have equally contributed to the manuscript.

Bayesian nonparametric priors have become increasingly popular in applied statistical 

modeling in the last few years. Examples of their wide area of applications range from 

variable selection in genetics (Kim et al., 2006) to linguistics (Teh, 2006b; Wallach et al., 

2008), psychology (Navarro et al., 2006), human learning (Griffiths, 2007), image 

segmentation (Sudderth and Jordan, 2009) and applications to the neurosciences (Jbabdi et 

al., 2009). See also Hjort et al. (2010). The increased interest in non-parametric Bayesian 

approaches is motivated by a number of attractive inferential properties. For example, 

Bayesian nonparametric priors are often used as flexible models to describe the 

heterogeneity of the population of interest, as they implicitly induce a clustering of the 

observations into homogeneous groups. Such a clustering can be seen as a realization of a 

random partition scheme and can often be characterized in terms of a species sampling (SS) 

allocation rule. More formally, a SS sequence is a sequence of random variables X1, X2, … , 

characterized by the predictive probability functions,

(1)

where δx(·) denotes a point mass at x, qn,j (j = 1, … , n + 1) are non–negative functions of 

(X1, … , Xn), or weights, such that , and G0 is a non-atomic probability 

measure (Pitman, 1996b). Collecting the unique values of Xj, (1) can be rewritten as

(2)

where Kn is the (random) number of distinct values, say , in the vector X(n) = 

(X1, … , Xn) and  are suitable non–negative weights. In particular, an exchangeable SS 

sequence is characterized by weights  that depend only on nn = (n1n, … , nKnn), where njn 

is the frequency of  in X(n) (Fortini et. al, 2000; Hansen and Pitman, 2000; Lee et al., 

2008). The most well known example of predictive rules of type (1) is the Blackwell 

MacQueen sampling rule, which implicitly defines a Dirichlet Process (DP, Blackwell and 

MacQueen, 1973; Ishwaran and Zarepour, 2003). The predictive rule characterizing a DP 

with mass parameter θ and base measure G0(·), DP(θ, G0), sets  and 

in (1).

Whenever the weights  and  do not depend only on nn, the sequence (X1, X2, 

…) is not exchangeable. Models with non-exchangeable random partitions have recently 

appeared in the literature, e.g. to allow for partitions that depend on covariates. Park and 

Dunson (2007) derive a generalized product partition model (GPPM) in which the partition 

process is predictor–dependent. Their GPPM generalizes the DP clustering mechanism to 
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relax the exchangeability assumption through the incorporation of predictors, implicitly 

defining a generalized Pólya urn scheme. Müller and Quintana (2010) define a product 

partition model that includes a regression on covariates, allowing units with similar 

covariates to have greater probability of being clustered together. Arguably, the previous 

models provide an implicit modification of the predictive rule (1) where the weights can be 

seen as function of some external predictor. Alternatively, other authors model the weights 

qj (nn) explicitly, for instance, by specifying the weights as a function of the distance 

between data points (Dahl et al., 2008; Blei and Frazier, 2011). However, the general 

properties of the random partitions generated by such processes have not been specifically 

addressed.

In this paper, we introduce a novel and probabilistically coherent family of non-

exchangeable species sampling sequences, where the weights are specified sequentially and 

do not depend on the cluster sizes, but instead they depend on the realizations of a set of 

latent variables. Working within this family, we propose a simple characterization of the 

weights in the predictive probability function as a product of independent Beta random 

variables. This strategy leads to a well-defined random allocation scheme for the 

observables. The resulting process, which we call Beta-GOS process, is a special case of a 

Generalized Ottawa Sequence (GOS), recently introduced by Bassetti et al. (2010).

In Section 2, we discuss the properties of the Beta-GOS process, with particular regard to 

the clustering induced on the observables. In Section 3, we study the asymptotic distribution 

of the (random) number of distinct values in the sequence, Kn, for some natural 

specifications of the weights, and we compare those results with the well-known asymptotic 

results characterizing the DP and the two-parameters Poisson Dirichlet process. In many 

applications, nonparametric processes are often used within hierarchical models to specify 

the prior distribution of some parameters of the distribution of the observables. For example, 

this is a popular use for mixtures of Dirichlet Processes. Similarly, the Beta-GOS process 

can also be used to define a prior in a hierarchical model. In Section 4, we outline a basic 

hierarchical model based on the Beta-GOS process and we outline the basic steps of a 

MCMC sampler for posterior inference. In Section 5, we design a set of simulations to we 

compare the behavior of the Beta-GOS model with that of DP mixtures and hidden Markov 

Models (HMM) in terms of cluster estimation. Our results suggest that the Beta-GOS can be 

seen as a robust alternative to the Dirichlet process when exchangeability would be hardly 

justified in practice, but still there is a need to describe the heterogeneity of our observations 

by virtue of an unsupervised clustering of the data. The Beta-GOS also provides an 

alternative to customary HMM, especially when the number of states is unknown or the 

Markovian structure is expected to vary with time.

In Section 6, we analyze two published data sets of genomic and transcriptional aberrations 

(Chin et al., 2006; Curtis et al., 2012). Bayesian models for Array CGH data have been 

recently investigated by Guha et al. (2008), DeSantis et al. (2009), Baladandayuthapani et al. 

(2010), Du et al (2010), Cardin et al. (2011), and Yau et al. (2011), among others. Guha et 

al. propose a four state homogenous Bayesian HMM to detect copy number amplifications 

and deletions and partition tumor DNA into regions (clones) of relatively stable copy 

number. DeSantis et al. extend this approach and develop a supervised Bayesian latent class 

Airoldi et al. Page 3

J Am Stat Assoc. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approach for classification of the clones that relies on a heterogenous hidden Markov model 

to account for local dependence in the intensity ratios. In a heterogeneous hidden Markov 

model, the transition probabilities between states depend on each single clone or the the 

distance between adjacent clones (Marioni et al., 2006). Du et al. propose a sticky 

Hierarchical DP-HMM (Fox et al., 2011; Teh et al., 2006a) to infer the number of states in 

an HMM, while also imposing state persistence. Yau et al. (2011) also propose a 

nonparametric Bayesian HMM, but use instead a DP mixture to model the likelihood in each 

state. With respect to those proposals, we also assume that the number of states is unknown, 

as it is typical in a Bayesian nonparametric setting, but we don’t need a parameter to 

explicitly account for state persistence. This is because the Beta-GOS model is “non-

homogenous” by design, as the weights in the species sampling mechanisms adapt to take 

into account the local dependence in the clones’ intensities. We show that the Beta-GOS is 

able to identify clones that have been linked to breast cancer pathophysiologies in the 

medical literature.

We conclude with some final remarks in Section 7. Technical details and proofs of theorems 

and lemmas are provided in the Appendix.

2. THE BETA-GOS PROCESS

As anticipated, the Beta-GOS process is defined by a modification of the predictive rule that 

characterizes the species sampling mechanism (1), where the weights are a product of 

independent Beta random variables. More in general, we start considering a sequence of 

random variables (Xn)n≥1 characterized by the predictive distributions

3

where W(n) = (W1, … , Wn) is a vector of independent random variables Wk taking values in 

[0, 1], and the weights are defined by

4

The prediction rule (3) defines a special case of a Generalized Ottawa Sequence, introduced 

in Bassetti et al. (2010), a type of Generalized Pólya Urn sequences where the reinforcement 

is randomly determined by the realizations of a latent process (see also Guha, 2010, for an 

alternative proposal). Except from a few special cases, the Xi’s in a GOS are not 

exchangeable. However, it can be shown that these sequences maintain some properties 

typical of exchangeable sequences. Most notably, any GOS is conditionally identically 

distributed (CID), i.e. for all n > 0, the Xn+j ’s, j ≥ 1, are identically distributed, 

conditionally on (X1, … , Xn, W1, … , Wn). Hence, the Xi’s are also marginally identically 

distributed. Note that a CID sequence is not necessarily stationary. If a CID sequence is also 

stationary then it is exchangeable. Finally, although no representation theorem is known for 

CID sequences, it can be shown that given any bounded and measurable function f , the 

predictive mean E[f(Xn+1)|X1, …, Xn] and the empirical mean  converge to the 
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same limit as n goes to infinity. For details, see Berti et al. (2004), where CID sequences 

have been first introduced. The predictive rule (3) reduces to known cases with a suitable 

choice of the latent Wn’s; for instance if Wn := (θ + n − 1)/(θ + n), then (3) coincides with the 

Blackwell-MacQueen sampling rule characterizing a DP (θ, G0).

In this paper, we propose (Wn)n≥1 be a sequence of independent Beta(αn, βn) random 

variables and we call the resulting (X1, X2, …) a Beta-GOS sequence. The choice of Beta 

latent variables allows for a flexible specification of the species sampling weights, while 

retaining a simple and interpretable model together with computational simplicity (see later 

Sections). The allocation rule can also be described in terms of a preferential attachment 

scheme, where each observation is attached to any of the preceding by means of a 

“geometric-type” assignment. In this scheme, every individual Xi is characterized by a 

random weight (or “mark”), 1 − Wi. We can interpret each individual mark as an individual 

specific attractivity index, as it determines the probability that the next observation will be 

clustered with Xi. More precisely, the first individual is assigned a random value (or “tag”) 

X1, according to G0. Now, suppose we have X1, … , Xn together with their marks up to time 

n, (1 − W1, … , 1 − Wn). Then, the (n + 1)-th individual will be assigned the same tag as Xn 

with probability 1 − Wn; the probability of pairing Xn+1 to Xn−1 will be Wn(1 − Wn−1), and so 

forth. In general, pn,j will be the product of the repulsions Wi for the latest n − j subjects and 

the jth attractivity 1 − Wj . Summarizing, Xn+1 will result in a new tag (i.e., Xn+1 ~ G0) with 

probability rn, or will be clustered together with a previously observed tag, say , with 

probability . In the next Section, we discuss the clustering behavior induced by 

different specifications of the Beta weights in more detail.

3. CLUSTERING BEHAVIOR OF THE BETA-GOS

The predictive rule (3) implicitly defines a random partition of the set {1, … , n} into Kn 

blocks. In probability theory, Kn is also referred to as the length of the partition. Knowledge 

of the behavior of Kn is useful to understand the clustering structure implied by (3). For 

instance, for a DP (θ, G0), it is well-known that Kn/ log(n) converges almost surely to a 

constant, indeed the mass parameter θ. This asymptotic behavior is sometimes described as a 

“self-averaging” property of the partition (Aoki, M., 2008). From a practical point of view, 

since Kn/ log(n) converges to a constant, then in the limit Kn is essentially θ log(n); thus, for 

modeling purposes it suffices to consider only the first moment of Kn. In the case of the two 

parameter Poisson Dirichlet process the length of the partition Kn (suitably rescaled) 

converges instead to a random variable. More precisely, for a PD(α, θ), with 0 < α < 1, θ > 

−α, then Kn/nα converges a.s. to a strictly positive random variable (see Theorem 3.8 in 

Pitman, 2006). Therefore, the PD sequence is non self-averaging. When the limit of Kn is 

essentially a random variable, extra care is needed in the prior assessment of the parameters 

of the non-parametric prior, since the clustering behavior is ultimately governed by the 

whole distribution of the limit random variable. For the Beta-GOS process, we focus on the 

following two cases:

i. αn = a > 0 and βn = b > 0 for all n ≥ 1;

ii. αn = θ − 1 + n (θ > 0) and βn ≥ 1 for all n ≥ 1 .
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Then, we can prove the following

Proposition 1. Let Kn be the length of the partition induced by a Beta-GOS, with G0 non-

atomic and Wn ~ Beta(αn, βn) (n ≥ 1).

a. If αn = n + θ − 1, βn = 1, for given θ > 0, Kn/ log(n) converges in distribution to a 

Gamma(θ, 1) random variable.

b. If αn = n + θ − 1, βn = β, (θ > 0, β > 1) or if αn = a, βn = b, (a > 0, b > 0), then Kn 

converges almost surely to a finite random variable K∞. In particular, if αn = a, βn 

= b, then

where (t)(m) = t(t + 1) … (t + m − 1) and

The proof is detailed in the Appendix, where we also provide a general formula for the 

probability distribution, the k-th moment and the generating function of Kn. The result in 

Proposition 1(a) represents a case of a quite natural (non exchangeable) partition model for 

which the length Kn scale as log(n) but is not self-averaging. When αn = a, βn = b, according 

to Proposition 1(b), the convergence of Kn to a finite random variable naturally implies the 

creation of a few big clusters, as n increases. Instead, for αn = n + θ − 1, βn = 1, the mean 

length of the partition depends on the value of θ, since a bigger number of clusters is 

associated on average with greater values of θ. However, as θ increases so does the 

asymptotic variability of Kn; therefore, in this case, a Beta-GOS process can be used to 

represent uncertainty on Kn (by the lack of the self-averaging property of the process. By 

means of simulations, we have also confirmed that, for small values of θ, the partition of n 

elements is skewed, i.e. it is characterized by a small number of big clusters as well as a few 

small clusters. As θ increases, the sizes of the clusters decrease accordingly, the observations 

being grouped into clusters of relatively fewer elements. This is similar to what happens for 

the DP, and indeed in this case the parameter θ could be interpreted as a mass parameter for 

the Beta-GOS.

The parameters of the Wi’s can be chosen to model the autocorrelation expected a priori in 

the dynamics of the sequence. The probability of a tie may decrease with n and atoms that 

have been observed at farthest times may have a greater probability to be selected if they 

have also been observed more recently. Such considerations may be helpful to guide prior 

assessment of the Beta hyper-parameters. For given n ≥ 1, taking expectations with respect 

to the weights Wi’s we obtain

(5)
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Under (a), it follows that E[rn] = (a/(a + b))n and E[pn,k] = (a/(a + b))n−k (b/(a + b)); hence, 

the probabilities of ties depend only on the lag n − k and decrease exponentially as a 

function of n − k. Under (b),

Thus, for n, k → + ∞,  and . For example, if θ = 1 and β = 2, then 

αj = j and βj = 2 and  so that the 

weights decrease linearly as a function of the lag n−k. If αj = θ−1+j (θ > 0) and βj = 1 then 

 and , k = 1, … , n, i.e. any observation has the same weight. This 

latter specification leads to an expression similar to that in the Blackwell-McQueen Pólya 

Urn characterization of the Dirichlet process; however, this identity is true only in 

expectation, and the clustering behavior of the DP and Beta-GOS process with αj = j + θ − 1 

and βj = 1 may be quite different, as it is evident from Proposition 1.

In practice, the determination of the parameters of the Beta distributions is not trivial, and 

may be problem dependent, especially given the sensitivity of the clustering behavior to the 

values of αj and βj . As a general rule, following what it is usually done with Dirichlet 

processes priors, one should consider eliciting the parameters on the basis of the expected 

number of clusters . For example, one should set αj = a and βj = b to 

represent a short memory process, and the values of a, b can be chosen based on the 

asymptotic relationship . We further suggest to choose b = 1, or anyway b < a, 

to encourage a priori low autocorrelation of the sequence, since then E(pn,n) < 0.5. As a 

matter of fact, we implemented those suggestions in the application to the array CGH data 

presented in Section 6, where biological considerations lead to further expect the true 

number of states to be around 4. On the other hand, one should set αj = j + θ − 1, βj = 1 to 

represent a long memory process, and then choose θ based on , 

for large n. The latter, single-parameter, formulation should be the default choice in those 

applications where prior information on the expected number of clusters is unavailable 

otherwise. Alternative strategies are possible. For example, one could consider second 

moments, or otherwise require further constraints on the expected autocorrelation of the 

sequence. However, we leave the exploration of those possibilities to future work. See also 

the discussion at the end of Section 4.2.
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Finally, we note the functional form of (4) may initially suggest a relationship with the stick-

breaking characterization of the Dirichlet process. However, the stick-breaking construction 

characterizes the representation of the DP as a random measure, not the corresponding 

predictive probability function. Furthermore, the sequence generated by a DP is 

exchangeable, whereas a Beta-GOS in general is not and includes the DP as a special case. 

As a matter of fact, if one would like to stress the “stick-breaking” analogy anyway, one 

should more properly interpret (3) in terms of an inverse stick-breaking, since each pn,j , 

which defines the probability of a tie, say Xn+1 = Xj , does not depend on the Wi’s observed 

before time j, j = 1, … , n, whereas the probability of choosing a new tag depends only on 

the part of the stick that is left at time n. This is evident if we consider the alternative 

characterization of (3) with  and 

and choose βi = 1 and αi = θ as in the DP. 

Then, , j = 1, … , n. For n = 3, p3,1 = W1(1 − W2)(1 − W3), p3,2 = 

W2(1 − W3), p3,3 = W3. By contrast, in a Dirichlet process each piece of the unitary stick is 

defined from what is left by the previous ones.

4. A BETA-GOS HIERARCHICAL MODEL

In this Section, we show how the Beta-GOS process could be used as a prior in a 

hierarchical model, and we discuss a straightforward MCMC sampling algorithm for 

posterior inference.

4.1 The hierarchical model

Beta-GOS processes can be used to model dependencies between non exchangeable 

observations. Let Y = (Y1, … , Ym)T be a vector of observations, e.g. a time series. Then, 

following a Bayesian approach, we can assume that the data can be described by a 

hierarchical model as

(6)

for some probability density p(·|μi), where the vector (μ1, … , μm)T is a realization of a Beta-

GOS process with parameters αi, βi , i = 1, … , m, and base measure G0, which we 

succinctly denote as

(7)

i.e. is a sample from a random distribution characterized by the predictive rule (3), for some 

Wi ~ Beta(αi, βi), i = 1, … , m. As noted in Section 2, any Beta-GOS defines a CID 

sequence. In particular, marginally μi ~ G0, i = 1, … , m. Therefore, G0 can be regarded as a 

centering distribution, as in DP mixture models: G0 can represent a vague parametric prior 

assumption on the distribution of the parameters of interest. The hierarchical model may be 

extended by putting hyper-priors on the remaining parameters of the model, including the 

parameters of the Beta-GOS (αm, βm, G0), although here we focus on the characterization of 

the behavior of the Beta-GOS for fixed choices of the Beta parameters.
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We conclude this Section by noting that the sequence Y1, Y2, …, defined through (6) and (7), 

with joint density

and π(·) ≡ Beta-GOS(αm, βm, G0), is also a CID sequence. Therefore, although not 

exchangeable, the Yn+j ’s, j ≥ 1 are conditionally identically distributed given (Y1, … , Yn, 

μ1, … , μn). For a proof of this statement, see Proposition 4 in the Appendix.

4.2 MCMC posterior sampling

Posterior inference for the model (6)-(7) entails learning about the vector of random effects 

μi and their clustering structures. As the posterior is not available in closed form, we need to 

revert to MCMC sampling. In this Section, we describe a Gibbs Sampler that relies on 

sampling the subsequent cluster assignments of the observations Y1, … , Ym according to the 

rule (3). To do this, the partition structure will be described by introducing a sequence of 

labels (Cn)n≥1 recording the pairing of each observation according to (3), i.e. which other 

data point, among those with index j < i, the ith observation has been matched to. Hence, 

here the label Ci is not a simple indicator of the cluster membership, as it is typical in most 

MCMC algorithms devised for the Dirichlet process, although cluster membership can be 

easily retrieved by analyzing the sequence of pairings. In what follows, Ci will be sometimes 

referred to as the i-th pairing label. In particular, if the i-th observation is not paired to any 

of those preceding, Ci = i; in this case, the i-th point consists of a draw from the base 

distribution G0, and thus generates a new cluster. This slightly different representation of 

data points in terms of data-pairing labels, instead of cluster-assignment labels, turns useful 

to develop an MCMC sampling scheme for non-exchangeable processes, as it has been 

thoroughly discussed in Blei and Frazier (2011), who have shown that such representation 

allows for larger moves in the state space of the posterior and faster mixing of the sampler. 

It is easy to see that the pairing sequence (Cn)n≥1 assigns C1 = 1 and has distribution

(8)

for i = 1, … , n, where (·) denotes, as usual, the indicator function, such that, given a set 

A, (i ∈ A) = 1 if i ∈ A and 0 otherwise. As mentioned, the clustering configuration is a by-

product of the representation in terms of data-pairing labels. If two observations are 

connected by a sequence of interim pairings, then they are in the same cluster. Given C = 

(C1, … , Cm, … ), let Π(C) denote the partition on N generated by C. Accordingly, if 

 is a sequence of independent random variables with common distribution G0, we 

set μi =  if i belongs to Π(C)k , i.e. the k-th block (cluster) of Π(C). For any m and any 

i ≤ m, let C(m) = (C1, … , Cm), C−i = (C1, … , Ci−1, Ci+1, … , Cm); analogously, let W (m) = 

(W1, … , Wm), and W−i = (W1, … , Wi−1, Wi+1, … , Wm). Then, the full conditional for the 

pairing indicators Ci’s is

(9)
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The second term in (9) is the prior predictive rule (8), whereas

where Π(C−i, j) denotes the partition generated by (C1, … , Ci−1, j, Ci+1, … , Cm). If G0 and 

p(y|μ) are conjugate, the latter integral has a closed form solution. The non-conjugate case 

could be handled by appropriately adapting the algorithms of MacEachern and Müller 

(1998) and Neal (2000). Instead, we believe that split and merge moves as the ones 

considered in Jain and Neal (2007) and Dahl (2005) are more problematic to implement 

given the implied exchangeability of the clustering assignments in those algorithms. As far 

as the full conditional for the latent variables Wi’s, we can show that Wi|C(m), W−i, Y(m) ~ 

Beta(Ai, Bi ), where  and ; 

hence, they depend on only on the clustering configurations and not on the values of W−i.

Then, consider the set of cluster centroids . The algorithm described so far allows faster 

mixing of the chain by integrating over the distribution of the . However, in case we were 

interested on inference on the vector (μ1, … , μm), it is possible to sample the unique values 

at each iteration of the Gibbs sampler, from

(10)

where Πj (m) denotes the partition set of the observations such that , i = 1, … , m. 

Again, if p(y|μ) and G0 are conjugate, the full conditional of  is available in closed form, 

otherwise we can update  by standard Metropolis Hastings algorithms (Neal, 2000).

In addition, we note that if a prior distribution for the Beta hyper-parameters αm and βm, say 

π(αm, βm), were to be specified, one could implement a Metropolis Hasting scheme to learn 

about their posterior distribution, since it can be shown that

where Ai and Bi are defined as above and B(x, y) = Γ(x)Γ(y)/Γ(x + y) denotes the Beta 

function. Equation (11) is an adaptation of well known results for the Dirichlet Process 

(Escobar and West , 1995) to the Beta-GOS process. A thorough study of the efficiency of 

this algorithm, however, as well as the choice of adequate proposal distributions is beyond 

the scope of this work and will be pursued elsewhere.

5. A SIMULATION STUDY

In this Section, we provide a full specification for model (6)–(7) and test the properties of 

the Beta-GOS prior on a set of simulated examples; more specifically, we develop some 

comparison with the Dirichlet Process and popular hidden Markov Models (HMM).
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5.1 Model specifications

Throughout this Section, model (6)–(7) will be specified as follows. First, we assume a 

Gaussian distribution for the observables, Yi ~ Normal(μi, τ2). The base measure G0 is also 

assumed to be normal, Normal( ), and τ2 ~ Inv-Gamma(a0, b0). The parameters of the 

latent Beta reinforcements, Wi ~ Beta(αi, βi), are separately indicated in each simulation and 

are chosen to allow for a range of prior beliefs on the clustering behavior of the process (see 

Section 3). Details of the MCMC algorithm for posterior inference and parameter estimation 

in the Beta-GOS model are given in Appendix A.

5.2 Model fitting and parameter estimation

A first simulation study considers an ideal setting. We generate 1000 samples of 101 

observations each from the Beta-GOS model (6)–(7), with (a) αn = n, βn = 1 and (b) αn = 3, 

βn = 1. The first 100 points are used for fitting purpose, whereas the 101st point is used to 

assess goodness of fit. Without much loss of generality, we fix μ0 = 0 and σ0 = 10. We 

mimic the typical scale observed in the data analyzed in Section 6 and set τ = 0.25 to 

distinguish the sample variability from the variability of the base measure. We fit the data 

using a Beta-GOS hierarchical model, with default Beta hyper-parameters αn = n, βn = 1, 

and study how well we can recover the basic characteristics of the data under such 

specification. We assume τ2 ~ Inv-Gamma(2.004, 0.0063) in the model fitting. This choice 

of the Inverse-Gamma hyper-parameters allows τ2 to have mean around 0.252 and relatively 

large variance. In addition, we fit a DP mixture model with concentration parameter θ = 1, 

which on the basis of Proposition 1 (a) can be seen as compatible with the parameters used 

in our model. The mixture of DP model is fit to data using the R package “DPpackage” (Jara 

A. , 2007). In this framework, the Dirichlet Process provides a convenient comparison; 

however, we should stress that, in general, the underlying exchangeability assumption may 

not be appropriate to fully capture the dependency structure of the data generating process.

The results of this simple simulation study are summarized in Table 1. Table 1 reports 

summary statistics aimed at providing synthetic measures of the goodness of fit, namely the 

estimated number of clusters and the accuracy of cluster assignments, together with a 

measure of predictive bias. Following the machine learning terminology for classification 

performance metrics, we call accuracy the ratio of the correct cluster assignments with 

respect to the total of assignments. We compute the predictive bias as follows: for each 

sample, and each MCMC output, we predict a new observation on the basis of the estimated 

parameters and the clustering configurations provided by the algorithm, say Ypred. The 

prediction is compared with the original value, Y101. The predictive bias is simply the 

average of |Y101 − Ypred|, and can be regarded as a measure of how well the model can 

predict future observations. Nearly all data points were assigned to the correct clusters. The 

Beta-GOS appears to compare favorably in terms of predictive bias, especially when the 

data incorporate a stronger dependency structure. Most of the error is intrinsic to the data 

generating process. As typical of most Bayesian nonparametric models, including the DP, 

the ability of the model and estimation algorithms to recover the ground truth may be 

affected by the choice of the relative magnitudes of the hyper-parameters  and τ2. The 

Supplemental Materials contain additional results for several specifications of the data 
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generating mechanism as well as several choices of the hyper-parameters for model fitting, 

confirming the above remarks.

5.3 Fitting mixture of Gaussians

A second simulation study is designed to assess the robustness of the Beta-GOS framework 

to model mis-specifications: i.e., we fit the proposed non-exchangeable model to 

exchangeable data. The DP process provides a sensible baseline for this study. More in 

detail, we first generate 1,000 data sets (101 observations each) from a Normal mixture 

model with five components. The components’ means are sampled from a Normal(μ0 = 0, σ0 

= 10), whereas their standard deviation is set either to τ = 0.25 or τ = 0.5 to provide some 

insight into the robustness of the results to different levels of noise. The vector of mixture 

components’ weights is chosen as π = (0.2, 0.35, 0.15, 0.1, 0.2)T . We fit the data with a 

Dirichlet Process (θ = 1), and a Beta-GOS process, with a) αn = βn = 1, and b) αn = n, βn = 1. 

Case (a) corresponds to a process with short autocorrelation expected a priori and, 

asymptotically, a finite number of clusters, whereas case (b) assumes that the rescaled 

number of clusters, Kn/ log(n), converges to a Gamma(1, 1), and E[Kn] ~ log(n). The choice 

of hyper-parameters for the Inverse-Gamma on τ2 sets the mean around the true value and 

allows for a relatively large variance. The results of the simulations are shown in Table 2. 

Overall, the Beta-GOS framework is quite robust to model mis-specifications. For the 

mixture of Gaussians data, accuracy of cluster assignments was high (94%), that is better or 

comparable to that of the DP; correspondingly, parameters’ estimates were close to the true 

parameter values. For all processes, the accuracy decreases slightly with increasing level of 

noise. In Figure 1, we report the posterior distribution of the number of clusters for the three 

processes, for the case τ = 0.25. In accordance with the findings of Proposition 1, we can see 

that if αn = βn = 1 the distribution is more concentrated around the mean and fewer clusters 

are generated in the fit.

Finally, we note that in our simulations, posterior inference for the Beta-GOS process 

seemed only minimally affected by the two different specifications of the parameters of the 

Beta weights. This consideration confirms the suggestion that using αn = n + θ − 1, βn = 1 

represents a default choice in many applications, where there is no a priori information to 

guide parameter choice. In this case, θ can be chosen or estimated similarly as what is 

routinely done for mixtures of DPs. The Supplemental Materials contain additional results 

for several specifications of the model hyper-parameters, overall confirming the above 

remarks.

5.4 Fitting Hidden Semi-Markov Models

A third simulation study is designed to assess the robustness of the Beta-GOS framework to 

a mis-specification of a different nature. In many problems (e.g. change point detection), 

hidden Markov Models are used as computationally convenient substitutes for temporal 

processes that are known to be more complex than implied by first order Markovian 

dynamics. Here, we generate non-exchangeable sequences from a hidden semi-Markov 

process (HSMM; Ferguson, 1980; Yu, 2010) and study how the Beta-GOS process performs 

in fitting this type of data. Hidden semi-Markov processes are an extension of the popular 

hidden Markov model where the time spent in each state (state occupancy or sojourn time) is 
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given by an explicit (discrete) distribution. A geometric state occupancy distribution 

characterizes ordinary hidden Markov models. Therefore, hidden semi-Markov process have 

also been referred to as “hidden Markov Models with explicit duration” (Mitchell et al., 

1995; Dewar et al., 2012) or “variable-duration hidden Markov Models” (Rabiner, 1989).

We generate 1,000 datasets (1000 observations each) using a hidden semi-Markov process 

with four states and a negative binomial distribution for the state occupancy distribution. 

More specifically, we parametrize the negative binomial in terms of its mean and an 

ancillary parameter, which is directly related to the amount of overdispersion of the 

distribution (Hilbe, 2011; Airoldi et al., 2006). If the data are not overdispersed, the 

Negative Binomial reduces to the Poisson, and the ancillary parameter is zero. For the 

simulations presented here, we consider a NegBin(15, 0.15), which corresponds to assuming 

a large overdispersion (17.25). We also consider τ = 0.25 and τ = 0.5 in order to explore 

robustness to different levels of noise. We fit the data by means of a Beta-GOS model with 

Beta hyper-parameters defined by: a) αn = n, βn = 1; b) αn = 5, βn = 1; c) αn = 1, βn = 1. 

Based on Proposition 1, those choices correspond to assuming different clustering 

behaviors; in particular, different expected number of clusters a priori. We then compare the 

Beta-GOS with the fit resulting from hidden Markov models, assuming 3, 4 and 5 states, 

respectively. Results from the simulations are reported in Table 3, where the HMM was 

implemented using the R package “RHmm” (Taramasco and Bauer, 2012). Table 3 shows 

that the Beta-GOS is a viable alternative to HMM, as it can provide more accurate inference 

than a single hidden Markov model where the number of states is fixed a priori. As 

expected, higher levels of noise decrease the accuracy of the estimates, but the reduction 

affects the fit of the Beta-GOS and hidden Markov Models similarly. Furthermore, the fit 

obtained with the Beta-GOS appears quite robust to the different choices of the hyper-

parameters. Figure 2 illustrates the clustering induced by the Beta-Gos and a 4-state HMM 

for a subset of the data generated in two specific simulation replicates. The middle column 

illustrates the allocation, respectively, from a Beta-Gos(αn = 1, βn = 1) (top) and a Beta-

Gos(αn = n, βn = 1)(bottom), whereas column (c) illustrates the clustering attained by the 

HMM. Caution is necessary in order to avoid over-interpreting the results in the figure. 

Overall, the segmentation-plots suggest similarity in the allocations induced by the Beta-

GOS and the HMM. In some instances, the Beta-GOS fit seems to allow shorter stretches of 

contiguous identical states, as illustrated in the top row of Figure 2. On the other hand, when 

data are characterized by elevated intra-claster variability, as in the bottom row of Figure 2, 

both the Beta-Gos and the HMM could fail to attain a fair representation of the true 

clustering structure of the data. Our practical experience suggests that the issue is more 

prominent for the “default” Beta-Gos(αn = n, βn = 1) than for the “informative” Beta-Gos(αn 

= a, βn = b) formulations. This is in accordance with the discussion in Section 3 and, in 

particular, with the consideration that a Beta-Gos(αn = n, βn = 1) should represent a long 

memory process where all previous observations are expected to contribute the same weight 

in (3). The Supplementary Materials contain results for a wider range of parameter settings, 

as well as different data generating mechanisms, confirming the results noted above.
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6. QUANTIFYING CHROMOSOMAL ABERRATIONS IN BREAST CANCER

We first apply the Beta-GOS to a classic dataset that has been used to link patterns of 

chromosomal aberrations to breast cancer pathophysiologies in the medical literature (Chin 

et al., 2006). The raw data measure genome copy number gains and losses over 145 primary 

breast tumor samples, across the 23 chromosomes, obtained using BAC array Comparative 

Genomic Hybridization (CGH). More precisely, the measurements consist of log2 intensity 

ratios obtained from the comparison of cancer and normal female genomic DNA labeled 

with distinct fluorescent dyes and co-hybridized on a microarray in the presence of Cot-1 

DNA to suppress unspecific hybridization of repeat sequences (see Redon et al., 2009). The 

analysis of array CGH data presents some challenges, because data are typically very noisy 

and spatially correlated. More specifically, copy numbers gains or losses at a region are 

often associated to an increased probability of gains and losses at a neighboring region. We 

use the Beta-GOS model developed in the previous Sections to analyze and cluster clones 

with similar level of amplification/deletion, for each breast tumor sample and each 

chromosome in the dataset. For array CGH data, it is typical to distinguish regions with a 

normal amount of chromosomal material, from regions with single copy loss (deletion), 

single copy gain and amplifications (multiple copy gains). Therefore, we present here the 

results of the analysis where the latent Beta hyper-parameters are set to αn = 3 and βn = 1, 

corresponding to E(Kn) = 4 states for large n (see Section 3). We have also considered αn = 

n and βn = 1, with no remarkable differences in the results. We complete the specification of 

model (6)–(7) with a vague base distribution, Normal(0, 10), and a vague inverse gamma 

distribution for τ centered around τ = 0.1. This choice of τ is motivated by the typical scale 

of the array CGH data and is in accordance with similar choices in the literature (see, for 

example Guha et al., 2008).

Figure 3 exemplifies the fit to chromosome 8 on two tumor samples. The model is able to 

identify regions of reduced copy number variation and high amplification. Note how 

contiguous clones tend to be clustered together, in a pattern typical of these chromosomal 

aberrations. Figure 4 replicates Figure 1 in Chin et al. (2006) and shows the frequencies of 

genome copy number gains and losses among all 145 samples plotted as a function of 

genome location. In order to identify a copy number aberration for this plot, for each 

chromosome and sample, at each iteration we consider the cluster with lowest absolute mean 

and order the other clusters accordingly. The lowest absolute mean is chosen to identify the 

copy neutral state. Following Guha et al. (2008) any other cluster is identified as a copy 

number gain or loss if its mean, say , is farther than a specified threshold from the 

minimum absolute mean, say , i.e. if . We experimented with a range of 

choices of ε in the range [0.05, 0.15] and used ε = 0.1 for the current analysis. Furthermore, 

if the mean of a cluster is above the mean of all declared gains plus two standard deviations, 

all genes in that cluster are considered high level amplifications. We identify a clone with an 

aberration (or high level amplification) if it is such in more than 70% of the MCMC 

iterations; then, we compute the frequency of aberrations and high level amplifications 

among all 145 samples, which are reported, respectively, at the top and bottom of Figure 4. 

As expected, the clusters identified by the model tend to be localized in space all over the 

genome. This feature may be facilitated by the increasingly low reinforcement of far away 
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clones embedded in the Beta-GOS, and corresponds to the understanding that clones that 

live at adjacent locations on a chromosome can be either amplified or deleted together due to 

the recombination process.

Finally, we considered some regions of chromosomes 8, 11, 17, and 20 that have been 

identified by Chin et al. (2006) and shown to correlate in their analysis to increased gene 

expression. We adapt the procedure described in Newton et al. (2004) to compute a region-

based measure of the false discovery rate (FDR) and determine the q-values for neutral-state 

and aberration regions estimated in our analysis. The q-value is the FDR analogue of the p-

value, as it measures the minimum FDR threshold at which we may determine that a region 

corresponds to significant copy number gains or losses (Storey, 2003; Storey et al., 2007). 

More specifically, after conducting a clone based test as described in the previous paragraph, 

we identify regions of interest by taking into account the strings of consecutive calls. These 

regions then constitute the units of the subsequent cluster based FDR analysis. Alternatively, 

the regions of interest could be pre-specified on the basis of the information available in the 

literature. The optimality of the type of procedures here described for cluster based FDR is 

discussed in Sun et. al, 2014. See also Heller et al., 2006, Müller et al., 2007 and Ji et al., 

2008). In Table 4 we report the q-values from a set of candidate oncogenes in well-known 

regions of recurrent amplification (notably, 8p12, 8q24, 11q13-14, 12q13-14, 17q21-24, and 

20q13). Our findings confirm the previous detections of chromosomal aberrations in the 

same locations.

Next, we apply our methodology to the analysis of a modern large-scale CGH array dataset 

(Curtis et al., 2012). More specifically, here we consider one sample from the data published 

by Curtis et al. (2012). We fit the Beta-GOS model to the entire sequence of 969,700 probes 

matched to genomics locations using a priority queue on the Harvard Odyssey cluster. 

Model fit took about 24 hours. We also fit a Hidden Markov model and a Hidden semi-

Markov model with Negative-Binomial run lengths times, both set to have three states (Yau 

et al., 2011), to the same sample. The parameters of both models were estimated using 

standard techniques (Rabiner, 1989; Guedon, 2003). The estimates for the Negative-

Binomial run lengths, shared across states for simplicity, were r̂ = 10 and , leading 

to a mean run length of 30 probes with a standard deviation of 10.

For validation purposes, we accessed a list of 152 consensus genomic locations where 

chromosomal aberrations were found in Breast cancer tumor samples. This list is included in 

the data files associated with The Genome Cancer Atlas (TCGA) project, partly curated by 

the Broad Institute and hosted by the NIH. The 152 consensus genomic locations range in 

size from 5 to 49 probes. This list provides a list of locations, which have been reported as 

likely altered in terms of DNA content in a number of publications, using multiple types of 

datasets and analyses. Therefore, the list is independent of the specifics of any particular 

technique, and it can be used as a reference for evaluating the comparative performance of 

our Beta-GOS model with Hidden Markov models, and Hidden semi-Markov models. For 

each method, we declared a success at detecting a chromosomal aberration (either deletion 

or amplification) at any of the 152 consensus genomic locations if the method correctly 

labeled at least 80% of the probes associated with any given consensus genomic location. 

This choice was necessary since locations span multiple probes. According to this simple 
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measure of performance, the Beta-GOS correctly labeled 133 locations (or 87.50%) of the 

152 consensus genomic locations as having a chromosomal aberration, versus 94 locations 

(or 61.84%) using the Hidden Markov model, and 118 locations (or 77.63%) using the 

Hidden semi-Markov model. Of course, caution should be should be taken against over-

interpreting the results of a single illustrative example. However, the results from the 

simulation studies and data analysis all concur to suggests that the Beta-GOS is a flexible 

model and that can be usefully employed in detecting chromosomal aberrations in array 

CGH data, since it can account for long range dependences in the sequence and achieve 

improved accuracy with respect to competing Hidden Markov Model based approaches.

7. CONCLUDING REMARKS

Starting from the characterization of species sampling sequences in terms of their predictive 

probability functions, we have considered predictive rules where the weights are functions 

of latent Beta random variables. The resulting Beta-GOS process defines a novel and 

probabilistically coherent Bayesian Nonparametric model for non-exchangeable data. We 

have discussed the clustering behavior of the Beta-GOS processes for some specifications of 

the latent Beta densities and illustrated their use as priors in a hierarchical model setting. 

Finally, we have analyzed the performance of this modeling framework by means of a set of 

simulation studies. The results outlined in Section 6 illustrate how the proposed Beta-GOS 

model can be a useful tool for the analysis of CGH array data. In medical applications, for 

instance, it might be used to complement tumor sub-type definition, or to suggest candidate 

genes for follow-up clinical studies. We expect our approach will be useful in other 

applications where Hidden Markov and semi-Markov model are currently considered as 

standard, e.g. in text segmentation and speech processing (e.g., Rabiner, 1989; Blei and 

Moreno, 2001; Chien and Furui, 2005; Ren et al., 2010; Yau and Holmes, 2013; Fox et al., 

2014).

Recently, Teh et al. (2006a), Fox et al. (2011), and Yau et al. (2011) have developed flexible 

and effective hierarchical Bayesian nonparametric extensions of hidden Markov models that 

allow posterior inference over the number of states. The Beta-GOS model provides an 

alternative, non-exchangeable, Bayesian nonparametric formalism to model heterogeneity 

across non-exchangeable observations that are sequentially ordered, by enabling clustering 

in a number of unknown states. Since the Beta-GOS model does not rely on the estimation 

of a single transition matrix across time points, as in the HMM, we do not need to consider 

an explicit parameter to account for state persistence, as in Fox et al. (2011), or assume a 

distribution for the sojourn times as in HSMMs. Indeed, since the predictive weights depend 

on the sequence of observations itself, the Beta-GOS seems particularly convenient when 

the underlying generative process is non-stationary, e.g. as a possible alternative to more 

complicated non-homogeneous HMMs. Monteiro et al. (2011) discuss a similar issue in a 

product partition model framework and explicitly assume that the observations in a cluster 

have their distributions indexed by different parameters. Our approach is different, for 

example we do not need to explicitly model the dependence structure within the clusters.

Arguably, the major obstacle we can foresee in the wider applicability of this type of models 

relies in the specification of the prior hyper-parameters in the latent Beta distributions. Some 
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specific suggestions have been provided in Section 3. However, in cases where there is not 

enough prior information to advise differently, our experience suggests that the default 

choice of the hyper-parameters outlined in Proposition 1(a) not only reduces the problem to 

the choice of a single parameter as it is usual in DP mixture models, but may also suffice for 

inferential purposes. Alternatively, one could assume a prior distribution on the parameters 

of the Beta latent variables and conduct posterior inference by means of MCMC methods, as 

briefly discussed in Section 4. Nevertheless, in specific applications the optimal modeling of 

the latent Beta densities requires further study and will be pursued elsewhere. In addition, 

the proposed approach inherits the general computational limitations of nonparametric 

Bayesian methods. For example, a full MCMC algorithm for posterior inference may be 

unfeasible for genomic sequences with several millions of reads. Scalable algorithms may 

facilitate fast inference in those settings (e.g., Colella et. al., 2007).

Finally, we believe that the flexibility of the latent specification and the possibility to tie the 

clustering implied by the Generalized Pólya Urn scheme directly to a set of latent random 

variables gives an opportunity to further modeling the complex relationships typical of 

heterogenous datasets. For example, further developments may substitute the general latent 

Beta specification with a probit/logistic specification, and define a Generalized Pólya Urn 

scheme in the aims of Rodriguez et al. (2010) that allows the clustering at each observation 

to be dependent on a set of (possibly sequentially recorded) covariates or curves. Similarly, 

we can imagine using multivariate Generalized Pólya Urn schemes of the sort we describe in 

this paper to model time dependent parameters in time series, which may be important to 

identify time-varying structures or regime changes at the base of phenomena like the so 

called financial contagion, i.e. the co-movement of asset prices across global markets after 

large shocks (see, for example, Liu et. al, 2012).
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A. APPENDIX: DETAILS OF POSTERIOR MCMC SAMPLING FOR THE 

BETA-GOS MODEL

Here, we provide the details of the MCMC sampling algorithm described in Section 4.2 for 

the special case of a Normal sampling distribution and a Normal (or Normal-Inverse-

Gamma) base measure.

A.1 Full conditionals for the Gibbs sampler

At each iteration of Gibbs sampler we sample from the full conditionals of Cn and Wn, for n 

= 1, … , N . Here we derive the analytical form of these distributions, for the Beta-GOS 

model specified in Section 5. Recall that the full conditional distribution for Cn is
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where the factor on the right is given by (8) and (3), and the left factor is obtained by 

integration,

where Πj is the set of indices of data points in cluster j, and J is the number of clusters at that 

iteration. Note that the latent reinforcements W(N) are used to define the cluster assignments 

through the data-pairing labels C(N). Conditionally on the data-pairing labels C(N), the data 

Y(N) is independent of the latent reinforcements W(N).

The full conditional for Wn, denoted by P(Wn|C(N), W−n, Y(N)), is Beta distributed with 

updated parameters An, Bn, defined as in (8).

A.2 Inference on the cluster centroids of the Beta-GOS process

For the purpose of computational efficiency, it is generally preferable to sample the random 

partitions integrating out with respect to the parameters of the Beta-GOS process, as 

described in Section 4.2 and in Appendix A.1. If the sampling distribution and the base 

measure are conjugate, this usually results in improved mixing of the chain. However, in 

many cases, it may be required to draw inferences on the cluster centroids themselves. As 

usual with mixtures of DP, inference on the cluster centroids can be easily conducted (even 

ex-post) from the clustering configurations at each iteration. Therefore, we do not have to 

sample the centroids within each Gibbs iteration, but if the need be, we can easily resample 

them at the end of each iteration, or at the end of the sampler from the stored output.

A.3 Inference on the cluster and global variances

Let the variance of the sampling distribution be τ 2. We assume τ 2 ~ IGamma(a0, b0). The 

posterior distribution of the variance in each cluster j, is given by

Note that, in case of need and for computational efficiency, we could use these also 

quantities to obtain a global estimate for the sampling variance at each iteration, in an 
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MCMC-EM step, as . This may turn useful, for example, for 

parallelization purposes, as in the simulations of Section 5.

A.4 Inference on the cluster means

In the normal-normal model described in Section 5, the posterior distribution of  given 

data Yi in the j-th cluster can be evaluated at each iteration as

for j = 1, … , J , where Ȳj is the j-th cluster specific mean. Note that we have assumed a 

common sampling variance τ2; the modification of the previous formula to take into account 

a cluster specific variance is of course straightforward.

B. APPENDIX: DETAILS OF THE PROOFS AND ADDITIONAL 

THEORETICAL RESULTS

B.1 Generalized Ottawa Sequence and its moments

According to Bassetti et al. (2010) a sequence (Xn)n≥1 of random variables taking values in a 

Polish space is a Generalized Ottawa Sequence if there exists a sequence (Wn)n≥1 (of 

random variables) such that the following conditions are satisfied: (i) the law of X1 is G0; (ii) 

for n ≥ 1, Xn+1 and the subsequence (Wn+j)j≥1 are conditionally independent given the 

filtration ƒn := σ(X1, … , Xn, W1, … , Wn); (iii) the predictive distribution of Xn+1 given ƒn is 

given by (3) where the rn’s are strictly positive functions, rn(W1, … , Wn), of the vector of 

latent variables, such that

(A.1)

almost surely, with r0 = 1, and the weights pn,i = pn,i(W1, … , Wn) are

(A.2)

The predictive distribution (3)-(4) corresponds to choice rn(W1, … , Wn) = 

 where (Wn)n≥1 is a sequence of independent random variables.

We conclude this Section by providing a general result for the k-th moment and for the 

moment generating function of the length Kn of a GOS. Suppose that the sequence (Xn)n≥1 is 

a GOS, with G0 diffuse, and let Uj = Kj − Kj−1 with K0 = 0. Then,  and the 

joint distribution of U1, … , Un conditionally on r1, … , rn−1, is

Airoldi et al. Page 19

J Am Stat Assoc. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for every vector (e2, … , en) in {0, 1}n−1, since P (U1 = 1) = 1 by definition. Since K1 = U1 

= 1, it follows that, for every k ≥ 1,

where the summation is extended over all sequences e = (e1, … , en) in {0, 1}n such that 

. Moreover, for every k ≥ 1 and n ≥ 2, it is easy to see that

(A.3)

where k Λ n = min(k, n),

(A.4)

and  is the Stirling number of second kind. Hence, 

E[(Kn+1 − 1)k] depends recursively on functions φn−1,m, m = 1, … , k. It may be interesting 

to note that, using the well known relation between factorial moments and ordinary 

moments (see, e.g., Example 2.3 in Charalambides, 2005), from (A.3) one gets, for any m ≤ 

n,

(A.5)

where (t)(m) = t(t − 1) … (t − m + 1) is the falling factorial. Moreover, since

see e.g. Thm. 2.3 in Charalambides (2005), it follows that the moment generating function 

of Kn+1 is given by
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(A.

6)

with φn,0 := 1.

B.2 Proof of Proposition 1

If we consider equation (A.4) with (Wi)i≥1 independent random variables taking values in [0, 

1], then

(A.7)

where l0 := 0. We need some preliminary results.

Lemma 2. If Wi ~ Beta(i + θ − 1, 1), for given θ > 0, then

(A.8)

In particular, as n goes to +∞,

(A.9)

Let us start by proving (A.8). First, note that since Wi is a Beta(i + θ − 1, 1) random variable 

then, for 1 ≤ j ≤ m, . Hence, by (A.7),

(A.10)

which, after some algebra, returns (A.8). In order to prove the second part of Lemma 2 we 

need to introduce additional notation. For θ > 0, k ≥ 1, m ≥ 2 and n ≥ k, set
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Note that m!φn,m = Ψm,θ(n, m)Γ(θ + m)/Γ(θ). For all k ≥ 1, m ≥ 1 and n ≥ k, set Qk,θ (m, n) := 

Ψk,θ (n, m) − logm(n + θ). Now formula (A.9) in Lemma 2 follows easily from (A.3) and the 

next result.

Lemma 3. For θ > 0, k ≥ 1 and m ≥ 1, there is a constant Ck,θ (m) such that

(A.11)

Let k ≥ 1 and θ > 0. For m ≥ 1 and n ≥ k set

12

We claim that, for any m ≥ 1, there is a constant  such that

(A.13)

Now observe that Ψk,θ (n, 1) = Sk,θ (1, n). Hence, (A.13) proves (A.11) for m = 1 and every k 

≥ 1 and θ > 0. By induction suppose that (A.11) is true for m = 1, … , M − 1. Note that, for 

m ≥ 2,

hence, by induction hypothesis, for every θ > 0, k ≥ 1 and n ≥ k,

Using (A.12) one gets

Hence, using (A.13) and the induction hypothesis, one can write
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which proves (A.11) for m = M . To complete the proof let us prove (A.13). Observe that 

 is a non-increasing function on [x0, +∞) for a suitable x0 = x0(k, θ, m). 

Assume, without real loss of generality, that k ≥ x0 + 1. Note that, in this case,

Hence,

which gives

and then

Proof of Proposition 1 (a). It follows immediately from (A.9) and a classical result 

concerning the convergence in distribution when the moments converge. Indeed,

converges to  that is the k-th moment of a Γ(θ, 1) random variable.

Proof of Proposition 1 (b). The first part of the statement of Proposition 1(b) follows from 

Proposition 2.1 in Bassetti et al. (2010) if one shows that  . For αn = a and 

βn = b one gets E[rn] = an/(a + b)n and the thesis follows. When αn = n + θ − 1 and βn = β, as 

explained in Section 3, E[rn] ~ n−β and the thesis follows since β > 1. It remains to prove the 

assertion concerning the moment generating function and the factorial moments of K∞.

If αn = a and βn = b, (A.7) becomes
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since . Taking the limit for n →+∞, we get

and then

where (t)(j) = t(t + 1) … (t + j − 1) is the rising factorial. Combining this fact with (A.6) it 

follows that, in this case,

In addition (A.3)-(A.5) give

B.3 Conditionally identity in distribution of the Beta-GOS hierarchical 

model

Proposition 4. The sequence (Yn)n defined by formula (6)-(7) is conditionally identically 

distributed with respect to the filtration  = σ(Y (n), W (n), μ(n)).

Proof. Let . We have to prove that for every real, bounded and 

measurable function g

(A.14)

Now, for every j > 0

(A.15)

and for every j and n

(A.16)
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As already recalled, (μn)n is CID with respect to  = σ(W (n), μ(n)). This 

means that for every real, bounded and measurable function f

(A.17)

for all j ≥ 1, see Berti et al. (2004). Thanks to (A.16), equality (A.17) also holds with respect 

the sigma-field . Indeed,

(A.15) implies that

(A.18)

(A.17) and (A.18) allow to prove the thesis. Indeed,
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Figure 1. 
Posterior distribution of the number of clusters in the simulation of Section 5.3 (τ = 0.25). 

Case (a) corresponds to a Beta-GOS(αn = n, βn = 1), case (b) to a Beta-GOS(αn = βn = 1) 

and case (c) to a Dirichlet Process with parameter θ = 1.
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Figure 2. 
Illustrative segmentation-type plots for the simulation study in Section 5.4. Column (a): 

subset of data for two replicates. Column (b) top: an example of allocation for a Beta-

Gos(αn = 1, βn = 1) plotted vs the truth (black line); column (b) bottom considers a Beta-

Gos(αn = n, βn = 1). Column (c) illustrates the fitting by a HMM with 4 states.
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Figure 3. 
Model fit overview: Array CGH gains and losses on chromosome 8 for two samples of 

breast tumors in the dataset in (Chin et al., 2006). Points with different shapes denote 

different clusters.
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Figure 4. 
A) Frequencies of genome copy number gains and losses plotted as a function of genomic 

location. B) Frequency of tumors showing high-level amplification. The dashed vertical 

lines separate the 23 chromosomes.
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Table 1

Summary statistics for the simulation study in Section 5.2. The table compares the Beta-GOS and a Dirichlet 

Process model under different specifications of hyper-parameters when the data generating process is Beta-

GOS.

Data Generating Process: Beta-GOS
αn = n, βn = 1

Beta-GOS
αn = 3, βn = 1

Model Fitting Method Beta-GOS
αn = n, βn = 1

Dir. Proc.
θ = 1

Beta-GOS
αn = n, βn = 1

Dir. Proc.
θ = 1

Number of Clusters

Ground Truth 5.24± 3.88 4.14 ± 1.81

Estimation 4.30±2.67 4.51±2.62 3.61 ± 1.49 3.96 ± 1.72

Accuracy of Cluster Assignment 0.97±0.06 0.96±0.08 0.99 ± 0.01 0.99 ± 0.02

Predictive Bias 4.13±7.18 4.34±7.27 0.67 ± 2.61 1.29 ± 3.93
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Table 2

Summary statistics for the simulation study in Section 5.3. The table compares the Beta-GOS and a Dirichlet 

Process model under different specifications of hyper-parameters when the data generating process is a 

mixture of 5 gaussian components.

Data Generating Process: Gaussian Mixture - 5 Gaussians

True Sample Variability τ = 0.25 τ = 0.5

Model fitting Method Beta-GOS Dir. Proc. Beta-GOS Dir. Proc.

αn = n, βn = 1 αn = βn = 1 θ = 1 αn = n, βn = 1 αn = βn = 1 θ = 1

Estimated Number of Clusters 4.95±0.97 4.71±0.76 5.52±1.48 4.70±1.32 4.19±0.99 5.28±1.90

Accuracy of Cluster Assignment 0.94±0.09 0.93±0.09 0.93±0.09 0.86±0.11 0.84±0.12 0.85±0.13

Predictive Bias 8.86±9.02 8.73±9.02 8.84±8.99 8.53±8.61 8.39±8.37 8.55±8.61

Estimated Sample Variability 0.25±0.01 0.25±0.01 0.27±0.05 0.56±0.68 0.69 ± 1.19 0.62±0.19
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Table 3

Summary statistics for the simulation studies described in Section 5.4. The table compares the Beta-GOS and 

a hidden Markov model under different specifications of hyper-parameters. The data generating process 

assumes a hidden semi-Markov with state occupancy distribution NegBin(15, 0.15) and two levels of the 

sampling noise τ = 0.25 and τ = 0.5.

i) Data Generating Process: Hidden Semi Markov Model (HSMM) with 4 states and NegBin(15, 0.15)

Model Fitting Method Beta-GOS HMM

αn = n; βn = 1 αn = 5; βn = 1 αn = 1; βn = 1 3 States 4 States 5 States

τ = 0.25

Estimated Number of Clusters 3.89 ± 0.53 4.04 ± 0.59 4.09 ± 0.63 2.98 ± 0.13 3.94 ± 0.29 4.87 ± 0.55

Accuracy of Cluster Assignment 0.95 ± 0.10 0.97 ± 0.07 0.96 ± 0.08 0.72 ± 0.09 0.84 ± 0.13 0.90 ± 0.13

τ = 0.5

Estimated Number of Clusters 3.69 ± 0.81 3.89 ± 0.96 4.06 ± 0.97 2.99 ± 0.12 3.96 ± 0.25 4.90 ± 0.48

Accuracy of Cluster Assignment 0.86 ± 0.14 0.90 ± 0.12 0.90 ± 0.12 0.71 ± 0.11 0.83 ± 0.12 0.88 ± 0.13
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Table 4

False discovery rate analysis for clones with high-level amplification previously identified by Chin et al. 

(2006). The individual amplicons are reported together with the locations of the flanking clones on the array 

platform.

Amplicon Flanking clone
(left)

Flanking clone
(right)

Kb
start

Kb
end

FDR
q-value

8p11-12 RP11-258M15 RP11-73M19 33579 43001 0.021

8q24 RP11-65D17 RP11-94M13 127186 132829 0.021

11q13-14 CTD-2080I19 RP11-256P19 68482 71659 0.022

11q13-14 RP11-102M18 RP11-215H8 73337 78686 0.024

12q13-14 BAL12B2624 RP11-92P22 67191 74053 0.011

17q11-12 RP11-5808 RP11-87N6 34027 38681 0.017

17q21-24 RP11-234J24 RP11-84E24 45775 70598 0.017

20q13 RMC20B4135 RP11-278I13 51669 53455 0.021

20q13 GS-32I19 RP11-94A18 55630 59444 0.017
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