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Early and accurate diagnoses of cancer can significantly improve the design of personalized therapy and enhance the success of
therapeutic interventions. Histopathological approaches, which rely on microscopic examinations of malignant tissue, are not
conducive to timely diagnoses. High throughput genomics offers a possible new classification of cancer subtypes. Unfortunately,
most clustering algorithms have not been proven sufficiently robust. We propose a novel approach that relies on the use of statistical
invariants and persistent homology, one of the most exciting recent developments in topology. It identifies a sufficient but compact
set of genes for the analysis as well as a core group of tightly correlated patient samples for each subtype. Partitioning occurs
hierarchically and allows for the identification of genetically similar subtypes. We analyzed the gene expression profiles of 202
tumors of the brain cancer glioblastoma multiforme (GBM) given at the Cancer Genome Atlas (TCGA) site. We identify core
patient groups associated with the classical, mesenchymal, and proneural subtypes of GBM. In our analysis, the neural subtype
consists of several small groups rather than a single component. A subtype prediction model is introduced which partitions tumors
in a manner consistent with clustering algorithms but requires the genetic signature of only 59 genes.

1. Introduction

Cancers in many tissues are heterogeneous, and the efficacy
of therapeutic interventions depends on the specific subtype
of the malignancy. Hence, early and accurate identification
of the cancer subtype is critical in designing an effec-
tive personalized therapy. Current methods for assessment
rely on microscopic examinations of the malignant tissue
for previously established histopathological abnormalities.
Unfortunately, such features may not be apparent during
early stages of the disease and moreover, differentiating
between abnormalities in distinct cancer subtypes can be
challenging. Recent advances in high-throughput genomics
offer an exciting new alternative for early and reliable cancer
prognosis. Mutations that underlie a malignancy modify
the levels of many genes within a cell; the goal of gene
expression profiling is to define a signature for each cancer
subtype through statistically significant up-/downregulation
of a panel of genes. The National Institutes for Health,

through the Cancer Genome Atlas (TCGA) [1, 2], will aid
this effort by establishing large sets of genomic data on
human cancers in at least 20 tissues [3–8].

The premise behind TCGA is that statistically significant
changes in gene expression levels due to malignant mutations
can be placed in a few groups associated with subtypes, and
that unsupervised (or semisupervised) clustering algorithms
can be used to uncover these partitions. This is illustrated
through a schematic “malignancy” that can be partitioned
using the expression levels of two genes. In this schematic,
each patient sample is represented by a point on a plane,
see Figure 1. The basic observation is that, while the patient
samples are distributed over a broad range, there are “pock-
ets” of high concentration, which can be identified using
traditional clustering methods. The members of the pocket
define the “core” samples of a cancer subtype. However, the
presence of significant levels of noise in genomic data makes
the partitioning a nontrivial task. The variability is due to
both the subject dependence of the expression levels and to
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Figure 1: The layout of the point cloud associated with a
“schematic” cancer represented by expression levels X1 and X2 of
two genes. The point cloud is distributed randomly but contains
three closely packed “pockets,” each of which is assumed to consist
of “core” samples of a specific subtype of the malignancy.

imperfections in microarray technology. Unfortunately, costs
associated with microarray experiments prohibit the use of a
large set of replicates to reduce the effective error rates.

Progress has been made in spite of these difficulties. One
focus of TGCA has been glioblastoma multiforme (GBM),
the most common and aggressive form of brain cancer
[9, 10]. TCGA provides the expression levels of 11861 genes
in 200 GBM and 2 normal brain samples [1, 2]. Reference
[1] identifies 1740 genes with consistent expression across
Affymetrix HuEx, Affymetrix U133A (Affymetrix, Santa
Clara, CA, USA), and Agilent 244K Common Genomic
hybridization arrays (Agilent Technologies, Santa Clara,
USA), to be used for the subgrouping. They search for
common partitions under sampling of genes and patients.
The resulting consensus clustering [11] yields four robust
clusters whose class boundaries are statistically significant
[1]. 173 “core” representatives of the four groups were
identified, and an 840-gene signature was determined on
the basis of lowest cross-validation and prediction error [1].
This genomic partitioning of the 173 core samples was found
to be consistent with the grouping into the four known
subtypes classical, mesenchymal, proneural, and neural of
glioblastoma.

In this work, we introduce a new algorithm for gene
expression profiling, which is illustrated through an appli-
cation to GBM. This approach avoids several difficulties
associated with clustering algorithms commonly adopted
to partition large sets of genomic data. It provides robust
partitions of patients and identifies a compact set of genes
used to distinguish the clusters. In particular, for GBM,
the clusters of patients are sharply defined leading us to
establish the quintessential genetic profile for the subtypes.

Further, the newly identified set of genes will allow tumors of
new patients to be subtyped quickly after diagnosis, which
perhaps could lead to a more personalized and successful
treatment regimen. Most of these genes have not been
previously implicated in brain cancer or cancer in general;
they may be unidentified members of the cancer network.

Unfortunately, significant structural variation in tumor
samples renders it impossible to determine subtype by
histological methods [3]. Thus, we are unable to have
independent corroboration of our results and are left to
compare our calculation with the clustering analysis of the
TGCA data.

2. Approach

Our algorithm requires the panel of genes used for clustering
to be predetermined. Due to stochasticity, too few genes are
unlikely to provide a reliable classifier for cancer subtypes.
The choice of an excessively large set of genes is likely
to be counter productive as well, at least in part due to
contamination from the many genes that are irrelevant for
the comparison. A large gene set will cause a another well-
known difficulty, namely, that of partitioning a (relatively)
small number of objects in a high dimensional space [12].
Thus, it is important to preselect a sufficient yet compact set
of genes for clustering. This issue is resolved using a statistical
invariant and persistent homology [13–15], one of the most
exciting recent developments in topology. A unique feature
of our approach is the hierarchical partitioning of patient
samples. The samples are repeatedly bisected until further
partitioning is not possible. This yields the appropriate
number of clusters and provides information on the genetic
proximity of the subtypes. Additionally, refinements to the
panel of genes used in the partitioning are possible through
repeated application of the method.

Clustering algorithms require a notion of proximity
between patient samples, see Figure 1. Herein lies a second
difficulty. There is no natural “genomic distance” between
two samples, although the correlation distance (defined
below) is used in most studies. Hence, it is desirable to use
a topological approach (such as persistent homology that is
adapted here) for partitioning, rather than one which relies
on computation of metrics such as eigenvalues. This is likely
the reason why hierarchical clustering [16] typically provides
a more robust partitioning than spectral clustering [17–20]
or those based on principal components analysis [21]. We
use persistent homology for partitioning.

The selection of the optimal number of partitions is
another nontrivial task in clustering [11]. Empirical cumu-
lative distribution functions, which quantify the proximity
of a given clustering to a “perfect” grouping (where the
membership of each object is unambiguous) is one of
the more successful approaches to address the problem in
genomic data [11]. We do not predetermine the number of
partitions. At each stage, the patient samples are bisected.
If a partition requires further subgrouping, the algorithm is
applied recursively on it.

Next, we wish to introduce a prediction model to assign
the cancer subtype. To this end, we randomly select 20 (“test”
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samples) of the 202 patient samples which are only to be used
for validation. The remaining 182 patient samples form the
“training set.” We have chosen to implement each bisection
using 30 genes. (The algorithm is “robust” in the sense that
the patient subgroups obtained from the algorithm do not
depend on the number of genes selected for the panel.) One
partition contains 60 samples, 27 of which labeled classical
by TCGA and 28 of which labeled mesenchymal. The second
partition of 44 elements contains 37 proneural samples.
Bisection of the first group is, once again, performed using
30 genes. Its partitions contain 18 (17 classical) and 14 (all
mesenchymal) patient samples. Thus, our method identifies
the three primary clusters of GBM. In our calculation, the
neural group was not found to be a single, coherent cluster. A
total of 59 genes are used for the two bisections. Interestingly,
core nodes of the biological network underlying GBM such
as TP53, PTEN, RB1, NF1, PIK3R1, and PIK3CA [1, 22] are
not in this list.

Finally we use the 59-gene set to assign the cancer sub-
types in the 20 test samples, comparing the conclusions with
those of the clustering calculation “http://tcga-data.nci.nih
.gov/docs/publications/gbm exp/” [1]. The assessment of the
subtype of each test sample is made using the mean of its
correlation distance from the corresponding core patient
samples. Of the 20 test samples, 15 were in agreement with
the clustering algorithm. Five of these were not assigned
a group by either our calculation or that of TCGA. Four
samples, which were labeled neural, were not provided an
assignment by our algorithm.

3. Methods

3.1. Nondimensionalized Standard Deviation. A gene can
only be useful in differentiating between subtypes of cancer
if its expression levels in the subtypes lie on statistically
distinct distributions [1, 23]. A necessary (but not sufficient)
condition is the bimodality of the corresponding distribution
for all patient samples. (Note that, at this stage, we do not
know the mean values, variances, or the membership of the
putative subgroups. Hence standard statistical tools such as
discriminant analysis [24, 25] cannot be used to decide if and
how patient samples are to be partitioned.) We propose the
use of the nondimensionalized standard deviation

σ =
√

Var(X)
E[|X− E[X]|] , (1)

to select such genes. Here E[X] represents the expectation
value of a random variable X and Var(X) = E[X2] − E[X]2

its variance. The definition is inspired by kurtosis, which is a
scale-invariant measure of the “width” of a distribution [26].
Unfortunately, it is difficult to estimate the fourth moment
reliably from 182 noisy points (gene expression levels)
[27]. σ is an alternative scale-invariant characterization of a
distribution’s width. σ is larger for distributions with broad
tails: for Gaussian and biexponential distributions its values
are

√
π/2 and

√
2, respectively. Its value for a finite-range

characteristic function (which has no tails) is 2/
√

3. Variation
of σ as a function of the distance between two Gaussian

distributions is shown in Figure 2(a), demonstrating that
bimodality of a distribution can be inferred from the value
of σ .

The gene expression profiles for the 202 patient sam-
ples are given at “http://tcga-data.nci.nih.gov/docs/publi-
cations/gbm exp/.” The Table “unifiedScaled.txt” contains
mean expression levels (from three replicates) for 11861
genes of each patient sample. The expression levels of each
gene are normalized.

Figure 2(b) shows the values of σ for the 11861 genes
in increasing order. (For each gene, we have discarded the
extreme outliers, which are more than 8 standard deviations
away from the mean.) A very small fraction of genes have
abnormally small values of σ , which we associate with
multimodal distributions. The eight smallest values of σ are
found for genes EIF1AY, RPS4Y1, DDX3Y, UTY, USP9Y,
JARID1D, ZFY, and NLGN4Y. The homology analysis (see
below) shows that these eight genes and CYorf15B belong
to one group, that is, the correlation distance between these
genes is small. However, each gene in this group belongs in
the Y-chromosome, and hence the associated partitioning
is that between male and female subjects. We eliminate the
group from further consideration. Of the remaining genes,
we select N = 60 that have the smallest values of σ . The
final partitioning of patients is independent of N for choices
between 50 and 120, and persistent homology fails to find
appropriate partitions when N is outside this range. Our
assertion of the robustness of the algorithm is a reflection of
this fact.

3.2. Persistent Homology. Not all of the 60 genes selected
using σ may be useful for subdividing patient samples. Our
second refinement is to search for groups of genes whose
expression levels change coherently between patient samples.
This coherence can, for example, result from the genes’
membership in a subnetwork. For this task, we represent a
gene Gn by its expression levels Xn ∈ RM in all M = 182
patient samples; the 60 genes form a “point cloud.” As is
traditional in clustering algorithms, the proximity d(Xn, Xm)
between two points Xn and Xm is chosen to be the correlation
distance:

d(Xn, Xm) ≡ 1− C(Xn, Xm) = 1− E[XnXm]− E[X]E[Xm]
√

Var[Xn]
√

Var[Xm]
,

(2)

where C(Xn, Xm) is the Pearson correlation function [28].
We have now converted the search for critical genes to
clustering a point cloud. This task could be implemented
through algorithms such as hierarchical clustering [16, 29],
spectral clustering [20, 30], or community structures [19].
Spectral approaches are highly sensitive to the precise genes
chosen for the analysis and to cutoff values, and hierarchical
clustering does not provide an unambiguous estimate for the
number of partitions.

Our approach relies on persistent homology [13–15], a
robust topological approach. The components are identified
as simplicial complexes, which are defined using simplices.
Consider a point cloud and a set of connections between

http://tcga-data.nci.nih.gov/docs/publications/gbm_exp/
http://tcga-data.nci.nih.gov/docs/publications/gbm_exp/
http://tcga-data.nci.nih.gov/docs/publications/gbm_exp/
http://tcga-data.nci.nih.gov/docs/publications/gbm_exp/
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Figure 2: The nondimensionalized standard deviation σ is used to identify genes whose expression levels may lie on bimodal distributions.
(a) The behavior of σ for W(x) = η1W0(x; a1) + η2W0(x; a2) as a function of a = |a2 − a1|, where W0(x; ak) is the Gaussian distribution of
unit standard deviation centered at ak . In this computations η1 = 1/3 and η2 = 1− η1. The inset shows the distribution W(x) when a = 3. It
appears to contain two statistically distinct components. (b) The values of σ for the 11861 genes given at the TGCA site, in increasing order.
Approximately 50 genes have values of σ significantly smaller than the rest.

a subset of pairs of points. A k-simplex is a set of (k + 1)
points, each pair of whose vertices is connected. For example,
a 1 simplex is a line along with its two vertices, a 2 simplex is
a triangle along with its edges and vertices, and a 3 simplex
is a tetrahedran along with its faces, edges, and vertices. The
face of a k simplex is a subset which is a simplex of lower
order. For example, the vertices, edges, and triangular sides of
a tetrahedran are its faces. A k simplicial complex is an object
formed by gluing together faces of a set of simplices each of
whose dimension is less than or equal to k; the intersection
of any two such simplices is required to be a face of both.
For example, an object formed by gluing a set of triangles on
their edges or vertices, with perhaps some lines and isolated
points, is a 2-simplicial complex.

We wish to determine how the point cloud can be parti-
tioned. The question is addressed by constructing a simplicial
complex and searching for its disjoint components. First, for
a prespecified cutoff radius rc, connect points Xm and Xn

if and only if d(Xn, Xm) < rc. The object so formed is a
simplicial complex [15]. For sufficiently small rc no points
are connected, and the simplicial complex is the point cloud
itself [15]. When rc is sufficiently large, all pairs of points are
connected, and the simplicial complex is a single component.

Simplicial complexes can be characterized using
topological invariants (i.e., features that do not change
under smooth distortions of space). One of these invariants
is the number of disjoint components, which is referred
to as the zeroth Betti number (Betti0). This is the only
feature that is computed in clustering algorithms. Homology
theory introduces additional topological invariants of a

simplicial complex. The first Betti number, Betti1, is the
number of connected components with a two-dimensional
hole. For example, Betti1 for figure-8 is 2. The second
Betti number (Betti2) is the number of surfaces enclosing
a three-dimensional region. Betti2 = 1 for the surface of
a sphere. The first three Betti numbers for the crust of a
bagel are 1, 2, and 1. Betti numbers can provide a more
comprehensive invariant characterization of the point cloud
than possible through clustering. Whether they will be
useful in cancer diagnostics remains to be seen. (Persistent
homology has been used successfully to search for recurrent
genomic instability in breast cancer [31, 32].)

A partition will be robust if the components (of the
point cloud) are far apart from each other; consequently, the
number of components will remain unchanged for a broad
range in rc. A generalization of this statement forms the novel
proposal in [13, 14], which associates robust characteristics
of the point cloud with “persistent” topological invariants.

Our computations are implemented using the package
JPlex (available at “http://comptop.stanford.edu/programs/
jplex/index.html”). We note first that if r1 < r2, the simpicial
complex at cutoff r1 is contained in that at r2. The primary
construction used in JPlex is the “Rips Stream,” which
computes the simplices at cutoff radii rc in a prespecified
range, and assigns a “filtration time” for each simplex,
when it first appears. “Barcodes,” such as those shown in
Figure 3, show how the number of components evolves as rc
is increased. The abscissa is the cutoff radius and each hori-
zontal line represents a component that maintains its identity
as rc increases. It should be noted that the membership of

http://comptop.stanford.edu/programs/jplex/index.html
http://comptop.stanford.edu/programs/jplex/index.html
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Figure 3: Using persistent homology for partitioning a set of objects. (a) The barcode on the top panel shows groups of genes of size 5 or
more as a function of the cutoff radius rc. Each horizontal line represents a component that maintains its identity as rc is increased. In our
analysis, we select the two gene groups C′1 and C′2 at rc ≈ 0.56, just prior to their merging. C′1 and C′2 contain 17 and 20 genes, respectively.
(b) The bottom panel shows partitions of 10 or more patient samples computed using the expression levels of members of C′1 and C′2. The
patient samples are bisected at rc ≈ 0.34 into two partition of sizes 84 and 76. The first group contains patient samples of the classical and
mesenchymal subtypes, while the second contains samples of the proneural subtype.

a component may increase with rc. In Figure 3(a), we only
show components that contain a minimum of Nmin points.
This constraint is imposed by constructing a new rips stream
which contains the original simplices; the filtration time
associated with each simplex in the new stream is defined to
be the maximum of the original filtration time and the time
when the component reaches Nmin elements.

The top panel of Figure 3 shows the results of the
analysis for the 60 genes with Nmin = 5. We select the
two components that persist for the largest range in rc. The
membership of the groups is maximized at rc ≈ 0.56, just
prior to their combining into a single component. (The
persistence width of the component that begins after rc =
0.56 decreases as the number N of genes used for the analysis
increases.) Genes in each component are found using the
JPlex routine “verticesInEachComponent.” At rc = 0.56, the
components contain 17 and 20 genes, respectively. We could
choose all 37 genes for the analysis. However, we find that
identical partitioning of the patient samples can be achieved
with a smaller number of genes. For the analysis here, we
select the first Ng = 15 genes to join each component. This
choice is made in order to include a sufficiently inclusive, yet
not too large a set of genes for the analysis. The final grouping
of patient samples depends only weakly on the choice of Ng .
The two gene sets are

C′1 =
{
UGT8,MBP,C11or f 9,MOG,KLK6,RP11

− 35N6.1,RAB33A,DCX ,GPR17,CXor f 1,

LRRTM4,TMSL8, SN ,AP91,ATP10B,LUZP2},

C′2 = {MEOX2,PIPOX ,FGFR3,DLC1,PLA2G5,

EGFR,GRIK1,ERBB2,PTRF,POSTN ,BAIAP3,

PDLIM4,KCNF1,EYA4, SPAG4}.
(3)

Genes inC′1 lie on chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17,
20, and 21. Genes MEOX2, EGFR, DCL1, EFGR, PTRF, and

EYA4 have the gene ontology (GO) classification “nucleus.”
Genes MEOX2, DCL1, ERBB2, PTRF, EYA4, SPAG4 have the
classification “cytoplasm,” and FGFR3, GRIK1, KCNF1 have
the classifications “membrane” and “integral to membrane.”
Genes in C′2 belong to chromosomes 1, 2, 4, 5, 6, 9, 11,
15, and the X-chromosome. C11orf9 and KLK6 have the
gene ontology classification “nucleus,” while DCX, KLK6,
and TMSL8 have the classification “cytoplasm,” and UGT8,
C11orf9, MOG, GPR17, LRRTM4, and ATP10B have the
classification “membrane.”

3.3. Partitioning Patient Samples. The 182 patient samples
are partitioned using the expression levels of the 30 genes
in C′1 and C′2. Each sample is represented by the expression
levels Y of these 30 genes. As before, the distance between
two points (patient samples) Ym and Yn in R30 is defined
as the correlation distance. The barcode for the analysis,
where we retain only groups of size 10 or larger, is shown in
Figure 3(b). Two groups are seen to persist over a significant
range in the cutoff radius rc. Since the components grow
with rc, we choose rc ≈ 0.34, in order to maximize their
membership. They contains 84 and 76 patient samples, and
the heat map [33–35] is shown in Figure 4(a). The patient
samples in each group are arranged in the order they appear
in the component as rc is increased. The fold inductions for
genes in the left-most samples in each group are significantly
closer than those joining the component later. We propose to
only include the most coherent patient samples in the “core”
group associated with each category, see Figure 1. With
this trimming, the membership of the two groups reduces
to 60 and 44. The new heat map, Figure 4(b), provides
a significantly sharper partitioning than those computed
through many previous approaches [1, 2, 11, 12, 36, 37],
although the membership in each group is smaller.

The first group of 60 contains 27 patient samples that
have been assigned the classical subtype and 28 samples that
have been assigned the mesenchymal subtype of GBM by
the clustering analysis of TCGA. The remaining 5 samples
are not provided an assignment in [1]. 37 of the 44 patient
samples in the second group have been assigned to the
proneural subtype by TCGA. The rest of the samples in
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Figure 4: (a) The heat map for the bisection of GBM patient samples with red (resp., green) representing fold inductions higher (resp.,
lower) than the mean. The horizontal blue line separates the gene groups C′1 and C′2, while the vertical line partitions the two components
of patient samples. The patient samples are arranged (left to right) in the order they join each component. It is clear that samples joining a
component later are less tightly correlated to the group. (b) The heat map for the core patient samples in each component using genes in C1

and C2. Component A contains classical and mesenchymal patient samples, while B contains proneural samples.
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this group are unassigned with the exception of one sample
labeled neural and one labeled mesenchymal [1].

3.4. Selecting a Gene Set to Differentiate the Subtype. One of
our goals is to search for a panel of genes to differentiate
between the subtypes of GBM. Thus far, we have used the
genes in C′1 and C′2 to find two subgroups of the 182 patient
sample, and (using the heat map) select the most tightly
correlated members in each subgroup. However, when only
the 60 and 44 core samples are considered, an alternative
gene set may provide a sharper separation of the patient
samples. We thus repeat the computations of the last three
Subsections, using only the 104 patient samples in the two
core groups. The new gene groups are

C1 = {UGT8,RP11− 35N6.1,DCX ,RAB33A,GPR17,

ERBB3, SOX10,PAK7, IL1RAPL1,DNM3,

SNAP91,ATP1A3,RUNDC3A,DUSP26,EPHB1},

C2 = {ELOVL2,ARSJ ,FLJ21963,PIPOX ,NR2E1,

ZNF217,PLA2G5,MEOX2,EPHB4,DCL1,

POSTN ,LAMA2,EGFR,KCNF1,EYA4}.
(4)

Genes in C1 and C2 are spread among several chromosomes.
Genes RP11-35N6.1, UGT8, GPR17, IL1RAPL1, SNAP91,
and EPHB1 of C1 have the GO classifications “membrane”
and/or “integral to membrane,” while DCX, RAB33A, and
DNM3 have the classification “intracellular.” Genes NR2E1,
ZNF217, MEOX2, EGFR, and EYA4 of C2 have the GO
classification “nucleus” and ARSJ, PIPOX, PLA2G5, POSTN,
LAMA2, EGFR, and KCNF1 have the classification “extracel-
lular region.” The heat map, shown in Figure 4(b), clearly
indicates that genes in C1 and C2 provide a significantly
better separation of the core members in the two groups.

We conducted the corresponding analysis for the
validation data set combined from four public cohorts (see
“http://tcga-data.nci.nih.gov/docs/publications/gbm exp/”)
using genes in C1 and C2 [1]. We again find a clear difference
in fold changes of the genes between the two partitions. In
addition, the fractional sizes of the partitions are similar to
those of Figure 4(b). (The assignments of the cancer subtype
of validation samples are not given at the TCGA site.)

3.5. Bisection of the Classical/Mesenchymal Patient Samples.
The next step is to partition patient samples in group
A, which we found to contain exclusively classical and
mesenchymal samples. The computations described above
are repeated, however, only using 60 patient samples assigned
to the partition. The gene groups for the partition are

C(CM)
1 = {ASCL1,MPPED2,CSPG5,BCAN ,DSCAM,

DPF1,ZNF606,ZNP30,ZNF419, SGTA,

ZNF8,DGKB,EGFR,PHC1,BLM},

C(CM)
2 = {TNFAIP8, SLC25A24,OLFML2B, SFT2D2,

KYNU ,DKK1,RRAS,GUSB,HEPH ,ENPP4,

NDN , SPAG4,MTAP,KLHL9,COL11A1}.
(5)

Genes in C(CM)
1 lie in chromosomes 1, 3, 7, 11, 12, 15,

19, and 21. DPF1, SGTA, and the four zinc fingers belong
to chromosome 19 (19q13) and have the GO classification
“intracellular.” They along with ASCL1, BLM, and PHC1

have the GO classification “nucleus.” Genes in C(CM)
2 belong

to chromosomes 1, 2, 5, 6, 7, 10, 15, 19, and the X-
chromosome. TNFAIP8, SLC25A24, KYNU, SPAG4, and
MTAP have the classification “cytoplasm.”

The first group of patient samples contains 18 members,
17 of which have been assigned to the classical subtype in
[1]. The remaining sample has no assignment in TCGA.
The second group contains 14 samples, all of which have
been assigned the mesenchymal subtype in [1]. The heat
map for the bisection of the classical/mesenchymal group is
given in Figure 5. The complete list of core patient samples
is given in Supplementary Materials (see Supplementary
Materials available online at doi:10.5402/2012/381023). A
similar bisection of patient group B, which contains the
proneural samples, was not possible.

3.6. Prediction Model for GBM Subtypes. Fold inductions of

genes belonging to C1, C2, C(CM)
1 , and C(CM)

2 can be used to
predict the membership of a new sample in the three core
groups. The choice is based on the mean correlation distance
between the patient sample and members of each core group.

The first step is to determine if the new sample belongs
to the classical/mesenchymal or proneural core groups. The
determination is made using genes belonging to C1 and C2

and computing the mean correlation distance between the
new sample and those in each partition. However, we must
first determine the “radius” (for the correlation distance)
within which the membership for each group is assigned.
It is chosen as follows. For every patient sample in the
classical/mesenchymal core group, we compute its mean
correlation distance from the remaining members of the
group. The largest of these values is defined to be the radius
of the classical/mesenchymal subgroup of patient samples.
This choice guarantees that all core patient samples in the
group are assigned correctly, and that those outside the
core group are not assigned to it. The computed cutoffs
for the classical/mesenchymal and proneural core groups are
Rcm = 0.70 and Rp = 0.42, respectively. A new patient
sample whose mean correlation distance from members of
the classical/mesenchymal core group is smaller than Rcm is
assigned to that group, and any sample closer than Rp to the
proneural subgroup is assigned to it.

Next, we use genes in C(CM)
1 and C(CM)

2 to assign
the membership of any patient sample in the classical/
mesenchymal core group. The corresponding cutoff radii
are Rc = 0.63 and Rm = 0.30. It should be noted that these
selection criteria are strict. This ensures proper identification
of the subtype. Such accuracy necessarily leaves some

http://tcga-data.nci.nih.gov/docs/publications/gbm_exp/
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Table 1: The mean correlation distance between each test sample and the core samples of the classical, mesenchymal, and proneural subtypes
of GBM. The sample is predicted to belong to a subtype if its mean correlation distance to the core group is smaller than a predetermined
value. The 10 assignments provided by our prediction model agree with the TCGA classification.

Patient
sample

Correlation
distance

(Clas/Mes)

Correlation
distance

(Proneural)

Correlation
distance

(Classical)

Correlation
distance

(Mesenchymal)
Prediction

TCGA
Assignment

TCGA-02-0015 0.60± 0.18 1.46± 0.11 1.04± 0.23 0.72± 0.14

TCGA-02-0021 0.39± 0.25 1.78± 0.07 0.31± 0.13 1.61± 0.06 C C

TCGA-02-0026 1.62± 0.17 0.27± 0.12 — — P P

TCGA-02-0037 0.56± 0.15 1.52± 0.08 0.88± 0.21 1.03± 0.11

TCGA-02-0051 0.57± 0.27 1.39± 0.13 1.26± 0.14 0.28± 0.08 M M

TCGA-02-0058 1.49± 0.20 0.45± 0.17 — —

TCGA-02-0074 1.58± 0.18 0.25± 0.13 — — P P

TCGA-02-0075 0.35± 0.19 1.74± 0.11 1.23± 0.14 0.36± 0.11 M M

TCGA-02-0106 0.38± 0.17 1.73± 0.08 0.91± 0.14 0.56± 0.12 M

TCGA-02-0451 0.73± 0.24 1.38± 0.13 — — N

TCGA-06-0168 1.19± 0.15 0.87± 0.11 — —

TCGA-06-0171 1.48± 0.13 0.47± 0.08 — — N

TCGA-06-0185 0.84± 0.33 1.31± 0.17 — — N

TCGA-06-0190 0.49± 0.25 1.56± 0.16 1.54± 0.14 0.35± 0.10 M M

TCGA-06-0410 1.41± 0.28 0.41± 0.15 — — P P

TCGA-06-0413 1.67± 0.18 0.17± 0.08 — — P P

TCGA-08-0359 1.64± 0.14 0.25± 0.08 — — P P

TCGA-08-0380 1.09± 0.24 0.91± 0.19 — — N

TCGA-08-0517 1.50± 0.17 0.38± 0.11 — — P P

TCGA-08-0521 0.56± 0.25 1.47± 0.15 1.58± 0.09 0.38± 0.13

samples uncategorized. In such situations, a relaxation of the
criteria can allow the subtype to be estimated. Table 1 shows
the mean correlation distances between the test samples and
the core groups. Our predictions for membership in the core
groups are given in column 6. The last column of the Table
gives the assignment of the GBM subtype given by TCGA (see
“http://tcga-data.nci.nih.gov/docs/publications/gbm exp/”)
[1]. Five of the test samples did not belong in the core
subgroups identified in [1], and our calculation agrees. Of
the remaining 15 patient samples, 5 do not belong to any
of our three core groups. (In fact, 4 of these have been
assigned to the neural subgroup.) Each of the remaining 10
test samples are assigned the subtype of [1].

4. Discussion

Robust prognostics for many subtypes of cancer are yet to
be discovered [23, 32]. High-throughput genomics offers a
possible approach for early and reliable cancer prognosis
[8, 38]. Genomic biomarkers may provide an accurate
determination of the subtypes of a malignancy.

Clustering algorithms require the definition of a genomic
distance between patient samples. Since there is no natural
measure, topological approaches to partitioning are likely to
prove more robust. Second, although techniques have been
proposed to identify the optimal number of partitions of a
set of objects, its value can be sensitive to the choice of the

gene panel used for profiling. We introduced an algorithm
that circumvents these problems. It was used to partition the
202 GBM patient samples whose genetic profiles are given
at the publicly accessible TCGA site. We identified a set of
genes most useful for the partitioning and to determine core
groups of samples for each subtype of GBM.

The selection of the gene set requires several steps.
We argued that a necessary condition for the inclusion of
a gene was that its fold inductions lie on a distribution
with a (relatively) small value of the nondimensionalized
standard deviation σ , indicating a bimodal distribution. We
selected 60 such genes for the remaining analysis. We then
used persistent homology to streamline the set further by
only retaining genes that belong in groups; genes within a
group exhibit highly correlated variations of expression levels
between patient samples. We identified two groups of genes
C′1 and C′2, each containing 15 genes. Many of them do not
play a pivotal role in gene regulatory networks associated
with GBM [1–4, 22, 23, 39] and may be downstream nodes.
It would be interesting to determine if they can be implicated
directly in the histopathological criteria used to define the
malignancies [23].

Next, we use the differential expression of genes in C′1 and
C′2 to bisect the patient samples. The two partitions contain
84 and 76 patient samples. Using the heat map for guidance,
we selected 60 and 44 samples from the two partitions as
its core members. Once the core patient samples in each

http://tcga-data.nci.nih.gov/docs/publications/gbm_exp/
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Patient group AA Patient group AB

ASCL1
MPPED2
CSPG5
BCAN
DSCAM
DPF1
ZNF606
ZFP30
ZNF419
SGTA
ZNF8
DGKB
EGFR
PHC1
BLM

TNFAIP8
SLC25A24
OLFML2B
SFT2D2
KYNU
DKK1
RRAS
GUSB
HEPH
ENPP4
NDN
SPAG4
MTAP
KLHL9
COL11A1

Figure 5: The heat map for the bisection of the classical/mesenchymal group with red (resp., green) representing fold inductions higher
(resp., lower) than the mean. The horizontal blue line separates the gene groups C(CM)

1 and C(CM)
2 , while the vertical line partitions the two

components of patient samples. Groups AA and AB contain patient samples of the classical and mesenchymal subtypes, respectively.

group are known, it is possible to determine the most suitable
gene set to differentiate between the partitions. The new gene
groups C1 and C2 provide a significantly sharper heat map.
We find that the first core group contains patient samples
of the classical and mesenchymal subtypes, while the second
contains proneural samples.

Our algorithm is “robust” in the following sense. (1)
Patient subgroups derived from the analysis depend only
weakly on the number of genes used for the persistent
homology step (N = 60 for the results reported here). For
the GBM data, barcodes (Figure 3(a)) for a range of choices
for N between 50 and 120 are similar, with the component
appearing at rc ≈ 0.6 lasting for a smaller range in cutoff as N
increases. Values of N < 50 do not give uniform results, and
those larger than 120 cannot be justified from Figure 2(b).
(2) The patient groups are very weakly dependent on
the number of genes Ng chosen for the panels C1 and C2

(Ng = 15 for each set). We could choose Ng as small as 10
or use all genes in the sets C′1 and C′2 for the analysis with
similar results.

A unique aspect of our approach is that each subgroup
can now be further bisected, albeit using different gene sets.
Specifically, the classical/mesenchymal group was subdivided

using sets C(CM)
1 and C(CM)

2 , each containing 15 genes.
Fold inductions of a panel of 59 genes were needed for
both bisections. It is known that that classical patient
samples exhibit a high level of expression of EGFR [1, 9].
Consistent with this, we find that EGFR is over expressed

in the classical/mesenchymal partition in Figure 4 and in the
classical group in Figure 5. The proneural subtype of GBM
is associated with high alterations in TP53, PDGFRA, and
IDH1. However, these genes are not found in C1 or C2. It
is possible that, although there are large alterations in the
levels of these genes, the mean values in the ensemble (of
proneural samples) do not change significantly. The high
levels of mutations of NF1 of mesenchymal samples are not
reflected in the gene sets as well.

We do not find a singe partition for the neural subtype
of GBM. Our analysis suggests that patient samples in this
group lie, not on a single partition, but on several small
partitions. This is consistent with a lack of clear defining
genomic characteristics for the subtype [1].

We used the panel of 59 genes in C1, C2, C(CM)
1 , and C(CM)

2

to introduce a prediction model for the subtypes of GBM.
The test involved the computation of the mean correlation
distance between a new sample and members of each core
group. Fifteen out of the 20 test sample predictions agreed
with the results from the clustering calculation. Of these, 5
were unassigned by both algorithms. Four of the remaining
samples were categorized as neural by the clustering method
but were unassigned by ours since the neural group was not
found to be a single cluster.

Of the genes in C1, C2, C(CM)
1 , C(CM)

2 , only EGFR has
been previously implicated in GBM. However, other gene
groups may have functions related to cancer (the functional
annotations can be found in “GeneCards,” the human
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Gene Compendium, Weizmann Institute of Science). One
example is a group related to intercellular scaffolding:
DCX translates to a microtubule-associated protein, DNM3
is involved in producing microtubule bundles, POSTN
plays a role in extracellular matrix mineralization, RRAS
regulates the actin cytoskeleton, and COLL11A1 may play
a role in fibrillogenesis. Another group is known to be
expressed in brain function: RAB33A is a member of the
Ras oncogene superfamily, GPR17 may mediate in brain
damage, and NR2E1 may be required for brain development.
A third group of genes is associated with differentiation,
development, and the cell cycle: they include EDHB4, ASCL1
involved in early stages of development, MPPED2, which
plays a role in the development of the nervous system,
CSPG4, which functions as a growth and differentiation
factor, BCAN involved in terminal differentiation, MEOX2,
which plays a regulatory role in muscle cells, and NDN,
which is a growth suppressor involved in cell cycle arrest. The
zinc fingers ZFP30, ZNF419, ZNF8, and ZNF606 are involved
in transcriptional regulation.

5. Conclusions

We have introduced a novel algorithm for genomic subtyping
of cancer samples. Unlike prior clustering techniques, we
predetermine a compact set of genes to be used in the
analysis through the nondimensionalized standard deviation
and persistent homology. We next use the gene set to bisect
the patient samples using persistent homology. Importantly,
the gene set selected for the analysis depends on the group of
patient samples to be analyzed. Hence, if needed, partitions
obtained from the first step can be further bisected. Our
approach not only provides a robust partitioning of patient
samples, but can also be used to identify a panel of genes
to be used as a biomarker. The gene panels have been used
to introduce a prediction model to determine if a new
patient sample belongs to the core subgroups associated with
classical, mesenchymal, and proneural subtypes of GBM.
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