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This paper focuses on the latest research and critical reviews onmodern computing architectures, software and hardware accelerated
algorithms for bioinformatics data analysis with an emphasis on one of themost important sequence analysis applications—hidden
Markovmodels (HMM).We show the detailed performance comparison of sequence analysis tools on various computing platforms
recently developed in the bioinformatics society. The characteristics of the sequence analysis, such as data and compute-intensive
natures, make it very attractive to optimize and parallelize by using both traditional software approach and innovated hardware
acceleration technologies.

1. Introduction

At the beginning of the 21st century, an explosion of infor-
mation was discovered from the living organisms, especially
in areas of molecular biology and genetics. The focus of
bioinformatics deals with this flood of information, which
comes from academy, industry, and government labs, and
turning it into useful knowledge. Bioinformatics is important
to a virtually unlimited number of fields. As the genetic infor-
mation being organized into computerized databases and
their sizes steadily grow, molecular biologists need effective
and efficient computational tools to store and retrieve the
cognate information such as biological information from the
databases, to analyze the sequence patterns they contain, and
to extract the biological knowledge the sequences contain.

The field of bioinformatics computing is advancing at
an unprecedented rate. For people working with genomics
and high-throughput sequencing data analysis, it is a serious
challenge to analyze the vast amounts of data coming from
the next generation sequencing (NGS) instruments. For
example, there were approximately 126, 551, 501, and 141 bases
in 135, 440, and 924 sequence records in the traditional
GenBank divisions as of April 2011 [1]. The tendency is likely

only to be reinforced by new generation sequencers, for
example, IlluminaHiSeq 2500 generating up to 120Gb of data
in 17 hours per run [2]. Data in itself is almost useless until it
is analyzed and correctly interpreted. The draft of the human
genome has given us a genetic list of what is necessary for
building a human: approximately 35,000 genes. For a genome
as large as the human genome, it may take many days of CPU
time on large-memory, multiprocessor computers to analyze.
To handle this much data, computational strategies are
important to tackle this vital bottleneck, which can aid scien-
tists in the extraction of useful and important biological data.

Algorithms for biological sequence comparison can
be categorized into two groups: exhaustive and heuristic.
Exhaustive algorithms based on dynamic programming give
optimal solutions, and well-known search algorithms like
the Smith and Waterman [3], Needleman and Wunsch [4],
and HMM (Hidden Markov Models) [5] are of the dynamic
kind. Examples of heuristic algorithms are the BLAST [6],
FASTA [7], and Feng and Doolittle [8] algorithms. Heuristic
algorithms are statistically driven sequence searches and
alignment methods, and not as sensitive as the exhaustive
algorithms such as the Smith and Waterman algorithm and
HMM.
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An overview given in this paper concentrates on the
computational capabilities and achievable performance of the
systems discussed. To do full justice to all aspects of present
high-performance implementations of the sequence analysis,
we should consider their I/O performances and optimization
as well. The methods we obtained from the entries of the
individual implementations may be useful to many other
bioinformatics applications.We believe that such an overview
is useful for those whowant to obtain a general idea about the
various means by which these implementations achieved at
high performance and high throughput with the most recent
computing techniques.

Althoughmost computer architecture and parallelization
terms are familiar to many technical readers, we think
it is worthwhile to give some concise information about
high-performance computer architectures and the various
processors employed in these research works in Section II,
in order to better appreciate the systems information given in
this paper.

The majority of parallel systems are computing clusters
of Reduced Instruction Set computing (RISC) based sym-
metric multi-processing (SMP) nodes which in turn are
connected by a fast network. Shared and distributed-memory
SIMD (Single Instruction Multiple Data) and MIMD (Mul-
tiple Instruction Multiple Data) implementations which are
described according to their macroarchitectural class are
discussed in Section 3.

The bioinformatics computing research is a very dynamic
field and is especially true for the hardware-accelerated
cluster world that has emerged at a tremendous rate in the
last few years. The amount of research work that is related
to hardware-accelerated biocomputing has boomed corre-
spondingly. We comment on hardware characteristics and
their position relative to other methods in Section 4, such
as GPUs (Graphics Processing Units), FPGAs (Field Pro-
grammable Gate Arrays), and CELL BE (Cell Broadband
Engine) Architecture. We have discussion and draw conclu-
sion in Section 5 and Section 6, respectively.

2. Background

2.1. Introduction to Hidden Markov Models (HMMs). An
HMM is a statistical modeling method that has been widely
used in the area of computational biology since the early
1990s. HMMs were originally used in speech recognition
and then borrowed to predict protein structures and analyze
genome sequences.

An HMM consists of a set of interconnected states
{𝑞1, 𝑞2, . . . , 𝑞𝑛}. Each state can transition to another state
according to state-transition probabilities {𝑃𝑖, 𝑗}. 𝑃𝑖, 𝑗 is
defined as the probability that state 𝑞𝑖 at time 𝑡 transmits
to state 𝑞𝑗 at time 𝑡 + 1. One state can also “emit” a
set of symbols (residues) {V1, V2, . . . , V𝑛} based on emission
probabilities {𝑃𝑖V𝑘}. 𝑃𝑖V𝑘 represents the probability that state
𝑞𝑖 emits symbol V𝑘. Figure 1 gives a simpleHMM that has two
states. All the possible state transitions and their associated
transition probabilities are shown by arrows in the figure,
where the set of symbols (i.e. {A,C,G,T}) that can be emitted
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Figure 1: A hidden Markov model.

by that state as well as the emission probability for each
symbol is shown in the state boxes (Figure 1).

HMMs can be viewed as a generative model which can
generate sequences. Starting from an initial state, a sequence
of states can be generated by moving from state to state
according to the state transition probabilities.Then, a symbol
sequence can be produced by allowing each state to emit
symbols according to its emission probability distribution.
The following gives an example of a possible transmission
sequence and symbol sequence for the HMM in Figure 2.

Given this example, we can easily calculate the probability
of the above state transition sequence. If we assume that the
probability of being in state 𝑞1 at time 𝑡 = 0 is 𝑃𝑞1(0) = 0.7
(i.e., the initial state), we can get

𝑃 [𝑞1 𝑞2 𝑞2 𝑞1 𝑞1] = 0.7 × 0.2 × 0.6 × 0.4 × 0.8

= 0.02688.
(1)

We can also calculate the probability of the above symbol
sequence given the above transition sequence:

𝑃 [(ACTGC) | (𝑞1 𝑞2 𝑞2 𝑞1 𝑞1)]

= 0.3 × 0.5 × 0.3 × 0.4 × 0.1 = 0.0018.
(2)

The probability of obtaining the above transition sequence
and the above symbol sequence is

𝑃 [(ACTGC) ∧ (𝑞1 𝑞2 𝑞2 𝑞1 𝑞1)]

= 0.02688 × 0.0018 = 4.8384 × 10
−5

.
(3)

One can see that HMMs provide a mathematical model for
“linear” problems like sequences or time series. In practice,
only the output symbol sequence is observable and the state
transition sequence is “hidden” fromus.Hence, wemust infer
the state sequence by given observed sequence data (e.g.,
DNA sequences). Please also note that while an HMM has
a finite number of states, it can generate infinite number of
possible sequences.

HMMs have been successfully employed to represent
profiles of multiple sequence alignment in computational
biology [5]. A “profile” is defined as “a consensus primary
structure model consisting of position-specific residue scores
and insertion or deletion penalties” [20]. Various HMM
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Figure 2: An example of a possible transmission sequence and symbol sequence.
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Figure 3: Plan 7 HMMmodel architecture.

architectures have been proposed to model a profile in the
literature [21].While traditional pairwise alignment strategies
such as Smith-Waterman [3], BLAST [6], and FASTA [7] use
position-independent scoring, these HMM-based models
can capture position-specific alignment information. The
“Plan 7” model [21] is a representative profile of HMM
architecture in Figure 3. A multiple sequence alignment of
homologous protein sequences can be precisely represented
by such a model.

There are three major types of states in this architec-
ture: matching states (M), insertion states (I), and deletion
states (D). Arrows were used to indicate transitions between
different states with associated transition probabilities. The
matching states were used to model the distribution of
residues allowed in the columns of a multiple sequence
alignment. That is, each state has an emission distribution
that reflects the frequency of each residue observed in the
corresponding column of that alignment. One can see that
each matching state can transit to another matching state
and different types of other states (e.g., I, D) according to
its transition probabilities. An insertion state exists between
each pair of matching states. It not only transits to amatching
state but also transmits to itself which allows one or more
symbols to be inserted. Each insertion state also carries an
emission distribution. Since there exist 20 different amino
acid residues for protein sequences, each matching state or
insertion state carries a set of 20 emission probabilities. A
deletion state allows a column to be skipped and it emits
nothing. The Plan 7 model starts from state B and ends at
state E. In addition, it contains five special states (i.e., S, N,
C, T, and J) that deal with alignment specific features (e.g.,
global or local alignment).

Given a profile HMM like the Plan 7 model, researchers
are typically interested in three problems: (1) how are differ-
ent parameters of the model learned given some observed
sequence data? That is, given the architecture or topology

of a HMM and observed data, we want to find the optimal
model that maximizes 𝑃 (𝑜𝑏𝑠𝑒𝑟V𝑎𝑡𝑖𝑜𝑛𝑠 | 𝐻𝑀𝑀); (2) given
an existing optimized HMM and an observed sequence,
what is probability that the model produces that sequence
(i.e., 𝑃 (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 | 𝐻𝑀𝑀))? (3) what is the most likely
state sequence that the HMM would use to generate a
sequence?That is, we want to find the optimal state sequence
𝑞1, 𝑞2, . . . , 𝑞𝑛 such that 𝑃 (𝑞1, 𝑞2, . . . , 𝑞𝑛 | 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒,𝐻𝑀𝑀)
is maximized.

HMMER [21, 22] is a software tool that relies on the Plan
7 model. It consists of a collection of programs that can be
employed to solve the above three problems.

2.2. Accelerating Platform. Due to the huge amount of
genomic sequence data, exploring acceleration techniques
becomes necessary in bioinformatics computing such as
sequence alignment and sequence database searches. There
are various accelerating platforms that allow performing
multiple computations in parallel so as to reduce the total
computing time. An accelerating platform typically contains
both hardware and software. While the hardware includes
processors and memory, the software consists of computer
programs and data stored in memory. In addition, special-
purpose hardware can be specifically designed for a particular
type of bioinformatics computing (e.g., sequence searches).

Parallelism can be achieved both within one computer
and among a group of computers. Within one computer,
instruction level parallelism has been exploited at both com-
pile time and runtime. Modern compilers can detect inde-
pendent instructions and pack them together in VLIW (Very
Long Instruction Word) for parallel execution [23]. Dur-
ing runtime, CPUs (Central Processing Units) can reorder
the execution of instructions such that those indepen-
dent instructions can be executed simultaneously. Moreover,
Intel’s HTT (Hyper-Threading Technology) or SMT (Simul-
taneous MultiThreading) supports parallel execution of mul-
tiple instructions from different hardware threads-running
programs’ control flows. In recent years, the multi/many-
core computer architecture allows several processing units
to be built inside a single CPU chip where each core can
host multiple threads. Furthermore, multiple CPU chips can
be connected inside a single box, called SMP (Symmetrical
Multiprocessors), for processor level parallelism. Also, a
group of computers can be connected through fast networks
and work as a virtual supercomputer. Such cluster computing
is becoming more and more popular. Figure 4 shows a com-
puter cluster containing n independent nodes. Each node has
its ownmemory and cache but cannot directly access another
processor’s memory. Each node also has an NI (Network
Interface) for all communication and synchronization. Please
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Figure 4: A computer cluster with 𝑛 nodes.

note that a node can be either a single-CPU computer or an
SMP.

To effectively and efficiently utilize various hardware
resources at different granularity levels, software needs to
decompose data and programs, map them onto multiple
processing units, and support communication in order to
coordinate different subtasks. The shared address space pro-
gramming paradigm (i.e., multithreading) is a widely used
approach on single CPU machines or shared memory multi-
processors [23].With this programming paradigm, program-
mers developmultiple threads that process different data sets.
Communications among different threads are implicit and
achieved through global variables. POSIX (Portable Oper-
ating System Interface) Threads [24] and OpenMP (Open
Multi-Processing) [25] are popular software packages that
support multithread programming. The major advantages of
this paradigm are programmability and flexibility. However,
it cannot be directly applied on clusters. On distributed
memory machines or clusters, the message passing pro-
gramming paradigm is more effective and commonly used.
With this approach, multiple programs are developed and
executed concurrently on different computers. Each program
runs independently unless it needs to communicate with
another program in order to share and synchronize data. If
the overhead of such communications can be under control,
this approach will utilize the otherwise idle processors in
multiprocessors or idle computers in clusters. MPI (Message
Passing Interface) [26] is a representative library for this
paradigm.

Using MPI or POSIX to accelerate sequence alignment
tools like HMMER requires high-performance multipro-
cessor computers or large-scale computing clusters. These
computing systems are often very expensive. An alternative
approach is to design special-purpose hardware that can
operate on normal computers. Since such hardware is specif-
ically tailored for the sequence alignment problem, good per-
formance can be easily achieved. FPGAhas beenused to build
special-purpose hardware for accelerating HMMER [19, 27,
28]. An FPGA is an integrated circuits that contains a lot of
programmable interconnected “logic blocks.” It can be con-
figured to implement various algorithms using a hardware
description language. The advantage of this approach is that
it can easily achieve good performance since the hardware
is especially tailored for the sequence alignment problem.
Its disadvantages include high initial design cost and pro-
gramming complexity of the hardware description language.
In addition, the special-purpose hardware might not be
employed to solve other problems. GPU cards have also
been applied to accelerate HMMER as well as other sequence

alignment algorithms [15, 29]. Today’s commodityGPU cards
can provide tremendous memory bandwidth and computa-
tional horsepower. Moreover, software tools such as General-
Purpose computation on GPU, NVIDIA’s CUDA (Compute
Unified Device Architecture) [30] and Apple’s OpenCL [31]
have made parallel programming on GPUs much easier than
before.

2.3. Measuring Performance. There are various metrics, for
example, speedup, efficiency, and cost, which are used tomea-
sure the performance of a certain parallel program. No single
method is usually preferred over another since each of them
reflects certain properties of the parallel code. A straightfor-
ward measure of the parallel performance would be the ratio
of the execution time on a single processor (the sequential
version) to that on a multicomputer. The speedup of any
parallel computing environment obeys Amdahl’s Law [32].

Amdahl’s law describes the relationship between the
expected speedup of accelerated implementations of a pro-
gram relative to the original nonaccelerated program. It states
that themaximum expected performance improvement to be
gained from using a faster mode is limited by the fraction of
the time the faster mode cannot be applied to. For example,
assume that we have a program that needs 10 hours using a
single-processor computer and a particular portion of 1 hour
cannot be accelerated.That is, only the remaining portion of 9
hours can be accelerated, either using multiple processors or
special-purpose hardware. Intuitively, no matter how many
processors or hardware units we employ to accelerate this
program, the overall execution time cannot be less than the
critical 1 hour.That is, the overall speedup is limited by 10/1 =
10x.

Theoretically, Amdahl’s law is depicted by the following
equation:

overall speedup = 1

(1 − 𝑃) + (𝑃/𝑆)
, (4)

where 𝑃 represents a fraction of a program that can be accel-
erated and 𝑆 is the corresponding speedup of the enhanced
portion. In the above example, 𝑃 is equal to 9/10 = 0.9. If
we assume the portion of 9 hours can be mapped onto 4
processors or hardware units and executed simultaneously,
then 𝑆 is 4, assuming no extra overheads are introduced. In
this case, the overall expected speedup is

overall speedup = 1

(1 − 0.9) + (0.9/4)
= 3.08. (5)

One can see that, given limited hardware resources (e.g.,
4 processors), the most important thing for accelerating a
program is to detect the time-consuming portion that can
be parallelized or accelerated. Note that the acceleration
process often introduces additional overhead such as data
transfer to and from the external hardware accelerators,
data redecomposition and reformatting, and communication
among different hardware components. Therefore, the actual
achievable speedup is usually less than the theoretical value
obtained by Amdahl’s law.
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3. Software Accelerated HMMER

Various software approaches have been applied to accelerate
the original HMMER programs which were developed by
Eddy and his coworkers [21, 22]. Most of these approaches
focus on accelerating one or more of the three programs:
hmmpfam, hmmsearch, and hmmcalibrate. hmmpfam is
used to search a database of profile HMMs against a given
query sequence. hmmsearch is used to perform sequence
database searches that matches an input profile HMM. hmm-
calibrate takes a profile HMM and determines its statistical
significance parameters which make the database search
more sensitive. In the literature, various strategies have been
applied to modify and parallelize these programs in order
to take advantage of different levels of commodity hardware
components and achieve much better performance.

3.1. Instruction Level Parallelism. Modern general purpose
processors often have 16-byte-wide registers that can hold
and processmultiple data itemswithin one single instruction.
This SIMD (Single Instruction Multiple Data) technique can
be used to explore fine-grained instruction level parallelism.
A variety of commodity CPUs such as AMD Opteron, AMD
Turion 64, Intel Xeon, and Intel Core Solo/Duo provide
SIMD instructions and corresponding large registers. These
instructions have a great potential to accelerate sequence
analysis in biological computing due to its data-intensive
nature.

SSE2 (Streaming SIMD Extensions 2) instructions [33]
from Intel are a representative set of SIMD instructions that
extends Intel’s previous MMX (MultiMedia eXtension) and
SSE technologies. They provide a series of packed integer
operations and double precision floating point operations
that work on 128-bit data. Walters and his colleagues [9] have
attempted the use of SSE2 instructions to accelerateHMMER.
Since reimplementing the entire HMMER program using
SSE2 instructions is costly and time consuming, they only
focused on the innermost loop of theViterbi function used by
both hmmpfam and hmmsearch when performing a search.
That loop consumes more than 50% of the execution time
for both programs. Moreover, only additions and maximum
value selections over 32-bit integers are included in this short
segment of code. Since SSE2 instructions operate on 128-bit
data, four integer operations are allowed to be performed
in parallel. Therefore, the ideal speedup of this loop is 4x.
According to the Amdahl’s law introduced in Section 2.3, the
ideal overall speedup would be 1/((1 − 0.5) + 0.5/4) = 1.6.

However, it is very difficult to achieve the above speedup
because there are several types of overhead during the
reimplementation of the code of that loop. First, there exist
interiteration dependencies in the loop.That is, operations in
the current iteration need results from the previous iteration.
Therefore, the code in the loop must be rearranged and
split into several loops in order to remove the dependen-
cies. Otherwise SSE2 instruction cannot be applied. This
introduces additional overhead. Second, the SSE2 does not
have direct max/min instructions which are required in
order to reimplement the loop. The max/min operations
must be implemented using the existing instructions, which

introduces further overhead. Third, extraoperations, such
as data alignment and the moving of data into the 128-bit
registers, also bring in additional overhead.

Experiments were performed on a 2.66GHz Intel Xeon
processor with 2.5GB of memory. Both hmmpfam and
hmmsearch were tested using various samples from the Pfam
and nr databases. While the Pfam database contains many
multiple sequence alignments and HMMs represent different
protein families [34], the nr database is a sequence database
fromNCBI (National Center for Biotechnology Information)
[35]. The resultant overall speedups range from 1.2 to 1.3.

Themajor advantage of using SSE2 to accelerateHMMER
is that it does not require new hardware upgrades and the cost
is almost free. But the critical segment of code that consumes
most of the execution timemust be identified. If that segment
of code is short, reimplementing the code is trivial and does
not need much development time. However, its disadvantage
is that the modified codes from C to intrinsic/assembly are
not portable but architecture dependent. That is, moving
the modified code from one platform to another requires
reimplementing the code again for the new platform.

3.2. Shared Memory Parallelism. While SIMD instructions
exploit instruction-level parallelism within one CPU, in
order to take advantage of multiple CPUs or CPUs with
multiple cores in a computer system, users must develop
multithreading programs. As a widespread programming
model, multithreading allows a process to generate multiple
software threads that share the same virtual address space.
These threads inherit many resources from the hosting
process and, at the same time, have their own stacks and
registers. Programmers need to partition source code or data
into different threads that will be mapped onto different
hardware units.Then, these threads execute concurrently and
finish their own jobs in parallel.

One of the most widely used thread libraries is Pthread
(POSIX Threads) [24]. To develop multithreaded programs,
users have to insert library calls to create, delete, and syn-
chronize threads. The created programs can be compiled by
most C compilers. OpenMP [25] also supports multi-thread
programming in C/C++ and FORTRAN. It uses directives to
implement parallelism instead of explicitly handling threads.
OpenMP compilers will translate those directives to Pthread
functionswithout the programmer’s involvement.Thus, com-
pared to Pthread, OpenMP is easier to use. However, it
requires OpenMP compliers to compile programs and it
is often difficult to deal with irregular problems, such as
problems inherent in sparse and unstructured computations.

The original HMMER package provides Pthread imple-
mentations of three programs: hmmsearch, hmmpfam, and
hmmcalibrate. To run these programs on a multiprocessor
machine, users only need to enable Pthread support by pass-
ing the “—enable-threads” option to the ./configure script.
Srinivasan et al. [10] in the Intel Corporation reimplemented
the hmmpfam program using OpenMP directives and tested
its performance on various Intel ×86 architecture-based
shared memory multiprocessor (SMP) systems. With 600
HMM models and 250 sequences, the speedup is 3.36 on
a four-processor SMP system (2.0Hz). Its performance was
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also compared on two SMP systems that both have sixteen
x86 processors. But one of the systems has 8GB of memory
and its processors are 3.0GHz. The other system has 16GB
of memory and its processors are 2.2 GHz. The speedup
of the former system is 14 whereas the speedup for the
latter system is about 10.3. This comparison indicates that
the multithreaded HMMER hmmpfam program is more
sensitive to CPU speed than memory size.

Another multi-threading implementation of the hmmp-
fam programwas done by Zhu et al. [11].They reimplemented
hmmpfam on EARTH (Efficient Architecture for Running
Threads)—an event-driven fine-grain multithreaded pro-
gram execution model. Through its Threaded-C language
(an extension of C), EARTH allows multithreaded programs
to run on distributed memory systems like clusters [36].
The EARTH-based multithreaded hmmpfam achieved about
30 speedups on a cluster of 18 nodes, each containing two
1.4GHz AMD Athlon processors. On a much larger cluster
that consists of 128 nodes, each with two 500MHz Pentium
III processors, the achieved speedup is as high as 222.8 for a
data set containing 50 HMM profiles and 38,192 sequences.

3.3. Distributed Memory Parallelism. While SSE2 allows
users to exploit instruction level parallelism within one
single processor, distributed memory parallelism provides
opportunities to execute programs in parallel across different
computers. A group of processes can be started simultane-
ously and mapped onto multiple machines, each of which
accomplishes a subtask. Since processes do not share the
address spaces, communication approaches such as MPI [26]
and PVM (Parallel Virtual Machine) [37] must be utilized
across machines in order to send/receive messages and
coordinate and manage different tasks.

Cluster computing has become very popular in the field of
high-performance computing. Currently, most of the Top500
supercomputers are labeled as “clusters” [38]. A cluster can be
viewed as a parallel computer system that consists of an inte-
grated collection of independent “nodes.” These nodes can
work together closely but each of them can perform indepen-
dent operations andmay be derived fromproducts developed
for other standalone purposes. With a fast network, common
users can easily build their own clusters. There exist several
variations of cluster computing such as Internet Computing,
Grid Computing, and Cloud Computing. These variations
simply emphasize different aspects or levels of cluster com-
puting.

Clusters are very suitable for implementing distributed
memory parallelism and have been widely used in bioin-
formatics computing. It typically takes a master-slave model
where a master node distributes subtasks to different slave
nodes, and slave nodes do the real computing work and
return results to the master node. Under the supervision
of Professor Vijay Pande at Stanford University, the fold-
ing@home project [39] is such an example where volunteer
computers form one of the largest clusters in the world. A
volunteer computer always contacts the server (i.e., master)
for protein foldingwork, and every time they finish their local
work, they contact the server again for extra work. This large
distributed computing platform allows us to do extremely

challenging computation that could not be achieved before.
It is particularly useful for bioinformatics computing because
these problems are often computationally intensive. That is,
the communication overhead over the long distance to the
master node is trivial when compared to the computing time.

Themessage-passing programming paradigm is essential
for distributed memory parallelism. Both PVM and MPI
have been adopted for implementing parallel versions of
HMMER that can run on distributed clusters. The original
HMMER package provides a PVM implementation of three
programs: hmmsearch, hmmpfam, and hmmcalibrate [40].
In this implementation, the computation for one sequence
is executed concurrently, and the master node dynamically
assigns one profile to a specific slave node for comparison.
Upon finishing its job, the slave node reports the results to the
master, which will respond by assigning a new profile. When
all the comparison regarding this sequence is completed,
the master node sorts and ranks all the results it collects
and outputs the top hits. Then the computation on the next
sequence begins.

Walters et al. [9] reimplemented hmmsearch and hmmp-
fam usingMPI and compared their performance to their cor-
responding PVM implementations. There are two major jus-
tifications for the re-implementation. First, it extends the use
of HMMER to those people who prefer MPI. Second, since
PVM does not truly support asynchronous sends, imple-
menting a nonblocking, double-buffering strategy usingMPI
has the potential to hide communication latency and thus
achieve better performance. The double-buffering scheme
allows a slave node to compute on a buffer while at the same
time receiving another sequence into a second buffer. The
basic idea of this strategy is to overlap the computation time
and communication time as much as possible. To further
reduce the communication time, the researchers employed
a database chunking technique to minimize the number of
sends and receives. This technique allows a node to receive
and work on batches of sequences simultaneously before
returning its results to the master node.

In [9] Walters et al. also combined the MPI implementa-
tion with the SSE2 implementation. This combined version
of HMMER can take advantage of both the parallelism
between computing nodes and the instruction level paral-
lelism within a single workflow. The performance of three
HMMER implementations (i.e., PVM,MPI,MPI + SSE2) was
compared on a university cluster in which each node consists
of two 2.66GHz Intel 4 Xeon processors and different nodes
communicate through 100-Mbit Ethernet. Experiments have
shown that the MPI implementation outperformed the PVM
implementation, and theMPI + SSE2 implementation gained
even better performance. For example, the speedups of
hmmsearch on 16 CPUs for the three implementations are
4.56, 5.90, and 7.71, respectively, using a 100MB database.

3.4. Other Issues and Optimizations. With various software
tools, parallelisms can be exploited at different levels.This can
greatly improve the performance of the HMMER program.
However, there are several other issues such as scalability,
I/O, and quality of code that can also affect the performance
of the accelerated HMMER. If these issues are not handled
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appropriately, the computing power of a large system cannot
be fully utilized and thus the speedup is only limited. These
issues and relevant optimizations are discussed below.

Scalability is a very important issue for a massively
parallel system/cluster that contains hundreds or thousands
of nodes. A system is considered to be scalable if its perfor-
mance improves proportionally to the hardware added. The
scalability of a large parallel system can be affected by many
factors such as communication latency, data dependency, and
organization of involved processes. Jiang and his colleagues
[41] studied the techniques that can improve the scalability
of the three HMMER programs (i.e., hmmsearch, hmmpfam,
andhmmcalibrate) on theBlueGene/L (BG/L)massively par-
allel supercomputer from IBM[42].TheMPI implementation
of hmmcalibrate is found to be scalable and its scalability
is up to 2,048 nodes. However, the observed scalability of
hmmsearch and hmmpfam is no higher than 64 nodes; that
is, no improvement was observed beyond 64 nodes.

Bioinformatics applications like HMMER are not only
computationally intensive but also highly I/O demanding.
Data intensive input and output operations can become
the performance bottleneck like the HMMER program,
especially when large databases are searched. This “Disk
Wall” problem will become worse along with the exponential
growth of database sizes. Walters et al. [12] studied the I/O
problems in HMMER and enhanced its MPI implementation
(called MPI-HMMER) using parallel I/O and a parallel
file system. In this new version (called PIO-HMMER), the
database distribution mechanism was modified so that the
master node, instead of directly reading data and sending
them to slave nodes, only distributes sequence indexes (each
containing sequence offsets and lengths) to slave nodes and
slave nodes read from the database in parallel. In addition,
several new optimizations were implemented to further
improve the overall performance: (1) enhanced postprocess-
ing reducing the number ofmessages being sent to themaster
node by only returning those messages resulting in hits; (2) a
database chunking technique similar to the one implemented
in MPI-HMMER, but with larger chunks of the database for
parallel I/O; (3) asynchronous I/O for returning scores to the
master node; (4) a load-balancing scheme for hmmsearch
achieved by allocating database based on the lengths of
sequences instead of assigning equal number of sequences to
each slave node; (5) a database caching scheme similar to the
one implemented by Jiang et al. [41].

Various experiments were performed on a cluster with
1056 nodes, each equipped with two 3.2GHz Intel Xeon
processors and 2GB RAM. With parallel I/O and the above
optimizations, the overall speedup achieved byPIO-HMMER
is 221x for hmmsearch and 328x for hmmpfam, while MPI-
HMMER is only able to achieve 55x speedup for hmmsearch
and 27x speedup for hmmpfam. The performance impact
of some individual optimizations (including parallel I/O)
was also tested. As shown by experiments, the parallel
I/O represents the single greatest performance impact of
all optimizations. It improved the speedup from 42x to
190x for hmmsearch (searching a 236 state HMM against
a large sequence database). The I/O problem also affects
the scalability of the HMMER programs. For example,

the MPI-HMMER’s nonlinear scalability is only 64 nodes
whereas PIO-HMMER’s scalability is extended to 256 nodes.
Experiments also demonstrated that bothMPI-HMMER and
PIO-HMMER can achieve better scalability for large data
sets (i.e., large HMM database and sequence database). This
is consistent with the results obtained by Srinivasan et al.
who tested the scalability of an OpenMP implementation of
HMMER using various datasets. Their experiments revealed
that the scalability ofmultithreadedHMMER improves when
the size of the input data increases. The background reason
of this observation is that proportion of time spent in the
sequential code decreases with respect to the time spent in
the parallel portion when large data sets are used.

The quality of source code may affect compiler/runtime
optimizations and cache misses and as a result influence
the performance of a program. Waters et al. made minimal
changes (e.g., removing unnecessary intermediate variables,
breaking iteration dependencies) of the loop in the P7Viterbi
routine and achieved 1.8x speedup for hmmcalibrate. By
splitting the loop and breaking the intraiteration dependence
in the Viterbi algorithm, Srinivasan et al. [10] improved the
overall execution time by 10–16% for hmmpfam. All these
changes, while minor, can have a big effect on the compiler
optimization and result in modest performance improve-
ments. Srinivasan et al. also attempted to reduce the number
of cache misses by dynamically allocating the size of the
dp matrix used by hmmpfam so that it matches the size
required by a profile HMM.On a 4-processor machine, ∼16%
improvement of execution time was observed by this opti-
mization.

3.5. Summary. The achieved performance of different soft-
ware approaches for accelerating HMMER is summarized
in Table 1. Some researchers or research groups did various
experiments using various database sizes or hardware con-
figurations. In this case, only the best achieved speedup is
included in the table. Please also note that the work from
Jiang et al. [41] is primarily focused on scalability, and explicit
speedups of their experiments were not provided.Thus, their
work is not included in this table either.

Even though the achieved speedups cannot be directly
compared due to the variations in experimental setups and
database sizes, several observations can be made from this
table. First, the overall speedup achieved by instruction level
parallelism is limited since it only exploits internal parallelism
within one single processor. But this approach does not
require any new hardware and can be easily combined
with other approaches like MPI. Second, the performance
achieved by sharedmemory parallelism is generallymoderate
since the number of processors sharing the same memory is
often limited. However, good performance can be obtained
under the assistance of EARTH since it provides an efficient
architecture for running threads on large distributedmemory
systems like clusters. Finally, compared with instruction
level parallelism and shared memory parallelism, distributed
memory parallelism has the greatest potential to achieve the
best performance after carefully taking care of I/O issues
and other communication bottlenecks. The disadvantage of
this approach is its programming complexity. Programmers
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Table 1: Performance comparison among different software approaches.

Acceleration
strategies

Supporting
software/package

Accelerated
programs Datasets Hardware environment Achieved

speedup
Instruction-level
parallelism SSE2 Instructions hmmpfam,

hmmsearch
Pfam and nr
databases

2.66GHz Intel Xeon processor with
2.5 GB of memory 1.2x∼1.3x [9]

Shared memory
parallelism

OpenMP hmmpfam 600HMM profiles
and 250 sequences

16 x86 3.0 GHz processors, 32 MB
L4 cache shared among 4CPUs,
4MB L3 cache, 8GB of memory

14x [10]

EARTH hmmpfam 50HMM profiles and
38192 sequences

A cluster that consists of 128 nodes,
each with two 500MHz Pentium III

processors
222.8x [11]

Distributed memory
parallelism

PVM hmmsearch 1 HMM profile and
100MB of nr database

A cluster with 4 nodes, each node
consists of two 2.66GHz Intel Xeon
processors with 2.5 GB memory per
node

4.56x [9]
MPI hmmsearch 5.90x [9]

MPI + I/O
optimizations

hmmsearch
One 236-state HMM

profile and nr
database A cluster that consists of 1056 nodes,

each equipped with two 3.2GHz
Intel Xeon processors, 2 GB RAM

221x [12]

hmmpfam
1.6 GB of Pfam
database and nr

databases
328x [12]

Heterogeneous
approach MPI + SSE2 hmmsearch 1 HMM profile and

100MB of nr database

A cluster with 4 nodes, each node
consists of two 2.66GHz Intel Xeon
processors with 2.5 GB memory per

node

7.71x [13]

need to explicitly divide databases,map computing tasks onto
different nodes, and handle various synchronizations among
different tasks.

4. Hardware-Accelerated HMMER

As an alternative to software accelerated computing, such
as shared and distributed memory computing systems,
hardware-accelerated computing has been advocated in
bioinformatics applications by combining powers of special-
purpose hardware and existing computational resources. In
this section, we give most HMMER implementation details
with an emphasis on the hardware architecture in various
forms of which we will discuss some general characteristics.

4.1. Accelerated Computing. It has become all the more
clear that no one type of processor is best for all types of
computation. In the recent several years, a wide range of
computational hardware accelerators have been applied to
bioinformatics research. The developments in this field are
rapidly gaining popularity.

Today, microprocessors are more powerful for general
purpose computing, but it is still too slow to perform the
HMMER profile search which is extremely data and compute
intensive. The hardware structure or architecture determines
to a large extent what the possibilities and impossibilities are
in speeding up a computer system beyond the capability of a
single CPU. Bioinformatics users never tend to content them-
selves with the performance of the machines they own and
are continuously seeking new breakthrough to speed up the
calculation. Presently there is a group of acceleration prod-
ucts which can deliver significant performance gains over
traditional approaches on HMMERwhen properly deployed.

Before going on to the descriptions of the HMMER
acceleration techniques, it is useful to consider some spe-
cialized computer architectures, which have been used to
increase the computational performance. We follow the
main trends in emerging architectures for the heterogeneous
parallel systems and discuss the most recent HMM hardware
implementations on the three classes of accelerators.

GPGPUs (General Purpose computation on Graphics
Processing Units) may have been invented to power video
games, but today these massively parallel devices harness the
computational power to perform nongraphics calculations.
The latest GPU architectures provide tremendous memory
bandwidth and computational horsepower, with fully pro-
grammable vertex and pixel processing units that support
vector operations up to full IEEE floating point precision.

FPGAs provide many logic blocks linked by an inter-
connection fabric. The interconnections can be reconfigured
dynamically, thus allowing the hardware datapaths to be
optimized for a given application or algorithm. When the
logic blocks are full processors, the FPGA can be used as a
parallel computer.

CELL BE is a heterogeneous architecture containing one
general-purpose computer and eight SIMD-based coproces-
sors on a single chip. By exploiting the MIMD parallelism of
the coprocessors and overlapping memory operations with
computations, the Cell BE has been proved to achieve impres-
sive performance on many bioinformatics applications.

Moreover, hardware accelerators are now used in some
of the world’s fastest computers. Accelerators are now them-
selves parallel systems. They can also be seen as a new
level in hierarchical machines, where they operate in parallel
with the host processors. The top supercomputers have
taken advantages of heterogeneous cooperation architecture
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to scientific calculation in a multiuser environment. For
example, in June 2009 Top 500 list, the no. 1 supercomputer
was “Roadrunner” [38], which has 129,600 cores, and utilizes
IBM Cell BE processors as accelerators. GPUs are used in
the world’s fastest supercomputer, “Tianhe-1A” [38], No. 1 in
Top500 list by Nov. 2010.

HMMER has also been accelerated on other special-
purpose processor, such as network processors-JackHMMer
[12], which builds on the Intel IXP 2850 network processor,
a heterogeneous multicore chip consisting of an XScale CPU
paired with 16 32-bit microengines. A speedup of 1.82 over a
P4 running at 2.6GHz was reported.

4.2. GPGPU. GPUs can offer energy-efficient performance
boosts to traditional processors since they contain massive
numbers of simple processors, which are more energy effi-
cient than a smaller number of larger processors. Graphics
processing is characterized by doing the same operation
on massive amounts of data. To accommodate this way of
processingGPUs consist of a large amount of relatively simple
processors, fast but limited local memory, and fast internal
buses to transport the operands and results. The key to
accelerating all of these operations is parallel computing,
often realized by computing all pixels of a display or all objects
in a list independently.

The growing popularity of GPU-based computing for
nongraphics applications has led to new interfaces for access-
ing GPU resources. A major challenge in the evolution of
GPU programming involves preserving GPU performance
levels and ease of use while increasing the generality and
expressiveness of application interfaces. With improving
programming models, NVIDIA’s CUDA [29] allows pro-
grammers to write data-parallel applications for GPUs at
the “kernel” level by specifying what operations take place
on an individual data element. Newest technique by the
Portland Group offers Fortran and C accelerator compilers
[43] to accelerate the existing high-level standard-compliant
programs for the CUDA-enabled NVIDIA GPUs by adding
OpenMP-like compiler directives.

It is motivated by GPGPUs’ enhanced programmability,
attractive cost/performance ratio, and incredible growth in
speed. Today they are being pressed into high-performance
bioinformatics computing. For accelerated HMM search, a
considerable amount of research made the use of a GPU for
nongraphics high-performance computing more interesting.

In the paper [15], GPU-HAMMER was implemented
by taking advantage of NVIDIA 8800 GTX Ultra GPUs
with 768MB RAM. The 8800 GTX Ultra is composed of
16 stream multiprocessors, each of which is itself composed
of 8 stream processors for a total of 128 stream processors.
It can maintain 4,096 active threads and all threads run in
parallel on a single GPU with each operating on its own
sequence. In order to achieve the best performance, it requires
to presort the sequence database by length. Thus, it is able to
achieve a nearly 7x performance over the unsorted database.
When the hmmsearch codes were targeted to the 8800 GTX
Ultra, a variety of optimizations were implemented including
database-level load balancingmemory layout and coalescing,

loop unrolling, and shared/constant memory use. This study
achieved up to 38x speedup.

Ganesan et al. [16] redesigned the hmmsearch program to
extract data parallelism out of the serializing data dependen-
cies using 1 and 4 Tesla C1060s. The highlight of this work is
that eachGPU thread block operates on individual sequences
and writes the cost of decoding to the global memory
independently. Thus there is no need to sort the sequences
compared to [15]. They reported that the time grows linearly
with the HMM module size and scales linearly with the
number of GPUs. This work showed a speedup of 5x-8x over
GPU-HMMER [28]. With 4 Tesla C1060 boards, it could
achieve 100 + x speedup compared to a serial implementation
on an AMD Opteron at 2.33GHz.

4.3. FPGA-Based Accelerators. An FPGA is an array of logic
gates that can be reconfigured to fulfill user-specified tasks. In
this way we can design special purpose functional units that
may be very efficient for some specific purpose. In addition,
FPGA allows easy upgrading and users to explore the appli-
cability of its reconfigurable nature to various scientific prob-
lems compared to application-specific hardware. Moreover,
it is possible to configure multiple FPGA boards that work in
parallel.Theoretically, FPGAsmay be good candidates for the
acceleration of many bioinformatics applications. In general,
excellent results have been reported in HMM searching.

Because of their versatility it is difficult to specify where
they will be most useful. The clock cycle of FPGAs is
low as compared to that of present CPUs: 100–550MHz
which means that they are very power effective. To program
FPGAs, there are now two industry standard hardware
description languages, VHDL (Very high speed integrated
circuit Hardware Description Language) [44] and Verilog
[45]. Vendors, like Xilinx [46] and Altera [47], provide
runtime environments and drivers that work with Linux as
well as Windows.

Oliver et al. [18] presented an FPGA solution that imple-
ments a full plan 7 model. Instead of computing the Viterbi
algorithmon one dataset at a time, they aligned query/subject
in separate processing elements (PEs) they designed in
Verilog.Their design assumes that the same profileHMMhas
to be aligned to different sequences. All PEs are synchronized
to process the same HMM state in every clock cycle. The
system is connected to the HMMer software running on the
host system via an USB port. The host software performs
load/store FPGA and postprocess relevant hits. This strategy
outperforms the sequential implementation on a desktop
for both hmmserch and hmmpfam by one to two orders of
magnitude.

Another recent research [19] proposed a systolic-array-
based implementation of plan 7 HMM on FPGAs with a
parallel data providing unit and an autorecalculation unit. A
speedup of 56.8 with 20 PEs on a Virtex-5 board was obtained
compared to an Intel Core 2 Duo 2.33GHz CPU.

MIP-enabled cluster could achieve excellent performance
and cluster utilization of hmmsearch. Walters et al. [13]
described a hybrid implementation of the HMM search tool.
Combining the parallel efficiency of a cluster with one or
more FPGA cards can significantly improve the HMMER’s
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Table 2: Performance comparison among different hardware approaches.

Acceleration
hardware type Hardware accelerator Accelerated programs Datasets Host or base hardware

environment
Reported max.

speedup

Network Processor Intel IXP 2850
network processor Viterbi Pfam ls database

(7459 models)

2.6GHz Intel Pentium
4CPU with 768MB
of SDRAM and 32MB

of QDR SRAM

1.82x [14]

GPGPU

8800 GTX Ultra hmmsearch

3GB nr Database (5.5
million sequences) 3
models (77, 209, 456,
789, and 1431 states)

— 38.6x [15]

4 Tesla C1060s hmmsearch

5.4GB Database
(10.54 million

sequences) 3 models
(128, 256 and 507

states)

2.33GHz AMD
Opteron 100+x [16]

Heterogeneous
multi-core chip CELL BE hmmpfam 100HMM states and

characters

Dual-core 2.4GHz
Opteron with 8GB

RAM
∼3.5x [17]

FPGA

Spartan-3 XC3S1500 hmmsearch
244HMM states and
a database consisting
of 643,552 sequences

AMD Athlon 64
3500+ 31x [18]

Spartan-3 XC3S1500 hmmpfam

A database consisting
of 1,544HMMs and

1000 protein
sequences

AMD Athlon 64
3500+ 39x [18]

Virtex-5 110T hmmsearch 122,564 query inputs 2.33GHz Intel Core2
Duo with 4GBRAM 56.8x [19]

Heterogeneous
approach
(MPI + FPGA)

2 Spartan-3 XC3S1500 hmmsearch

2HMMmodels (77
and 236 states) and 2
databases (217,875 and
2,521,679 sequences)

A cluster consists of
10 worker nodes, each
with a dual core AMD

Opteron 175
processor with 2GB
memory per node

30x [13]

hmmserch functionality, in some cases achieving near linear
speedup.The system is not just designed for running individ-
ual FPGA, but for scaling codes on a FPGA cluster.

4.4. CELL BE Accelerators. The Cell BE was jointly designed
for video gaming industry by IBM/SONY/TOSHIBA. One
CELL BE [17] contains two different types of processors:
one 64-bit PPE (PowerPC Processor Element) and eight
SPEs (Synergistic Processing Elements), all running at a
clock speed of 3.2 GHz and theoretical peak performance
of 204.8 GFLOPS for single precision. PPE acts a controller
for the eight SPEs, which handle most of the computational
workload. Each SPE consists of a SPU (Synergistic Processing
Unit) and a MFC (Memory Flow Controller). The SPU is a
RISC processor with 128 128-bit SIMD registers. In addition,
a high-speed memory controller and high-bandwidth bus
interface are all integrated into one chip.

The nature of HMM, all-to-all comparison, has most
potential to gain benefits from porting the entire program
to a heterogeneous multicore processor like the CELL BE.
Each query search is completely independent and thus can
be performed in parallel across the 8 SPUs of the Cell Pro-
cessor. Sachdeva et al. [17] implemented the computationally

expensive kernel viterbi on the SPUs and run the reminder
of the code on the PPE. Unfortunately, their preliminary
implementation only worked on a single sequence being
compared against a single HMM on a single SPU. However,
it still showed about 3.5x faster than a 2.4GHz dual core
Opteron processor. Potentially, the CELL BE is not used as
a screen platform, but also as a complete computing engine
with large performance benefits.

4.5. Summary. The performance of hardware acceleration is
summarized in Table 2 based on the peak performance that
the hardware can achieve. Note that there are no standard
HMM benchmarks and the reported performance was done
by individual research group using various databases and
HMMmodels.

We have discussed the various strategies used in utilizing
parallel power that accelerator offers. Porting an application
to an accelerator requires reworking the code. For example,
running an application efficiently on a hardware accelerator
often requires keeping the data near the device to reduce
the computing time taken up with moving data from the
CPU ormemory to the accelerator. Also, a programmermust
decide how to collect results from the accelerator back into
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the CPU program. This is very cumbersome for the average
programmer as one not only has to explicitly define such
details as the placement of the configured devices but also the
width of the operands to be operated on and so forth.

The goal of hardware acceleration or hybrid computing is
to reduce the search time from hours to minutes. Heteroge-
neous implementation utilizes a mix of hardware accelerator
and compute nodes to achieve the excellent performance over
that of a single node and accelerator only implementation.
The results show that integrating the parallel efficiency
of a cluster with one or more hardware accelerators can
significantly increase performance for even the compute/data
intensive HMM searches. Obviously, a hybrid cluster would
be a smart choice to offer bioinformatics users access to a
technology that is positioned to change howmany traditional
applications are written.

5. Discussion

In this paper, we selected HMMER, a scientific application
from the domain of bioinformatics, to evaluate a variety of
its implementations by comparing their performance with
corresponding sequential, software, and hardware solutions.
We have reviewed the above exploratory work on the use
of modern computing architectures, ranging from chip level
multithreading, multicore architectures, clusters, and grid
computing to special architectures.

First of all, we emphasized several observations that were
verified by various experiments and the techniques might be
extended to other bioinformatics applications. (1) The CPU
speed has a bigger impact on the multithreaded hmmpfam
program than on memory size. This observation can direct
us to select appropriate hardware configurations so as to
get better performance and also provide useful implications
for bioinformatics computing since many bioinformatics
applications are compute intensive. (2)The scalability of both
MPI and multithreaded implementations of the HMMER
program is sensitive to the size of the input data. The reason
is that the larger the data set, the more time is spent in
the parallel portion of the program. Thus, a better speedup
can be obtained with respect to the Amdahl’s law. This
observation implies that the performance of parallel version
of HMMER including both shared memory and distributed
memory parallelism is related to the size of input data set. (3)
Experiments on the MPI implementation of both hmmpfam
and hmmsearch showed that, relatively speaking, hmmpfam
is more I/O-bound while hmmsearch is more compute
bound. This observation implies that performance is often
application dependent. Thus, analyzing each application and
carefully handling its performance bottleneck are also very
important in bioinformatics computing.

Second, clock frequencies of chips are no longer increas-
ing, so all future improvements in computer speed will come
from parallelism. Though many bioinformatics applications
are parallelizable like HMMER, parallelism is usually not
explicitly expressed in their original codes. Users interested
in accelerating a bioinformatics application are required to
either develop software to distribute data andmanage parallel

jobs or modify existing codes to make sure of libraries or
hardware that facilitate distributed computing.

Next, the long-term goal of bioinformatics computing
is to design a system that is a more efficient, much less
expensive and has an immediate impact on theworld’s energy
consumption. Bioinformatics should stand at the front of
green computing to reduce energy consumption compared to
other commercial systems. In comparison to general purpose
CPUs, hardware accelerators all are very power effective.
Sometimes orders of magnitude when expressed in flop/watt.
Certainly they will do only part of the work in a complete
system but still the power savings can be considerable which
is very attractive these days. Bioinformatics computing can
have a positive effect on our lives and the world.

When speaking of special purpose hardware, that is,
computational accelerators, we should understand that they
are indeed good at certain specialized computations while
theymaynot be able to performothers.Despite the inherently
parallel nature of modern computer architecture, efficiently
mapping bioinformatics algorithms onto hardware resources
is extremely challenging. So, not all applications can benefit
from them and those which can, not all to the same degree.
For example, the computations execute on external accelera-
tors efficiently only under conditions of massive data paral-
lelism. Programs that attempt to implement nondata parallel
algorithms perform poorly.

FPGA technology has been seen by many as an ideal way
to handle a lot of the data overhead in bioinformatics. We
have reviewed some HMMER implementations accelerated
by FPGA technology, and generally the performance is a lot
better. The board can be installed in any computer, which
in turn will provide a huge boost in performance. However,
due to the fact that FPGAs are relatively difficult to program
and optimize, there has never been anymajor renovations for
FPGA technology within genomics.

Currently technology is moving into the spotlight as the
premier technology has raised the computational challenges
following the rollout ofNGS instruments.This is partly due to
the fact that GPUs and the popular CUDA architecture offer a
rather easy way to teraflop computing. However, the bioinfor-
matics society still expects to see implementations of known
algorithms which truly exploit the cutting-edge computing
technology.

Furthermore, using accelerators effectively is not simple
and trivial. Although the software tools for accelerators have
improved enormously lately, for many applications it is still
a big challenge to obtain a significant speedup. An important
factor is that datamust be transferred between the accelerator
and CPU; therefore, the bandwidth of the connecting bus is
a severe bottleneck in most cases. The key to high perfor-
mance lies in strategies that hardware components and their
corresponding software components and their corresponding
software interfaces use to keep hardware processing resources
busy. This can be overcome by overlapping data transport
between the accelerator and host with processing. Tuning the
computation and data transport task can be cumbersome.

Whether on a compute node, cluster, grid, or cloud,
today’s bioinformatics software can run in parallel, execut-
ing many calculations simultaneously. Software acceleration
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does not require additional investment, but delivering top
performance requires using threads onmultiple cores orMPI
on multiple nodes with SIMD. Unlike the other technologies
mentioned above, SIMD is based on software acceleration,
by utilizing the built-in wide instruction sets that inherently
built into all x86 architectureCPUs fromboth Intel andAMD.
There is no doubt that software acceleration, like SIMD,
is cheaper, and its performance is equal to adding more
hardware virtually. The fast implementation using SIMD
vectorization is available in the HMMER 3 package [40].

Everyone in biology is now affected by parallelism. A
computing cluster running accelerated application is now
a competitive alternative to a traditional general-purpose
cluster running serial code. Therefore, it has become a trend
to emerge heterogeneous processors within a single architec-
ture.The sign of this trend is the presence of GPGPU, FPGAs,
CELLBE, andother computation accelerators in combination
with standard processors. As the next generation of high-
performance computing technology is coming—a heteroge-
neous parallel architecture, for example, the new generation
of GPGPU processors which also support SIMD—a strategy
of using SIMD acceleration along with cluster computing
becomes even more attractive.

In brief, we have presented a comprehensive analysis
of the bottleneck of HMMER algorithm and efficiency of
various implementations on modern computing platforms.
Most parallel bioinformatics applications use just one of these
abovementioned forms to express parallelism, but with the
deeper hierarchical structure within heterogeneous comput-
ing systems, there has been amovement towards hybrid com-
puting models. The goal of hardware acceleration or hybrid
computing is to boost performance and extend the range
of applications, particularly to bioinformatics computing.
Hybrid computing involves combining multiple techniques
together, which apply a different programming paradigm
to different levels of the hierarchical system, for example,
mixingMPI for internode communication with OpenMP for
the intra-node parallelization. Additional parallelism can be
achieved to take advantage of the distinct properties of spe-
cialized underlying hardware to gain higher-level efficiencies.

Finally, cloud computing is another way of handling the
data analysis challenges, by renting access to a large CPUpool
on a need-to-use basis. While Cloud Computing surely is a
relatively easy and interesting alternative to setting up and
running a cluster, generally cloud computing may not give
real performance gains over cluster computing, because of the
huge overhead of distributing the data and calculations across
the leased nodes.

6. Conclusion

We hope that we have shown a clear trend to potential
performance improvement in software and hardware accel-
eration combined with increased compute density, faster I/O
access, and higher degree of user control over optimizations,
which suggests that a heterogeneous parallel architecture
makes a major breakthrough in accelerating bioinformatics
applications.We expect this trendwill continue in the coming

years andmake the bioinformatics computing roadmapmore
diverse and interesting.
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