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The Fibroblast Growth Factor
signaling pathway
David M. Ornitz1 and Nobuyuki Itoh2

The signaling component of the mammalian Fibroblast Growth Factor (FGF) family
is comprised of eighteen secreted proteins that interact with four signaling tyro-
sine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling
receptors is regulated by protein or proteoglycan cofactors and by extracellu-
lar binding proteins. Activated FGFRs phosphorylate specific tyrosine residues
that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK,
PI3K-AKT, PLC𝛾 , and STAT intracellular signaling pathways. Four structurally
related intracellular non-signaling FGFs interact with and regulate the family of
voltage gated sodium channels. Members of the FGF family function in the earliest
stages of embryonic development and during organogenesis to maintain progen-
itor cells and mediate their growth, differentiation, survival, and patterning. FGFs
also have roles in adult tissues where they mediate metabolic functions, tissue
repair, and regeneration, often by reactivating developmental signaling pathways.
Consistent with the presence of FGFs in almost all tissues and organs, aber-
rant activity of the pathway is associated with developmental defects that disrupt
organogenesis, impair the response to injury, and result in metabolic disorders,
and cancer. © 2015 Wiley Periodicals, Inc.
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INTRODUCTION

The Fibroblast Growth Factor (FGF) family is
comprised of secreted signaling proteins (secreted

FGFs) that signal to receptor tyrosine kinases and
intracellular non-signaling proteins (intracellular
FGFs (iFGFs)) that serve as cofactors for voltage gated
sodium channels and other molecules (Table 1(a)
and Figure 1(a)). Additionally, secreted FGFs and
iFGFs may have direct functions in the nucleus and
functional interactions with other cellular proteins.
Members of both branches of the FGF family are
related by core sequence conservation and structure
and are found in vertebrates and invertebrates.1,2

Secreted FGFs are expressed in nearly all tissues
and they serve essential roles in the earliest stages of
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embryonic development, during organogenesis, and in
the adult, where they function as homeostatic factors
that are important for tissue maintenance, repair,
regeneration, and metabolism (Table 2(a)). In general,
secreted FGFs function as autocrine or paracrine
factors (canonical FGFs; also called paracrine FGFs),
however, three members of the secreted FGFs have
evolved to function as endocrine factors (endocrine
FGFs) with essential roles in the adult where they
regulate phosphate, bile acid, carbohydrate and lipid
metabolism in addition to the canonical FGF func-
tions that control cell proliferation, differentiation
and survival.75–77,98,149–163

At the cellular level, secreted FGFs regu-
late fundamental cellular processes that include
positive and negative regulation of proliferation,
survival, migration, differentiation, and metabolism.
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TABLE 1 Nomenclature of the Mammalian Fgf and Fgfr family

HUGO/MGI Symbol Name Alternative Symbol Name, Comments

(a) Fgf
FGF1/Fgf1 Fibroblast Growth Factor 1 aFgf Acidic Fgf

Hbgf1 Heparin-binding growth factor 1

Ecgr Endothelial cell growth factor

FGF2/Fgf2 Fibroblast Growth Factor 2 bFgf Basic Fgf

Hbgf2 Heparin-binding growth factor 2

FGF3/Fgf3 Fibroblast Growth Factor 3 Int-2 Int-2 oncogene

V-Int-2 MMTV integration site 2

FGF4/Fgf4 Fibroblast Growth Factor 4 Hst1 Human stomach tumor oncogene

Hstf1 Heparin secretory transforming protein 1

K-Fgf , Kfgf Kaposi sarcoma Fgf

FGF5/Fgf5 Fibroblast Growth Factor 5

FGF6/Fgf6 Fibroblast Growth Factor 6 Hst2 Hst2 oncogene

FGF7/Fgf7 Fibroblast Growth Factor 7 Kgf Keratinocyte growth factor

FGF8/Fgf8 Fibroblast Growth Factor 8 Aigf Androgen induced growth factor

Kal6
FGF9/Fgf9 Fibroblast Growth Factor 9 Gaf Glia activating factor

Eks Elbow knee synostosis

FGF10/Fgf10 Fibroblast Growth Factor 10 Kgf-2 Keratinocyte growth factor 2

FGF11/Fgf11 Fibroblast Growth Factor 11 Fhf3 Fibroblast Growth Factor homologous factor 3

FGF12/Fgf12 Fibroblast Growth Factor 12 Fhf1 Fibroblast Growth Factor homologous factor 1

FGF13/Fgf13 Fibroblast Growth Factor 13 Fhf2 Fibroblast Growth Factor homologous factor 2

FGF14/Fgf14 Fibroblast Growth Factor 14 Fhf4 Fibroblast Growth Factor homologous factor 4
spinocerebellar ataxia 27Sca27

Fgf15 Fibroblast Growth Factor 15 Rodent ortholog of vertebrate Fgf19
FGF16/Fgf16 Fibroblast Growth Factor 16

FGF17/Fgf17 Fibroblast Growth Factor 17 Called FGF-13 in some older literature

FGF18/Fgf18 Fibroblast Growth Factor 18

FGF19 Fibroblast Growth Factor 19 Human ortholog of rodent Fgf15
FGF20/Fgf20 Fibroblast Growth Factor 20

FGF21/Fgf21 Fibroblast Growth Factor 21

FGF22/Fgf22 Fibroblast Growth Factor 22

FGF23/Fgf23 Fibroblast Growth Factor 23
(b) Fgfr

FGFR1/Fgfr1 Fgf receptor 1 Flg Fms-like gene

Flt2 Fms-like tyrosine kinase 2

Cek Chicken embryo kinase 1

KAL2 Kallman syndrome 2

K-sam KATO-III cell-derived stomach cancer amplified gene

FGFR2/Fgfr2 Fgf Receptor 2 Bek Bacterial expressed kinase

Cek3 Chicken embryo kinase 3

Kgfr KGF receptor

FGFR3/Fgfr3 Fgf Receptor 3 Cek2 Chicken embryo kinases 2

Ach Achondroplasia

FGFR4/Fgfr4 Fgf Receptor 4 Tkf Tyrosine kinase related to Fibroblast Growth Factor receptor

FGFRL1/Fgfrl1 Fgf receptor like 1 Fgfr5 Fgf receptor 5
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(a)

(c)

(b)

FIGURE 1 | FGF and FGFR families. (a) Phylogenetic analysis suggests that 22 Fgf genes can be arranged into seven subfamilies containing two
to four members each. Branch lengths are proportional to the evolutionary distance between each gene. The Fgf1, Fgf4, Fgf7, Fgf8, and Fgf9
subfamily genes encode secreted canonical FGFs, which bind to and activate FGFRs with heparin/HS as a cofactor. The Fgf15/19 subfamily members
encode endocrine FGFs, which bind to and activate FGFRs with the Klotho family protein as a cofactor. The Fgf11 subfamily genes encode intracellular
FGFs, which are non-signaling proteins serving as cofactors for voltage gated sodium channels and other molecules. (b) Schematic representations of
FGFR protein structures are shown. FGFR is a receptor tyrosine kinase of ∼800 amino acids with several domains including three extracellular
immunoglobulin-like domains (I, II, and III), a transmembrane domain (TM), and two intracellular tyrosine kinase domains (TK1 and TK2). SP indicates
a cleavable secreted signal sequence. The Fgfr gene family is comprised of four members, Fgfr1-Fgfr4. Among them, Fgfr1–Fgfr3 generate two major
splice variants of immunoglobulin-like domain III, referred to as IIIb and IIIc, which are essential determinants of ligand-binding specificity. (c) The
schematic representation of FGFRL1/FGFR5 protein structure is shown. FGFRL1, with structural similarity to FGFRs, is a membrane protein of ∼500
amino acids with three extracellular immunoglobulin-like domains (I, II, and III), a transmembrane domain (TM), and a short intracellular tail with no
tyrosine kinase domain. SP indicates a cleavable secreted signal sequence.
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During early development, FGFs regulate differ-
entiation of the inner cell mass into epiblast and
primitive endoderm lineages.164–167 Later in devel-
opment, FGFs have key roles in organogenesis,
for example in the regulation of the anterior and
secondary heart fields,168,169 induction of limb
buds54,55,170 and lung buds,54,55 ventral liver and
pancreas,171,172 kidney development,27,40,120,121,147,

inner ear development,12,28,41,56,90,103,104,127,173 and
brain development.174,175

In the adult, FGFs have important roles in
response to injury and tissue repair.176 FGF signal-
ing is cardioprotective following ischemic injury
to the heart,177–179 and is important for epithelial
repair in the lung and in wound healing.180–182

FGF signaling, however, may also increase or
decrease tissue fibrosis.81,183–185 Endocrine FGFs
mediate mineral, metabolic, energy, and bile acid
homeostasis.75,98,186,187 FGF receptor (Fgfr) muta-
tion, amplification, and gene fusions can drive
abnormal morphogenesis, the progression of several
types of cancer, and provide escape pathways for
drugs that target other oncogenic tyrosine kinase
receptors.152,188–196

Given the ubiquitous roles for FGF signals in
development, homeostasis, and disease, tight regu-
lation of the pathway is essential. Canonical FGFs
are tightly bound to heparin/heparan sulfate (HS)
proteoglycans (HSPGs), which function to limit dif-
fusion through the extracellular matrix (ECM) and
serve as cofactors that regulate specificity and affinity
for signaling FGFRs.153,197–201 The endocrine FGFs,
evolved with reduced affinity for heparin/HS and the
requirement for a protein cofactor, 𝛼Klotho, 𝛽Klotho,
or KLPH for receptor binding.75,202 Additional regu-
lation is provided by a fifth non-tyrosine kinase FGFR
(FGFRL1) which can bind FGF ligands and possibly
function as a decoy receptor, dimerization-induced
inhibitor of tyrosine kinase FGFRs, or modulator of
receptor turnover or signaling.203 Downstream of the
signaling tyrosine kinase FGFRs, intracellular signal-
ing cascades are also tightly regulated by specialized
adaptor proteins such as FGFR substrate 2𝛼 (FRS2𝛼)
and regulators of the RAS-MAPK and PI3K-AKT
pathways such as Sprouty (SPRY) proteins151,204–207

(Figure 3(a)).
iFGFs (also known as FGF homologous factors

(FHFs)) are essential regulators of neuronal and
myocardial excitability. However, whether iFGFs
are required during normal embryonic develop-
ment is currently not known. Several proteins
are known to directly interact with iFGFs. These
include members of the voltage gated sodium channel
family,154 IB2 (MAPK8IP2, Mitogen-activated protein

kinase 8-interacting protein 2),208 𝛽-tubulin,70 and
NEMO209 (NF-𝜅B essential modulator). Analysis of
evolutionary relationships in the FGF family suggests
that iFGFs may be the first members of the family
to evolve, followed by the acquisition of a signal
peptide for secretion, and affinity for heparin/HS to
limit diffusion and regulate receptor binding.210 The
most recent evolutionary event led to the endocrine
branch of the FGF family, which has reduced affinity
for heparin/HS and a requirement for Klotho family
cofactors for receptor binding.

In this review we will focus on the roles and
regulation of FGF signaling pathways that function
during vertebrate organogenesis and on how gain and
loss-of-function mutations in the FGF pathway result
in developmental or metabolic disease and cancer.

PATHWAY COMPONENTS

Fibroblast Growth Factors

Historical Perspective
Embryo extracts and brain extracts were shown to
promote the growth of chicken periosteal fibroblast as
early as 1939.211 A proteinaceous ‘Fibroblast Growth
Factor’ activity was first identified in an extract from
bovine pituitary in 1973.212 This activity was shown
to be protease sensitive and thermolabile and could
stimulate the proliferation of 3 T3 fibroblasts at low
(ng/ml) concentrations. This activity was partially
purified in 1975213 and purified to homogeneity in
1983214 and would later be referred to as basic FGF
(bFGF or FGF2) due the overall basic composition
of amino acids and high isoelectric point. Purifica-
tion of a factor with similar mitogenic activity from
bovine brain that was free of myelin basic protein
fragments identified a second Fibroblast Growth
Factor-like activity with a low isoelectric point that
was eventually referred to as acidic FGF215–220 (aFGF
or FGF1). This factor was also found to be iden-
tical to an activity called endothelial cell growth
factor221 (ECGF) and related to FGF2.217 In addition
to stimulation of 3 T3 cell proliferation, these growth
factors were found to promote proliferation of a wide
variety of mesoderm-derived cells such as endothelial
cells.217,220–222 cDNA clones for FGF1 were first iso-
lated from a human brain cDNA library in 1986.223

cDNA clones for Fgf1 and Fgf2 were also isolated
from bovine pituitary cDNA libraries in 1986.224

Additional members of the FGF family were identified
as growth factors for cultured cells, as oncogenes
tagged by retroviral insertions, as genes responsible
for hereditary diseases, or by homology-based PCR or
homology-based searches of DNA databases.152,153,99
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The mammalian Fgf family contains 22 genes,
18 of which encode molecules known to signal
through FGF tyrosine kinase receptors (Table 1(a)).
The secreted signaling FGFs can be grouped into sub-
families based on biochemical function, sequence sim-
ilarities, and evolutionary relationships. The current
consensus is that there are 5 subfamilies of paracrine
FGFs, one subfamily of endocrine FGFs, and one
subfamily of intracellular FGFs150,153,157,158,210,225,226

(Figure 1(a)). Fgf15 and Fgf19 are likely to be
orthologs in vertebrates. The orthologs were named
Fgf15 in rodents and Fgf19 in other vertebrates. In
this review, we refer to these as Fgf15/19.

Canonical (Secreted) FGFs
FGF1 Subfamily
The FGF1 subfamily is comprised of FGF1 and FGF2
(Figure 1(a)). These FGFs lack classical secretory sig-
nal peptides but are nevertheless readily exported
from cells by direct translocation across the cell
membrane.227 The mechanism of translocation is
thought to involve a chaperone complex that includes
synaptotagmin-1 and the calcium binding protein
S100A13.228,229 FGF1 and FGF2 have also been found
in the nucleus of some cells. The mechanisms by which
FGFs transit through the cell are poorly understood,
but are thought to require binding to and activating
cell surface tyrosine kinase FGFRs with heparin/HS
as a cofactor and interaction with HSP90.230,231

Several studies have shown that extracellular FGF1
passes through the plasma membrane, moves through
the cytosol, and enters the nucleus.232,233 Poten-
tial functions of nuclear FGF1 include regulation
of the cell cycle, cell differentiation, survival, and
apoptosis.234,235 FGF1 is the only FGF that can acti-
vate all FGFR splice variants (Figure 2; see below).

FGF4 Subfamily
Phylogenetic analysis suggests that the FGF4 family is
comprised of FGF4, FGF5 and FGF6236 (Figure 1(a)).
However, there is some controversy as to whether
FGF5 should be included in this subfamily, because
synteny relationships could be used to place FGF5 in
the FGF1 subfamily.210 All members of this subfamily
are secreted proteins with cleavable N-terminal signal
peptides that mediate biological responses as extracel-
lular proteins by binding to and activating FGFRs.158

These FGFs activate IIIc splice variants of FGFRs 1–3
and FGFR4237,238 (Figure 2; see below).

FGF7 Subfamily
Phylogenetic analysis suggests that the FGF7 family
is comprised of FGF3, FGF7, FGF10 and FGF22236

(Figure 1(a)). However, there is some controversy as

to whether FGF3 should be included in this subfam-
ily. Sequence homology and biochemical properties
support inclusion in the FGF7 subfamily, while chro-
mosomal localization supports inclusion with FGF4
and FGF6.210 One recent study proposed an eighth
subfamily composed of only FGF3.226 FGFs, 3, 7, 10,
and 22 preferentially activate the IIIb splice variant of
FGFR2 and FGF3 and FGF10 also activate the IIIb
splice variant of FGFR1237,238 (Figure 2; see below).

FGF8 Subfamily
The FGF8 subfamily is comprised of FGF8, FGF17,
and FGF18236 (Figure 1(a)). Members of this subfam-
ily contain an N-terminal cleaved signal peptide. These
FGFs activate IIIc splice variants of FGFRs 1–3 and
FGFR4237,238 (Figure 2; see below).

FGF9 Subfamily
The FGF9 subfamily is comprised of FGF9, FGF16,
and FGF20 (Figure 1(a)). This subfamily does not
have a classical N-terminal signal peptide but does
have an internal hydrophobic sequence that functions
as a non-cleaved signal for transport into the endo-
plasmic reticulum and secretion from cells.239–241 This
subfamily has the unique properties of activation of
the IIIb splice variant of FGFR3 in addition to FGFR4
and the IIIc splice variants of FGFRs 1, 2 and 3237,238

(Figure 2; see below).

FGF15/19 Subfamily (Endocrine FGFs)
The FGF15/19 subfamily is comprised of FGF15/19,
FGF21, and FGF2375,242 (Figure 1(a)). These FGFs are
unique in that they primarily function as endocrine
factors and are referred to as endocrine FGFs. In
contrast to canonical FGFs, endocrine FGFs bind to
heparin/HS with very low affinity.243 The reduced
heparin-binding affinity facilitates release from ECM
and allows these FGFs to function as endocrine fac-
tors. However, endocrine FGFs still mediate their
biological responses in an FGFR-dependent manner,
but instead of heparin/HS as cofactors for recep-
tor binding and activation, endocrine FGFs require
members of the Klotho family, 𝛼Klotho (Klotho),
𝛽Klotho, and Klotho-LPH related protein (KLPH),
which has also been called Lactase-like Klotho
(Lctl) or 𝛾Klotho. 𝛼Klotho and 𝛽Klotho are struc-
turally related single-pass transmembrane proteins
of ∼1000 amino acids with a short cytoplasmic
domain. FGF15/19 and FGF21 signaling requires
𝛽Klotho1,75,156,244–246 (see below). In vitro assays for
receptor activation using BaF3 cells or L6 myoblasts
that co-express FGFR splice variants and 𝛽Klotho
shows that FGF19 can activate FGFR1c, FGFR2c,
FGFR3c, and FGFR4, while FGF21 only activates
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FIGURE 2 | Receptor specificity of canonical and endocrine FGFs.
The six subfamilies of signaling FGFs use either heparin-like molecules
or Klotho molecules as cofactors for receptor binding. Data is derived
from receptor activation assays using BaF3 cells, L6 myoblasts, or
HEK293 cells transfected with individual splice variants of FGFRs or by
direct binding studies.140,141,162,237,238,246–254 FGFR4Δ is a two
immunoglobulin-like domain form of FGFR4.

FGFR1c and FGFR3c162,246 (Figure 2). In vivo stud-
ies show that FGF21 directly regulates hepatocyte
and adipocyte metabolism through interactions with
FGFR1 and 𝛽Klotho.162,245,255 By contrast, FGF19,
but not FGF21, activates FGFR4, which functions
in hepatocytes as a proliferative signal and as a
regulator of bile acid synthesis, and has been impli-
cated in the etiology or progression of hepatocellular
carcinoma.143,162,256,257 KLPH has been shown to
enhance signaling of FGF19 in HEK293 cells,160

however, the in vivo function of KLPH is not known.
FGF23 signaling is mediated through the activation
of FGFR1c, FGFR3c, and FGFR4, together with
the cofactor, 𝛼Klotho140,141,247,248,258 (Figure 2; see
below).

Intracellular FGFs
FGF11 Subfamily
The FGF11 subfamily (FGF11, FGF12, FGF13,
FGF14) is also known as iFGFs259 (Figure 1(a)). iFGFs
are not secreted and have no identified interaction with
signaling FGFRs.260 iFGFs interact with the cytosolic
carboxy terminal tail of voltage gated sodium (Nav)
channels. This interaction may help to regulate the
subcellular localization of Nav channels at the axon
initial segment during development and the ion-gating
properties of the channel in mature neurons and other
excitable cells such as cardiomyocytes.69,261,262,263,264

Additional interacting proteins have been identified
for some iFGFs. For example, FGF12 (FHF1) was
shown to interact with the MAP kinase scaffolding

protein, IB2 (MAPK8IP2),265 and FGF13 (FHF2) was
shown to interact with microtubules.70

Fibroblast Growth Factor Receptors
Historical Perspective
Tyrosine kinase activity was first associated with sig-
naling by brain-derived growth factor, an activity with
similar properties to FGF1.266 Subsequently, purified
FGF1 and FGF2 were shown to cause phosphorylation
of a 90 kDa protein in Swiss 3 T3 cells.267 Crosslink-
ing of 125I-FGF2 was used to tag and purify a receptor
protein from chicken embryo membrane fractions.
Sequence of tryptic peptides from the chicken FGF
receptor, were found to match a partial human cDNA
clone called FLG (Fms-like gene),268 now referred to
as FGF receptor 1 (FGFR1) (Table 1(b)). This infor-
mation was used to clone a full-length cDNA from
a chicken library. The cDNA encoded a 91.7 kDa
protein with an N-terminal hydrophobic signal
sequence, three extracellular immunoglobulin-like
domains, and an intracellular tyrosine kinase domain
(Figures 1(b) and 3). The chicken cDNA showed high
homology to a cDNA isolated from a human library
(90–100% in the tyrosine kinase domain) and the par-
tial FLG cDNA clone, and 84% sequence identity to
a mouse partial cDNA called Bek (bacterial expressed
kinase).269 Bek is now referred to as FGF receptor 2
(FGFR2) (Table 1(b)). Homology based cloning was
used to identify Fgfr3 and Fgfr4.270–273 A receptor
for FGF7/KGF was isolated by functional cloning in
NIH3T3 cells that expressed FGF7.274 Sequencing
revealed a two immunoglobulin-like domain variant
with identity to BEK in the tyrosine kinase domain.

Determinants of Ligand Binding Affinity
and Specificity of FGFRs
Immunoglobulin-like domains II and III, and the
linker region between these domains regulates
the ligand binding specificity of the four FGFR
proteins.275–277 Immunoglobulin-like domain I and
the acidic amino acid sequence (acidic box) located
between immunoglobulin-like domains I and II are
thought to inhibit ligand binding.278 Consistent with
this, an alternative splicing event that results in recep-
tor variants lacking immunoglobulin-like domain I
and the I-II linker have increased affinity for FGF
ligands.279,280 Fgfr1–Fgfr3 generate two additional
major splice variants of immunoglobulin-like domain
III, referred to as IIIb and IIIc281–283 (Figure 1(b)).
The FGFRb and FGFRc splice variants are essen-
tial determinants of ligand-binding specificity
(Figure 2).237,238,275,281,282 Alternative splicing of
Fgfrs is critical to pathway function as evidenced
by the highly conserved intronic control elements
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FIGURE 3 | legend on the next page.
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in species ranging from sea urchin to mammals.284

Immunoglobulin-like domain III of Fgfr4 is not alter-
natively spliced.271 Among the other three Fgfrs,
alternative splicing of Fgfr2 is functionally the most
important. Fgfr1 splicing and ligand binding proper-
ties parallels that of Fgfr2, and these two receptors
often show functional redundancy during develop-
ment. Other splice variants of Fgfrs have also been
identified. For example, an Fgfr1 cDNA encoding
immunoglobulin-like domains II and III generates a
secreted FGFR binding domain that can functionally
inhibit FGFR signaling.285 An Fgfr3 splice variant
in which exons 8–10, which encode the transmem-
brane domain, are skipped has been identified in both
normal epithelial cells and some cancer cell lines.
This splice variant produces a secreted protein that
can bind FGF ligands and functionally inhibit FGFR
signaling.286,287

Ligand binding specificity of the 18 secreted
FGFs have been compared using various mitogenic
assays and by directly measuring affinity for FGFRs.
The BaF3 cell line and L6 myoblasts have been
particularly useful, as they have little or no endoge-
nous Fgfr expression. Studies in BaF3 cells identified
strong mitogenic response to FGFR1 and FGFR2
and weak responses to FGFR3 and FGFR4, sug-
gesting that the strength or the specific downstream
signaling pathways activated by FGFRs may be

unique.238,249,288 Using BaF3 cells or L6 myoblasts
that express unique extracellular splice variants of
Fgfrs (Fgfr1b, 1c, 2b, 2c, 3b, 3c, 4) fused to either the
FGFR1 or FGFR2 cytoplasmic domain, the mitogenic
activity of all secreted FGFs were compared in the
presence of heparin.162,237,238,249–254 Additionally,
the mitogenic activity of FGF15/19 and FGF21 were
assayed on BaF3 cells or L6 myoblasts that also
co-expressed 𝛽Klotho and FGF23 was assayed on
HEK293 cells that co-expressed 𝛼Klotho.162,246,248

This analysis showed that FGF1 was the only lig-
and that could activate all receptor splice variants
(Figure 2). This analysis also showed that members
of FGF subfamilies have very similar receptor speci-
ficities. Direct binding, using iodinated FGFs and
using surface plasmon resonance has also been used
to evaluate FGF binding specificity.281,282,289,290 The
binding studies are qualitatively in agreement with
mitogenic assays.

Expression of alternative splice variants of Fgfr1
and Fgfr2 are regulated in a tissue-specific manner.
Mesenchymal tissue expresses IIIc splice variants of
Fgfr1 and Fgfr2 and often are activated by FGF ligands
that are expressed in epithelial cells, such as members
of the Fgf4 and Fgf8 subfamilies.54,55,291,292 By con-
trast, epithelial tissues express IIIb splice variants of
Fgfr1 and Fgfr2 and bind ligands that are normally
expressed in mesenchymal tissues, such as members of

FIGURE 3 | FGF signaling pathways. (a) Binding of canonical FGFs to FGFR with HS (or HSPG) as a cofactor induces the formation of ternary
FGF-FGFR-HS complex, which activates the FGFR intracellular tyrosine kinase domain by phosphorylation of specific tyrosine residues. The activated
receptor is coupled to intracellular signaling pathways including the RAS-MAPK, PI3K-AKT, PLC𝛾 , and STAT pathways. The RAS-MAPK pathway:
The major FGFR kinase substrate, FRS2𝛼, which is constitutively associated with the juxtamembrane region of FGFR (peptide:
MAVHKLAKSIPLRRQVTVSADS), interacts with CRKL bound to pY463 and is phosphorylated by the activated FGFR kinase. Phosphorylated FRS2𝛼
recruits the adaptor protein GRB2, which then recruits the guanine nucleotide exchange factor SOS. The recruited SOS activates the RAS GTPase,
which then activates the MAPK pathway. MAPK activates members of the Ets transcription factor family such as Etv4 (Pea3) and Etv5 (Erm) and
negative regulators of the FGF signaling pathways such as SHP2, CBL, SPRY, SEF, and DUSP6. The PI3-AKT pathway: The recruited GRB2 also recruits
the adaptor protein GAB1, which then activates the enzyme PI3K, which then phosphorylates the enzyme AKT. AKT has multiple activities including
activation of the mTOR complex 1 through inhibition of TSC2 and phosphorylation of the FOXO1 transcription factor causing it to exit the nucleus.
The PLC𝛾 pathway: Activated FGFR kinase recruits and activates the enzyme PLC𝛾 , which produces IP3 and DAG by the hydrolysis of PIP2. IP3 induces
calcium ion release from intracellular stores and the activation of downstream signaling pathways. DAG activates the enzyme PKC and its
downstream signaling pathways. GRB14 inhibits activation of PLC𝛾 . The STAT pathway: FGFR kinase also activates STAT1, 3, and 5. STAT3 interacts
with phosphorylated tyrosine 677 (pYxxQ motif). These activated signaling pathways mostly regulate gene expression in the nucleus. SPRY interacts
with GRB2 to inhibit the RAS-MAPK pathway and to regulate the PI3K-AKT pathway. GRB2 dimers are docked at the c-terminus of FGFR2 where they
inhibit SHP2, allowing low-level receptor kinase activity. Molecules shaded red generally function to inhibit FGFR signaling. (b) Dimerization of the
FGFR1 kinase domain leads to sequential phosphorylation of tyrosine residues (1P–6P) leading to increasing activity of the FGFR kinase and
phosphorylation of tyrosine substrates for CRKL, STAT, GRB14, and PLC𝛾 binding. In the first phase of activation, Y653 (1P), in the activation loop,
is phosphorylated, resulting in a 50- to 100-fold increase in kinase activity. In the third phase of activation, Y654 (6P), in the activation loop, is
phosphorylated, resulting in an overall 500–1000 fold increase in kinase activity. Y730 is weakly phosphorylated. Phosphorylation of Y677 allows
docking of STAT3 and phosphorylation of Y766 allows docking of either GRB14 or PLC𝛾 . Ligand-induced receptor activation phosphorylates GRB2,
leading to its dissociation from the receptor. Tyrosine residues correspond to human FGFR1 (accession NP_075598). (c) Binding of endocrine FGF to
FGFR with Klotho as a cofactor induces the formation of ternary FGF-FGFR-Klotho complex, which leads to activation of the FGFR tyrosine kinase.
(d) FGFRL1 is a protein containing three extracellular immunoglobulin-like domains with similarity to FGFRs. FGFRL1 has a single transmembrane
domain, and a short intracellular tail with no tyrosine kinase domain. The short cytoplasmic domain contains an SH2 binding motif that interacts with
SHP1. FGFRL1 is not simply a decoy receptor, but rather a non-tyrosine kinase signaling molecule.
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FIGURE 4 | Mechanisms of FGF signaling during organogenesis. (a–c) Limb bud development uses a classical reciprocal epithelial-mesenchymal
FGF signal. The earliest identified event in limb bud development involves an FGF10 signal to coelomic epithelium (a). This induces an epithelial to
mesenchymal transition (orange arrow) that increases the amount of mesenchyme (orange hash) at the forming limb bud, resulting in a bulge. As
development progresses (b), FGF10 signals to ectoderm to induce the formation of the apical ectodermal ridge (AER). Initially FGF8 (blue hash) is
expressed throughout its length of the AER (b) and later FGF4, FGF9, and FGF17 are also expressed in the posterior half of the AER. AER FGFs signal
to FGFR1 and FGFR2 in distal mesenchyme. (d, e) Lung development uses a modified reciprocal mesothelial/epithelial-mesenchymal FGF signal. The
lung bud is initiated with an FGF10 signal from foregut mesenchyme to FGFR2b in foregut epithelium. Continued FGF10 expression is required for
epithelial branching. Reciprocal signals from mesothelial FGF9 regulates mesenchymal proliferation through FGFR1 and FGFR2, while epithelial FGF9
functions as an autocrine factor to regulate epithelial branching through an as yet unidentified receptor. (f–h) Induction of the otic placode and
differentiation of the otic vesicle. (f, g) FGF3, derived from the hindbrain and FGF10 derived from head mesenchyme, together, induce formation of the
otic placode and its progression to the otic cup and otic vesicle. (h) After formation of the otic vesicle, FGF20 signals to FGFR1 within the prosensory
epithelium (white hash) as a permissive autocrine factor required for differentiation of outer hair cells and outer supporting cells in the organ of Corti.

the Fgf7 subfamily.293,294 This epithelial/mesenchymal
expression of alternative splice variants of FGFRs and
reciprocal expression of interacting FGF ligands is
essential for the development of many organs, par-
ticularly those that undergo branching morphogenesis
such as the lung or salivary gland, and structures such
as the limb bud, and skin (Figure 4).

Although this pattern of reciprocal signaling is
essential for the development of some organs, it is not
universal. For example, the tissue-specific regulation
of alternative splicing is less stringent for Fgfr3, where

both splice variants have been found in epithelial cell
types.295,296 The FGF9 subfamily, though primarily
expressed in epithelial cells, has the unique ability to
activate FGFR3b in addition to IIIc splice variants
of FGFRs 1–3237,253 (Figure 2). Fgf10 expression
can be found in some epithelial cell types, such as
the developing inner ear where it likely signals in
an autocrine manner to epithelial cells.237 During
somitogenesis, Fgf4 and Fgf8 are expressed and signal
within presomitic mesenchyme and nascent somites
where they suppress differentiation.29
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PATHWAY REGULATION

Extracellular FGF Associated Cofactors
and Binding Proteins

Heparan Sulfate Proteoglycans
HS is now recognized to function as a potent
cofactor for canonical FGF signaling as well as a
wide range of other signaling pathways including
bone morphogenetic proteins (BMPs), WNTs, and
Hedgehogs197,297–299 (Figure 3(a)). Heparin was
found to potentiate the biological activity of FGF1 in
1985220–222 and was first shown to directly enhance
FGFR binding and activity in 1991.200,201,254 Using a
cell line (BaF3) that lacks cell surface HS, or through
inhibition of HS sulfation (with chlorate), the sig-
naling ability of all canonical FGFs were shown to
require heparin/HS200,237,238,254,300 (Figure 2).

HS is a long linear carbohydrate chain of
repeating sulfated disaccharides, glucuronic acid
linked to N-acetylglucosamine. The HS chains are
covalently linked to specific core proteins such as
syndecan, perlecan, glypican, and agrin. These HS
proteoglycans (HSPGs) are cell surface transmem-
brane type proteins (e.g. syndecans), cell surface
glycerophosphatidylinositide-anchored type proteins
(e.g. glypicans), or diffusible proteins localized in the
ECM198,298,301–304 (e.g. perlecan and agrin). HS inde-
pendently can interact with both FGFs and FGFRs
and is proposed to cooperatively increase the affin-
ity of a 1:1 FGF-FGFR dimer by binding to a cleft
formed between the HS binding sites on FGFs and the
N-terminal region of immunoglobulin-like domain
2301,305 (Figure 3(a)). This 1:1:1 FGF-HS-FGFR com-
plex leads to conformational changes that stabilize
a symmetric 2:2:2 dimer. FGFR dimerization then
directs the juxtaposition and activation of the intra-
cellular tyrosine kinase domains, followed by the
activation of intracellular signaling pathways.198,301

As a component of the ECM, HS also functions to
sequester FGFs and modulate their diffusion through
tissue to effectively regulate the shape of a gradi-
ent. For example, differences in binding affinity
of FGF7 and FGF10 for HS, underlie differences
in epithelial branching patterns during glandular
organogenesis.306

The structure of HS is complex and heteroge-
neous; with variations in chain length, and patterns
of sulfation and acetylation along the length of the
glycosaminoglycan (GAG) chain.307–309 Synthesis of
the HS chain is catalyzed by the glycosyltransferases,
EXT1 and EXT2.310 The HS molecule consists of
repeating disaccharide units of N-acetylglucosamine
and glucuronic acid. The HS chain matures in the

Golgi where N-acetylglucosamine residues are par-
tially N-deacetylated and N-sulfated by a family of
four N-deacetylase/N-sulfotransferase enzymes311

(NDST1-4). Subsequently, 2-O-sulfotransferases,
6-O-sulfotransferases, and 3-O-sulfotransferases add
O linked sulfate groups.309 The pattern and density
of deactylation and sulfation varies along the length
of the GAG chain. In the extracellular environment,
the 6-O-endosulfatases, SULF1 and SULF2, can also
selectively desulfate HS.

The sulfation pattern and length of HS chains
regulate FGF signaling.198,312 In the embryo, specific
HS chains can regulate the cell-specific patterns of
FGF and FGFR binding to the extracellular matrix,
the direct interactions between FGFs and FGFRs, and
activation of FGFR signaling.313–315 In general, higher
levels of sulfation of HS chains facilitate FGF signaling
and the formation of ternary complexes with FGFs
and FGFRs.316,317 Furthermore, oligosaccharides
with eight or more sugar residues are most active, but
shorter HS chains can also facilitate the formation of
ternary complexes with FGFs and FGFRs.254,316,318,319

Cleavage of the HSPG core protein also modulates
FGF signaling.198 The cleavage by serine proteinases
possibly facilities FGF signaling by releasing FGFs that
were sequestered at the cell-surface.315 In addition,
the cleavage by endoglycosidases such as heparanase
possibly modulates FGF signaling.198 For example,
FGF10 in the basement membrane, that is released
by heparanase, promotes FGF signaling in branching
morphogenesis.320

Klotho Family Proteins
The 𝛼Klotho gene was originally identified as a
candidate gene responsible for a premature aging
syndrome.321 Based on the phenotypic similarity of
𝛼Klotho and Fgf23 knockout mice, 𝛼Klotho was
identified as a cofactor for FGF23 signaling through
FGFR1c, FGFR3c and FGFR4140,141,247,248,322

(Figure 2). The 𝛼Klotho gene is highly expressed
in the distal convoluted tubules in the kidney and
choroid plexus in the brain.321 A major function of
FGF23-𝛼Klotho-FGFR signaling in the kidney is to
regulate phosphate and calcium homeostasis. Mice
lacking Fgf23 or 𝛼Klotho develop hyperphosphatemia
and hypercalcemia by two weeks of age.258,323

The Klotho family is comprised of three mem-
bers including 𝛼Klotho, 𝛽Klotho, and KLPH.98,324

𝛼Klotho contains ∼1000 amino acid, a single trans-
membrane domain, and a short cytoplasmic domain
(Figure 3(c)). There are no known functions of the
cytoplasmic domains of Klotho proteins. The large
extracellular part of the Klotho molecule has two
repeated internal domains, KL1 and KL2, which
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are structurally similar to 𝛽-glucosidases. However,
there is no evidence for glucosidase activity of
𝛼Klotho. 𝛽Klotho is also a single-pass transmem-
brane protein similar to 𝛼Klotho. The 𝛽Klotho
gene is predominantly expressed in the liver and
white adipose tissue.325 𝛽Klotho is a cofactor for
FGF15/19 and FGF21 signaling through FGFR4
and FGFR1c, respectively (Figure 3(b)).322 KLPH is
also a single-pass transmembrane protein similar to
𝛼Klotho.326 The KLPH gene is expressed in the eye
and brown adipose tissue. KLPH efficiently interacts
with FGFR1b, FGFR1c, FGFR2c, and FGFR4. In
KLPH-transfected HEK293 cells, FGF19, but not
FGF21 and FGF23, causes ERK phosphorylation.160

However, the physiological function of KLPH remains
unclear. Although Klotho proteins act as cofactors
for the endocrine FGFs through formation of an
FGF-FGFR-Klotho ternary complex, they also directly
compete with a receptor docking site for canonical
FGF8 family ligands, and thus may actively suppress
these canonical FGFs while activating endocrine
FGFs.327

FGF Binding Proteins
FGFBP1 (FGF Binding Protein 1)
FGFBP1 (HBP17) was originally isolated as a
heparin-binding protein that co-eluted with FGF2
from a heparin affinity column.328 The Fgfbp1 cDNA
encodes a secreted 234 amino acid polypeptide (Mr
17,000) that binds both heparin and FGF1 and
FGF2.328 In these initial studies, FGFBP1 was shown
to inhibit the biological activity of these FGFs by
inhibiting receptor binding. However, in later studies,
FGFBP1 was shown to mobilize FGF from HS bind-
ing sites in the extracellular matrix and function to
present FGF to the FGFR.329

FGFBP1 is expressed in several human tumors,
including breast and colon cancer, and FGFBP1 can
be rate-limiting for tumor growth, but pro-angiogenic,
thus acting to facilitate tumor invasion.330 In mice,
Fgfbp1 is abundantly expressed in the colon, stomach,
ileum, and eye.160 FGFBP1 also binds to and activates
FGF7, FGF10 and FGF22, and functions to enhance
wound healing.331,332

FGFRL1/FGFR5
FGFRL1 was identified as a protein structurally sim-
ilar to FGFRs203,333 (Figure 1(c)). The Fgfrl1 cDNA,
originally cloned from human cartilage, encodes a
∼500 amino acid protein containing three extracel-
lular immunoglobulin-like domains with similarity
to FGFRs, a single transmembrane domain, and
a short intracellular tail with no tyrosine kinase
domain.333,334 Fgfrl1 (termed Fgfr5) was also cloned

from human and mouse cDNA libraries.335,336 A solu-
ble form of FGFRL1 binds to heparin and to FGF2, 3,
4, 8, 10, 22, and ectopic expression antagonized FGF
signaling during Xenopus development and inhibited
cell proliferation in vitro.334,337 Interestingly, the
short cytoplasmic domain of FGFRL1 contains an
SH2 binding motif that interacts with the tyrosine
phosphatase SHP1338 (Figure 3(d)). Overexpression of
Fgfrl1 results in increased ERK1/2 signaling.338 This
result suggests that FGFRL1 is not a decoy receptor,
but rather a non-tyrosine kinase signaling molecule.

Fgfrl1 knockout mice die immediately after
birth from respiratory failure due to a hypoplastic
diaphragm.148 Analysis of these mice reveals agenesis
of slow muscle fibers.339 These mice also show kidney
agenesis due to a reduction in mesenchymal nephron
progenitors (cap mesenchyme), arrested branching of
the urogenic epithelium, failure to form functional
nephrons, and a hypoplastic collecting duct system147

(Table 2(b)). Interestingly, mice that lack the intra-
cellular domain of FGFRL1 are viable, fertile, and
phenotypically normal, suggesting that the extracel-
lular domain of FGFRL1 mediates most of its activity
(Box 1).340

Intracellular Signal Transduction
Cytosolic Signaling Pathways
FGF binding activates the FGFR tyrosine kinase
by inducing receptor dimerization and trans-
autophosphorylation of the kinase domain1

(Figure 3(a)). For FGFR1, six tyrosine residues
are sequentially phosphorylated to fully activate the
kinase domain341,342 (Figure 3(b)). In the first phase
of activation, Y653 is phosphorylated, resulting in a
50- to 100-fold increase in tyrosine kinase activity. In
the second phase of activation, Y583, and then Y463,
Y766, and Y585 are phosphorylated. In the third
phase of activation, Y654 is phosphorylated, result-
ing in a further 10 fold (overall 500- to 1000-fold)
increase in tyrosine kinase activity. Phosphorylation
of two additional tyrosine residues, 677 and 766,
is required, respectively, for STAT3 and phospholi-
pase C𝛾 (PLC𝛾) binding.343–345 The adaptor protein,
FGFR substrate 2𝛼 (FRS2𝛼) is constitutively docked
to its binding site in the juxtamembrane region of
FGFRs and anchored to the cell membrane through
myristoylation207,346,347 (Figure 3(b)).

The activated FGFR phosphorylates adap-
tor proteins for four major intracellular signaling
pathways, RAS-MAPK, PI3K-AKT, PLC𝛾, and
signal transducer and activator of transcription
(STAT)1,151–153,344 (Figure 3(a) and (b)). Activation of
the RAS-MAPK and PI3K-AKT pathway is initiated
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BOX 1

INHIBITORY MECHANISMS THAT
REGULATE FGFR SIGNALING

Inhibition of FGFR signaling is important for
the precise control of cellular functions. Several
mechanisms have evolved to regulate FGF signal-
ing. These range from internalization and degra-
dation of the receptor to modulation of receptor
kinase activity by phosphatases and regulation of
accessibility to downstream signaling pathways.

In recent studies,389,749 a dimeric form
of GRB2, the adaptor protein that couples
FRS2 to the RAS-MAPK and PI3K-AKT pathways
(Figure 3(a)), was found to interact directly with
the FGFR2 C-terminal 10 amino acid residues,
where it stabilized a FGFR dimer which could
autophosphorylate a limited number of tyrosine
residues including Y653 and Y654 in the acti-
vation loop (Figure 3(b)). However, additional
C-terminal phosphorylation and recruitment of
signaling proteins was sterically hindered by
the bound GRB2 dimer. Following ligand medi-
ated receptor activation, phosphorylation of
GRB2 caused GRB2 to dissociate from the FGFR
C-terminus permitting full receptor activation.749

Additionally, high levels of GRB2 inhibited
phosphorylation-independent binding of PLC𝛾
(through its SH3 domain) to the very C-terminus
of the FGFR. Lower levels of GRB2 allowed PLC𝛾
binding and increased phospholipase activity,
resulting in increased cell motility, an activ-
ity that can promote metastatic behavior of
melanoma cells.750

The RAS-MAPK pathway can also exert
direct negative feedback inhibition of FGFRs.
ERK1 and ERK2, which are activated by FGFR and
other receptor tyrosine kinases, can phosphory-
late the C-terminus of FGFR2 at Ser777 to func-
tionally inhibit FGFR2 tyrosine kinase activity.751

This provides a negative feedback pathway for
FGF signaling and a means for other receptor
tyrosine kinases that use the RAS-MAPK path-
ways to communicate with FGFRs.

by phosphorylation of FRS2𝛼. FRS2𝛼 phosphory-
lation and ERK1/2 activation is partially depen-
dent on phosphorylation of Y463 and the presence
of CRKL.348,349 pY463 directly interacts with the
adapter protein CRKL and with much lower affinity to
the related protein, CRK.348–350 Downstream of RAS
and PI3K, FGFR signaling has been shown to regulate
several distinct MAP kinases including ERK1/2, JNK
and p38.178,179,351–353

Activated (phosphorylated) FRS2𝛼 binds the
membrane anchored adaptor protein, growth factor
receptor-bound 2 (GRB2) and the tyrosine phos-
phatase SHP2.207,354 GRB2 further activates the
RAS-MAPK pathway through recruitment of SOS,
and the PI3K-AKT pathway through recruitment of
GAB1 to the signaling complex (Figure 3(a)).207,355

The RAS-MAPK pathway regulates the expression
of diverse target genes through activation of E26
transformation-specific (ETS) transcription factors.
Etv4 (Pea3) and Etv5 (Erm) are ETS transcription fac-
tors that are often transcriptionally induced by FGF
signaling.356–359 Phosphorylation of ETS transcription
factors by activated MAPK allows interaction with
DNA and regulation of target gene expression.352

In contrast to the RAS-MAPK pathway, the
PI3K-AKT pathway functions to inhibit the activ-
ity of target molecules such as the forkhead box
class transcription factor, FOXO1, and the cytoso-
lic tuberous sclerosis complex 2, TSC2. FOXO1,
a pro-apoptotic effector, is inactivated by AKT
phosphorylation, causing it to exit the nucleus and
promote cell survival.360 AKT also activates the
mTOR complex 1 through phosphorylation and
inhibition of TSC2, ultimately stimulating cell growth
and proliferation.360 Phosphorylation of PLC𝛾 by the
activated FGFR tyrosine kinase leads to the hydrolysis
of phosphatidylinositol 4,5-bisphosphate to produce
inositol triphosphate (IP3) and diacylglycerol (DAG)
(Figure 3(a)). IP3 increases intracellular calcium ion
levels and DAG activates protein kinase C (PKC).
The adaptor protein, GRB14, also interacts with the
activated FGFR1 at multiple sites, including pY766361

(and possibly pY776). Binding of GRB14 to pY766
inhibits tyrosine phosphorylation and activation of
PLC𝛾362 (Figure 3(a) and (b)). Additionally, the SRC
homology-2 protein, SHB, interacts with pY766 and
acts to enhance phosphorylation of FRS2𝛼 and the
mitogenic response to FGFs in an immortalized brain
endothelial cell line.363

The activated FGFR also phosphorylates and
activates STAT1, STAT3, and STAT5, to regulate
STAT pathway target gene expression343,364–367

(Figure 3(a) and (b)). STAT1 was activated in chondro-
cytes derived from Thanatophoric dysplasia patients
with a constitutively active mutant of FGFR3,364

and STAT1 activation in response to FGF1 in pri-
mary growth plate chondrocytes was necessary to
suppress proliferation.368 However, using a rat chon-
drosarcoma cell line that stops growing in response
to FGF1, it has been controversial as to whether
STAT1 or MAPK signaling mediates the observed
growth arrest.368,369 In cancer cells, under conditions
of gene amplification or overexpression of FGFR3,
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STAT3 was phosphorylated resulting in activation of
downstream target genes.343 In brain microvascular
endothelial cells, FGF signaling was found to activate
STAT5, which was necessary for migration, invasion,
and tube formation.370

To the best of our knowledge, quantitative
similarities and differences in the signaling output
of the four FGFR kinase domains have not been
assessed. However, activation of downstream sig-
naling pathways are thought to be qualitatively
similar for Fgfr1 and Fgfr2 and different from Fgfr3
and Fgfr4.238,249,288 Similarities and differences in
signaling of the four FGFRs could be mediated by
differential rates of endocytosis,371 by differential sub-
cellular trafficking after ligand activation,372,373 or by
differences in the affinity or specificity for adaptor pro-
teins that couple to downstream signaling cascades.374

Inhibitors of FGFR Signaling
Sprouty (SPRY) is an intracellular negative regu-
lator of receptor tyrosine kinases including FGFR,
vascular-endothelial growth factor receptor, platelet-
derived growth factor receptor, and nerve growth
factor receptor.375,376 The human/mouse SPRY family
is composed of four members, SPRY1-SPRY4. Most
Spry genes are ubiquitously expressed in both embryos
and adult tissues. In FGF signaling, SPRY interacts
with GRB2 to inhibit the RAS-MAPK pathway and to
regulate the PI3K-AKT pathway206,377 (Figure 3(a)).
The phenotypes of Spry knockout mice indicate that
SPRYs are essential for development and growth. The
deregulation of SPRY function often results in human
cancers and autoimmune diseases.375,376

SEF (similar expression to Fgf ) is a transmem-
brane protein that functions as an antagonist of
FGF signaling through the Ras-MAPK pathway378,379

(Figure 3(a)). SEF functions by binding to activated
MEK to inhibit dissociation of the MEK–MAPK
(ERK1/2) complex, thus blocking nuclear translo-
cation of activated MAPK.377,380 The extracellular
domain of SEF may also interact directly with the
FGFR to inhibit receptor phosphorylation.381

Dusp6 (Dual-specificity phosphatase 6) encodes
an ERK-specific MAPK phosphatase (MKP3)382

Dusp6 expression is transcriptionally upregulated
by FGFR signaling and Dusp6 expression patterns
closely resemble those of Fgf s.383–386 DUSP6 serves in
vivo as a negative feedback regulator of FGFR signal-
ing by directly dephosphorylating MAPK (ERK1 and
ERK2) on phosphotyrosine and phosphothreonine
residues382 (Figure 3(a)).

CBL, an E3 ubiquitin ligase, forms a ternary
complex with phosphorylated FRS2𝛼 and GRB2,
resulting in the ubiquitination and degradation of

FGFR and FRS2 in response to FGF stimulation387

(Figure 3(a)). FGFR2 activation can also increase
CBL-PI3K interactions, leading to PI3K degradation
and attenuated signaling.388

SHP2 binds to phosphorylated FRS2 following
ligand activation of the FGFR.354 SHP2 functions
to dephosphorylate FGFR2 and GRB2 (Figure 3(a)).
However, activation of SHP2 (by phosphoryla-
tion) and access to the FGFR are also inhibited by
receptor-bound GRB2.389,390

Regulation of the Cellular Response
to FGFR Activation
The cellular response to FGFR signaling is regulated
by differences in the intrinsic signaling properties of
FGFRs and by the dynamics of subcellular FGFR
trafficking in response to ligand binding. Cytosolic
signaling pathways can be differentially activated
by cell surface FGFRs and internalized FGFRs. Fur-
thermore, regulating synthesis and degradation of
FGFRs can modulate the strength of the FGFR signal.
Differential cellular response can also result from
differences in signal output from multiple FGFRs. For
example, FGF1 stimulates lung epithelial cells to form
buds resulting in branching, while FGF7 stimulates
lung epithelial cells to form cyst-like structures.391,393

This could be due to activation of FGFR2 and FGFR4
by FGF1 and only activation of FGFR2b in response
to FGF7. Two FGFs that are even more similar,
FGF7 and FGF10, still can elicit different cellular
responses. FGF10 specifically induced the formation
of a Y734-phosphorylated FGFR2b-PI3K-SH3BP4
complex that targets FGFR2b to recycling endosomes
and controls cell migration and epithelial branch-
ing, whereas FGF7 leads to cell proliferation and
degradation of FGFR2b.373,392,393

Function of FGFs and FGFRs in the Nucleus
Both FGF ligands and receptors can localize to the
cell nucleus where they carry out signaling functions
that can be independent of receptor tyrosine kinase
activity.394,395 FGF1 localization in the nucleus was
found to stimulate DNA synthesis independent of
FGFRs, and FGF2 nuclear localization was associated
with glioma cell proliferation.396,397 It is not clear
whether FGFs have direct transcriptional functions or
exert their activity in the nucleus through interactions
with other molecules.

Following ligand-mediated internalization,
FGFR1 can be transported to the nucleus by inter-
actions with importin 𝛽. Nuclear FGFR1 is required
for neuronal differentiation and functions by acti-
vating transcription in cooperation with cyclic AMP
response element-binding protein (CREB).398,399
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Nuclear translocation of FGFR1, along with its
ligand, FGF2, promoted pancreatic stellate cell prolif-
eration and changes in the elaborated ECM, making it
more permissive for pancreatic cancer cell invasion.400

In breast cancer cells, activation of FGFR1b by FGF10
activated granzyme B cleavage of FGFR1. Transport
of the resulting C-terminal fragment of FGFR1 to the
nucleus was required for cell migration.401

MicroRNA REGULATION OF FGF AND
FGFR EXPRESSION AND SIGNALING

MicroRNAs (miRNAs) are small (approximately
21–24 nucleotides) non-coding RNAs, which are
post-transcriptional regulators of gene expression.402

miRNAs participate in diverse biological processes
including development, differentiation, cell prolif-
eration, metabolism, as well as in human diseases
including metabolic disorders and cancers.403,404 FGF
pathway activity during development or regeneration
can be regulated by miRNAs and loss of miRNA
regulation of FGF signaling can result in disease
progression or cancer.

During development, miRNAs can affect cell
differentiation by directly regulating Fgf or Fgfr
expression. For example, in the osteoblast, miR-338
was found to directly regulate the 3′ untranslated
region (UTR) of Fgfr2 to suppress Fgfr2 expression.
Decreased miR-338 increased Fgfr2 expression result-
ing in enhanced osteoblast differentiation.405 miRNAs
can also affect FGF signaling during development by
regulating downstream effectors of the pathway. For
example, the miR-17 family directly targets Stat3 and
Mapk14 in lung epithelium to modulate the response
to FGF10-FGFR2b signaling.406

In disease pathogenesis, such as in pulmonary
arterial hypertension (PAH), hyperproliferation of
pulmonary artery endothelial and smooth-muscle
cells leads to destruction of the pulmonary vas-
cular plexus. miR-424 and miR-503 directly
regulate (suppress) Fgf2 and Fgfr1 expression in
pulmonary artery endothelial cells. Decreased expres-
sion of miR-424 and miR-503 in PAH leads to
increased FGF2 and FGFR1 and consequent vascular
hyperproliferation.407 In a model for tissue repair,
inhibition of miR-710, a direct regulator of Fgf15
expression in myofibroblasts, increased FGF15 in
conditioned media and enhanced in vitro intestinal
epithelial wound repair.408

The metabolic functions of endocrine FGFs
can be regulated by miRNAs. miR-34a is highly
elevated in adipose tissue in obese mice and in
liver in patients with steatosis. Elevated miR-34a
in obesity attenuates hepatic FGF19 signaling and

adipose FGF21 signaling by directly targeting the
3′ UTR of 𝛽-Klotho and Fgfr1.409,410 Downregula-
tion of miR-34a increases the levels of the FGF21
receptor components, FGFR1 and 𝛽Klotho (and also
SIRT1), resulting in FGF21/SIRT1-dependent induc-
tion of genes that favor brown fat and improved hep-
atic FGF21 signaling and lipid oxidation.410

In several cancers, decreased expression of
miRNAs that normally suppress FGF expression have
been identified as a potential mechanism for promot-
ing cancer progression. For example, in non-small-cell
lung cancer (NSCLC) miR-152 and miR-198 are
downregulated, and FGF2, a direct target of miR-152,
and Fgfr1, a direct target of miR-198, are overex-
pressed, leading to decreased apoptosis and increased
proliferation and invasion.411,412 In a breast cancer
cell line, miR-503 expression is suppressed by HBXIP
(hepatitis B X-interacting protein). Reduced expres-
sion of miR-503, which directly targets the 3′ UTR
of FGF8, results in increased FGF8 and consequent
increased angiogenesis and proliferation of the breast
cancer cells.413 In gastric cancer and hepatocellular
carcinoma, miR-26a and miR-140-5p, respectively,
are strongly downregulated, and FGF9, a direct target
of both of these miRNAs is increased.414,415 Interest-
ingly, decreased miR-140-5p and miR-99b expression
has also been observed in NSCLC tissue.416,417 High
FGF9 expression observed in 10% of human NSCLC
specimens,418 suggests an additional pathogenic
relationship between miR-140-5p and FGF9 in lung
cancer. Increased expression of FGFR3, a direct target
of miR-99b, was observed in human NSCLC tissue.417

Of relevance to this mechanism, FGFR3 is the obligate
FGFR mediating FGF9 induced adenocarcinoma in a
mouse model for lung cancer.419

DEVELOPMENTAL, GENETIC, AND
PATHOLOGICAL FUNCTIONS

FGF Signaling during Peri-implantation
Development
The earliest requirement for FGF signaling is in
the preimplantation embryo, where Fgf4 is first
expressed in the morula and later in the epiblast
cells of the inner cell mass (ICM).420 Fgf4 gene inac-
tivation in mice shows that FGF4 is required for
ICM proliferation and for formation of the prim-
itive ectoderm.167,14 The receptor for FGF4 in the
ICM is more controversial. Campbell et al. detected
Fgfr1 (Flg) but not Fgfr2 (Bek) transcripts in mouse
blastocysts,421 Orr-Urtreger et al. concluded that both
Fgfr1 and Fgfr2 are expressed in the ICM and Fgfr2
is expressed in the embryonic ectoderm,422 while
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Guo et al. concluded that Fgfr2 is not expressed in
the epiblast lineage but is highly expressed in embry-
onic ectoderm.423 Fgfr knockout studies are also
controversial (Table 2(b)). Arman et al. generated
a mutant allele of Fgfr2 and found defects in the
outgrowth, differentiation, and maintenance of the
inner cell mass424; however, it is possible that this
allele functions as a dominant negative that partially
interferes with Fgfr1 signaling, as mice homozygous
for two other engineered null alleles of Fgfr2 survived
until embryonic day 10–11115,116 (Table 2(b)). Inac-
tivation of Fgfr1 or Fgf8, which are also expressed
in the blastocyst, indicates a function slightly later in
development, with phenotypes affecting axis forma-
tion and mesoderm specification105,425,426 (Table 2(a)
and (b)). We are not aware of studies in which both
Fgfr1 and Fgfr2 have been conditionally inactivated
in the ICM.

FGF Signaling in Organogenesis
FGF signaling is involved almost ubiquitously
throughout organogenesis.161 A key function of FGF
signaling is to regulate interactions between epithelial
(and mesothelial) cells and mesenchyme. A general
principle that applies to branched organs (lung, sali-
vary gland, lacrimal gland), intestine, liver, and limb
bud development involves mesenchymal expressed
FGFs, such as FGF10 signaling to the epithelial IIIb
splice variant of FGFR1 and FGFR2.171,117,427 Recip-
rocal signaling, from epithelium to mesenchyme is
mediated by FGFs expressed in epithelia, such as
FGF8 and FGF9, which signal to mesenchymal IIIc
splice variants of FGFR1 and FGFR2.428,429 However,
this general principle does not apply to all tissues.
For example, in the developing central nervous sys-
tem, FGF8 signals as an autocrine/paracrine factor
in the anterior neural primordium430 and during
development of the inner ear, autocrine/paracrine
FGF signaling regulates differentiation of the cochlear
sensory epithelium.90,103,104

Epithelial-Mesenchymal Signaling in Limb,
Lung, and Neurogenic Placode Development
FGF signaling is essential for initiation and
proximal-distal growth of the limb bud
(Figure 4(a)–(c)). Fgf10 is expressed diffusely in
the lateral plate mesoderm.54 FGF10 was recently
shown to signal to coelomic epithelium where it
induces an epithelial-mesenchymal transition to gen-
erate mesenchyme in the presumptive limb fields.431

Later, FGF10 signals to overlying ectoderm to initiate
formation of the apical ectodermal ridge (AER), a
specialized thickening of epithelium at the tip of the

growing limb that is required for proximal-distal limb
growth. Inactivation of FGFR2 in the AER at different
times during development results in blunt truncations
of the limb117,427 (Table 2(b)). FGF10 signaling to the
AER activates expression of Wnt3a and expression
of the downstream transcription factors SP6 and
SP8, which are required for Fgf8 expression.432–434

Fgf8 is first expressed as the lateral ectoderm begins
to swell and then throughout the AER. Fgf4, Fgf9,
and Fgf17 are subsequently expressed in the poste-
rior AER.15,30,435,436 AER FGFs signal to distal limb
mesenchyme through FGFR1 and FGFR2 to activate
ETV1 and EWSR1, which are required to maintain
Fgf10 expression117,437 (Table 2(b)).

FGF signaling in lung development follows simi-
lar principles to that in limb development (Figure 4(d)
and (e)). Fgf10 expression in mesenchyme adjacent to
the sites of lung bud formation is regulated by the
transcription factor Tbx4.293,438,439 FGF10 signals to
FGFR2 in foregut endoderm to induce expression of
Nkx2.1, a transcription factor that demarcates the
lung field in the foregut.118,393,439 In the absence of
FGF10, primary lung buds fail to form.54,55,440 Con-
ditional inactivation of FGF10 or FGFR2, after ini-
tial lung bud formation, results in reduced epithe-
lial branching.57,441 FGF10 signaling in lung epithe-
lium is inhibited by Spry1, Spry2, and Spry4, which
are expressed in the distal ductal epithelium proxi-
mal to sites of Fgf10 expression in mesenchyme.442,443

Inactivation of Spry1 and Spry2 results in increased
epithelial proliferation, branching, and differentiation
toward distal airway cell-types.444,445 Inactivation of
Spry2 and Spry4 results in epithelial dilation and
reduced branching.446 Interestingly, Fgf10 appears to
be expressed in a lung mesenchymal progenitor that
can give rise to parabronchial cells, vascular smooth
muscle cells and lipofibroblasts.447

FGF9 has a complementary role to that of
FGF10. Fgf9 is expressed in the mesothelium and
epithelium.448,449 Mice lacking Fgf9 have severely
hypoplastic lung development, characterized by
reduced distal mesenchyme and decreased epithelial
branching.42,43 The primary target of FGF9 in lung
mesenchyme is FGFR1 and FGFR2.43 Most of the
mesenchymal proliferation can be accounted for
by FGF9 derived from the mesothelium, whereas
epithelial-derived FGF9 is important for branching.44

In lung mesenchyme, an interaction with FGFR and
canonical WNT signaling is essential for develop-
ment. FGFR activation is required for the expression
of Wnt2a and WNT/𝛽-catenin signaling is required to
maintain mesenchymal Fgfr1 and Fgfr2 expression.450

Thus WNT/𝛽-catenin signaling functions to modulate
the tissue responsiveness to FGF signals.
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FGF signaling is required for the induction of
neurogenic placodes.451 For example, the otic placode,
which gives rise to the entire inner ear including sen-
sory hair cells, specialized supporting cells and the
innervating sensory neurons, requires direct signaling
from FGF3 and FGF10 (Figure 4(f) and (g)). FGF3 is
derived from the hindbrain and FGF10 is expressed
in head mesenchyme. Both of these FGFs signal to
pre-otic ectoderm to induce the otic placode.452,453

The size of the otic placode is initially regulated by
FGF-induced proliferation and expression of the FGF
pathway inhibitors, Spry1 and Spry2.454,455 FGF8 is
also necessary for otic placode development; how-
ever, FGF8 functions indirectly, signaling from cranial
endoderm to regulate Fgf10 expression in adjacent
head mesenchyme.28

Canonical FGF Signaling within
the Nervous System
Canonical FGF signaling within an epithelial or
mesenchymal compartment is used in an autocrine,
paracrine, or juxtacrine manner during the develop-
ment of some neuronal tissues. For example, in the
developing central nervous system, Fgf8 is expressed
in localized organizing centers such as the anterior
neural primordium (neuroepithelium) where it signals
as a paracrine factor to regulate anterior–posterior
patterning of the telencephalon430 and maintain the
survival of telencephalic progenitors.456 Similarly,
FGF signaling is important for patterning around
the midbrain-hindbrain junction and around rhom-
bomere 4.31,457–464

During development of the cochlear duct in the
inner ear, Fgf20 is expressed in the prosensory epithe-
lium and signals as an autocrine/paracrine factor to
FGFR1 to regulate differentiation of the cochlear
sensory epithelium103,90 (Figure 4(h)). FGF signaling
is also required for neuronal migration in the cor-
tical ventricular zone and for the translocation of
astroglial cells from the ventricular zone to the cortical
surface.465,466 In myelinating nerves, FGFs expressed
in neurons, signal to FGFR1 and FGFR2 in oligoden-
drocytes to regulate myelination122 and in synapto-
genesis, FGF7 and FGF22, expressed in specific neu-
ronal populations, are required for the induction of
inhibitory and excitatory synapses, respectively, in the
neurons that they innervate.22,467

Canonical FGF Diffusion Controlled by ECM
Interactions Regulates Development
Interactions of FGF ligands and the ECM affect recep-
tor affinity and their diffusion through tissue.197,468

Receptor binding and diffusion through tissue can
have synergistic or antagonistic effects on overall

FGF signaling. An example of this is the elbow knee
synostosis (EKS) mutation and multiple synostosis
syndrome, both of which result from missense muta-
tions in Fgf9469,470 (discussed under Heritable disease
mutations below). The Fgf9EKS mutation reduces its
affinity for heparan sulfate proteoglycan and increases
diffusion of FGF9 through developing joint tissue.
This increases FGF9 signaling distally in the pre-
sumptive joint space and results in failure to form
a joint cavity. In lacrimal gland development, Fgf10
is expressed in perioccular mesenchyme. Lacrimal
gland development was impaired in mice in which the
mesenchymal biosynthetic enzyme for glycosamino-
glycans, UDP-glucose dehydrogenase, or enzymes
required for heparan sulfation, NDST1 and NDST2,
were inactivated.471 Phenotypic analysis indicated that
these mutations resulted in increased FGF10 diffusion,
decreased local concentrations, and defective epithe-
lial branching into the FGF10-deficient mesenchyme.

Loss-of-Function Fgf and Fgfr Mutations
in Mice
Fgf1 Subfamily
FGF1 and FGF2 appear to have relatively minor
roles in embryonic development but are important
regulators of the injury response.3,5,6,181,472–475 Fgf1
expression in adipose tissue is induced in response
to a high fat diet and mice lacking Fgf1 develop
a diabetes phenotype when placed on a high fat
diet4 (Table 2(a)). Mice lacking Fgf2 also develop
normally, but show reduced vascular tone, impaired
cardiac hypertrophy, reduced cortical neuron density,
and defects in response to cutaneous, pulmonary, or
cardiac injury3,5,7,181,473,476–478 (Table 2(a)).

Fgf4 Subfamily
Fgf4 knockout mice die at early embryonic stages
due to impaired proliferation of the blastocyst inner
cell mass14 (Table 2(a)). Conditional inactivation of
Fgf4 in limb bud apical ectodermal ridge cells iden-
tified redundancy with Fgf8 for survival of cells
located distal to the apical ectodermal ridge.292 Sim-
ilarly, Fgf4 and Fgf8 show redundancy in somito-
genesis and conditional loss of both genes results
in loss of presomitic mesoderm and its premature
differentiation.29 Genetic analysis in domestic dog
breeds identified a retrovirus-mediated duplication
of Fgf4 associated with a short-legged phenotype
resembling chondrodysplasia.16 Fgf5 and Fgf6 knock-
out mice are viable. Inactivation of the Fgf5 gene
results in a long hair phenotype in angora mice and
in engineered knockouts18 (Table 2(a)). Fgf6 knock-
out mice have defects in muscle regeneration19 and
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the combined loss of Fgf2, Fgf6 and the Mdx gene
leads to severe dystrophic changes with reduced for-
mation of new myotubes in regenerating muscle20

(Table 2(a)).

Fgf7 Subfamily
Fgf3 knockout mice are viable, but have pheno-
types that include inner ear agenesis and dysgenesis,
microtia, and microdontia12,56,479 (Table 2(a)). Fgf7
knockout mice, which are also viable, have impaired
hair and kidney development23,24 and defects in the
formation of neuronal synapses22 (Table 2(a)). Fgf10
knockout mice die shortly after birth. Fgf10 is critical
for epithelial-mesenchymal interactions necessary for
the development of epithelial components of multiple
organs including the limb, lung, salivary glands kid-
ney, and white adipose tissue54,55,58,480 (Table 2(a)).
Fgf22 knockout mice are viable, but like Fgf7 have
defects in synaptogenesis.467 Interestingly, Fgf22
knockout mice have defects in the formation of excita-
tory synapses, while Fgf7 knockout mice have defects
in inhibitory synapses. Consistent with this, Fgf7 and
Fgf22 knockout mice are either resistant to or prone
to epileptic seizures, respectively22,95 (Table 2(a)).

Fgf8 Subfamily
Fgf8 knockout mice lack all embryonic mesoderm and
endoderm-derived structures and die by embryonic
day 9.5.426 Subsequent analysis revealed that FGF8
is required for Fgf4 expression in the primitive streak
resulting in impaired migration away from the prim-
itive streak.32 Conditional inactivation of Fgf8 iden-
tified additional roles in limb bud development and
organogenesis15 (Table 2(a)). Fgf17 knockout mice
are viable, but show impaired hindbrain development
and a selective reduction in the size of the dorsal
frontal cortex31,84 (Table 2(a)). Fgf18 knockout mice
die shortly after birth. Fgf18 has essential roles in the
development of mesenchymal components of multiple
organs including the skeleton, lung, and brain.85–88,481

Late in embryonic development FGF18 is involved in
lung alveolar development88 (Table 2(a)).

Fgf9 Subfamily
Mice lacking Fgf9 have hypoplastic lungs, sex reversal
and impaired survival of male germ cells, impaired
skeletal growth, impaired cardiomyocyte growth,
impaired growth of the small intestine and cecum,
and defects in inner ear development41,42,45–49,482

(Table 2(a)). Mice lacking Fgf16 are viable but have
decreased proliferation of cardiomyocytes in embryos
and neonatal mice82,83 and enhanced cardiac hyper-
trophy and fibrosis in response to angiotensin II as
adults81 (Table 2(a)). Mice lacking Fgf20 are viable

but lack guard hairs, have impaired differentiation of
sensory cells in the cochlea, small kidneys, and defects
in tooth development.40,90–92 Fgf9 and Fgf20 show
redundancy in their requirement for kidney develop-
ment, where they function to maintain the stemness
of cap mesenchyme progenitor cells40 (Table 2(a)).

Fgf15/19 Subfamily
Mice lacking Fgf15 develop normally until E10.5,
but then gradually die due to variably penetrant
defects in morphogenesis of the cardiac outflow
tract.76,483 At postnatal stages, intestinal FGF15/19
functions to regulate hepatic bile acid synthesis78

(Table 2(a)). Following partial hepatectomy, mice
lacking Fgf15 have severe defects in regeneration;
showing reduced or delayed expression of early
response genes and transcription factors that regulate
the cell cycle.79,484 Mice lacking Fgf21 are phenotypi-
cally normal under homeostatic conditions. However,
when fasted, Fgf21 expression is rapidly upregulated
in the liver,485–487 and in response to fasting, mice
lacking Fgf21 showed increased lipolysis93 and an
impaired adaptation to a ketogenic diet.488 Subse-
quent studies showed that FGF21 is an upstream
effector of adiponectin in white adipocytes and that
adiponectin mediates many of the systemic effects of
FGF21 on energy metabolism and insulin sensitivity
in liver and skeletal muscle489,490 (Table 2(a)). Fgf23
knockout mice survive until birth, but then gradu-
ally die.100 Fgf23 knockout mice and mice in which
FGF23 is inhibited with antibodies show hyperphos-
phatemia and increased levels of the active form of
vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D).
Fgf23, which is expressed in osteocytes, signals to
the kidney where it induces the vitamin D activating
enzyme Cyp27b1 and inhibits Cyp24, which inac-
tivates vitamin D. Injection of recombinant FGF23
rapidly reduces circulating parathyroid hormone
(PTH) and levels of the sodium-dependent phosphate
co-transporters, NPT2a and NPT2c, in the kidney,
resulting in phosphaturia.491,492 FGF23 has also been
shown to signal directly to cardiomyocytes to induce
hypertrophy,493 and increase myocyte Ca2+ levels and
cardiac contractility494 (Table 2(a)).

Fgf11 Subfamily
Mice lacking Fgf13, though viable, have defects
in neuronal migration and deficits in learning and
memory70 (Table 2(a)). Mice lacking Fgf14 have
paroxysmal dyskinesia, movement disorders, and
impaired spatial learning71,72,74 (Table 2(a)). FGF14
and other members of the iFGF family interact with
the cytoplasmic carboxy terminal tail of voltage gated
sodium channel (Nav) 𝛼 subunits69,263,264,495–498.
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FGF13 was also found to interact directly with and
stabilize microtubules70 and bind junctophilin-2, a
protein that regulates L-type Ca2+ channels.499

Mice lacking Fgf14 have defective neuronal
firing due to altered Nav channel physiology69,72,73,500

(Table 2(a)). Inactivation of Fgf14 in adult mouse
Purkinje neurons results in loss of spontaneous fir-
ing and deficits in coordination,501 suggesting that
FGF14 functions as a physiological regulator of Nav
channels in vivo. Interestingly, FGF14 interactions
with Nav channels may be regulated downstream
of glycogen synthase kinase 3 providing a pathway
that could link intercellular signaling and neuronal
excitability.498,502–504 Consistent with phenotypes
seen in Fgf14 deficient mice, mutations in Fgf14 in
humans result in a progressive spinocerebellar ataxia
syndrome (SCA27)505,506 (see below).

Fgfr Family
Most embryos lacking both alleles of Fgfr1 do not
survive past embryonic day 8.5. Analysis of earlier
stages of development shows that Fgfr1-null embryos
are smaller, but do initiate gastrulation (mesoderm
formation), have impaired mesoderm migration, but
fail to initiate somitogenesis105,425 (Table 2(b)). Mice
lacking Fgfr2 survive until embryonic day 10–11.
These embryos fail to form a functional placenta
and do not form limb buds115,116 (Table 2(b)). As
discussed above, another presumed null allele of Fgfr2
that dies earlier in development may have dominant
negative effects on other Fgfrs, uncovering potential
redundancies and resulting in earlier and more severe
phenotypes.424 At later stages of development, several
studies have demonstrated redundant function of
Fgfr1 and Fgfr2 in organogenesis.43,49,121,507

Mice lacking Fgfr3 are viable. In the absence
of Fgfr3, the most prominent phenotype is skeletal
overgrowth127,128 (Table 2(b)). However, close exam-
ination of Fgfr3 null mice revealed defects in inner
ear development resulting in sensorineural hearing
loss,127,129,508 decreased growth of the cerebral cortex
and telencephalon,509 reduced numbers of differenti-
ated oligodendrocytes,130 and fewer intestinal crypts
with impaired paneth cell differentiation.510

Mice lacking Fgfr4 are viable and overtly
healthy.131 Although, they have normal liver histol-
ogy and regenerative response to partial hepatectomy,
mice lacking Fgfr4 exhibit depleted gallbladders, ele-
vated bile acid reserves, elevated bile acid excretion,
increased mass of white adipose tissue, hyperlipi-
demia, glucose intolerance, insulin resistance, and
hypercholesterolemia143,511 (Table 2(b)). The role
of FGFR4 in tumorigenesis is controversial. In one
study, mice lacking Fgfr4 have increased susceptibility

to chemically induced hepatocellular carcinoma,
indicating that FGFR4 may function as a tumor
suppressor in the liver.512 However, in a second study,
FGFR4 was found to be required for FGF15/19
induced hepatocellular carcinoma and mice lacking
Fgf15 are resistant to chemically induced hepatocel-
lular carcinogenesis.257,513 FGFR3 and FGFR4 show
redundant function in the regulation of vitamin D
levels and in regulating alveolar septation131,140,142

(Table 2(b)). FGFR1 and FGFR4 show redundant
function in phosphate homeostasis141 (Table 2(b)).

Heritable Disease Mutations in FGFs
and FGFRs in Humans and Other Mammals
FGF4 Subfamily
Chondrodysplasia is a short-legged phenotype that
defines at least 19 dog breeds. The expression of
a recently acquired expressed retrogene encoding
Fgf4 is strongly associated with the chondrodysplasia
phenotype16 (Table 3(a)). Genome-wide association
studies (GWAS) in dogs identified a mutation in Fgf5
that is associated with hair length518 (Table 3(a)).
A missense mutation in Fgf5 was also found in
longhaired cats and the Angora mouse mutant18,519

(Table 3(a)).

FGF7 Subfamily
Michel aplasia is a unique autosomal recessive
syndrome characterized by type I microtia, microdon-
tia, and profound congenital deafness associated
with a complete absence of inner ear structures.
Michel aplasia is caused by mutations in FGF3514

(Table 3(a)). Human chronic obstructive pulmonary
disease (COPD) is a type of obstructive lung disease
characterized by chronically poor airflow. Genome
wide association studies identified single nucleotide
polymorphisms in FGF7 significantly associated
with COPD522 (Table 3(a)). Aplasia of the lacrimal
and salivary glands (ALSG) is an autosomal dom-
inant congenital anomaly characterized by aplasia,
atresia, or hypoplasia of the lacrimal and salivary
systems. Lacrimo-auriculo-dento-digital (LADD) syn-
drome is an autosomal-dominant multiple congenital
anomaly disorder characterized by aplasia, atresia,
or hypoplasia of the lacrimal and salivary systems,
cup-shaped ears, hearing loss, and dental and digital
anomalies. Both ALSG and LADD syndromes are
caused by FGF10 mutations530,531 (Table 3(a)). Severe
myopia (nearsightedness) is associated with a single
nucleotide polymorphism in FGF10532 (Table 3(a)).
In strong support of an FGF10-FGFR2b signal,
loss-of-function mutations in FGFR2 are also a cause
of LADD syndrome (see below).
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TABLE 3 Heritable Mutations in FGFs Associated with Disease in Humans (and Mice)

Gene Name Mutation Associated Disease Selected References

(a) Heritable mutations in FGFs associated with disease in humans (and other mammals)

FGF1

FGF2

FGF3 Haploinsufficiency Oto-dental syndrome 479,514–517

Missense/frameshift mutation Michel aplasia (inner ear agenesis, microtia, and microdontia),
LAMM syndrome (labyrinthine aplasia, microtia, and
microdontia)

FGF4 Retroviral overexpression Chondrodysplasia (dogs) 16

FGF5 Deletion mutation Angora mutation (mice) 18,518–521

Missense/splice-site mutation Coat variability (pure bred dogs)

Missense/insertion/deletion
mutation

Long-hair (cats)

FGF6

FGF7 Polymorphism Chronic obstructive pulmonary disease risk 522

FGF8 Nonsense mutation Hypogonadotropic hypogonadism 523–528

Missense mutation Cleft lip and palate, Holoprosencephaly, craniofacial defects,
Hypothalamo-pituitary dysfunction, Kallman syndrome type 6

Hypomorphic allele Lack of hypothalamic GnRH neurons

FGF9 Missense mutation Multiple synostoses syndrome, Elbow knee synostosis (mice) 469,470,529

Promoter polymorphism Sertoli cell-only syndrome

FGF10 Nonsense mutation Aplasia of lacrimal and salivary glands, LADD syndrome 530–534

Polymorphism Extreme myopia

FGF11

FGF12 Missense mutation Brugada syndrome (candidate gene) 535

FGF13 Nonsense mutation Börjeson-Forssman-Lehmann syndrome (BFLS) (candidate gene) 536,537

Position effect X-linked congenital generalized hypertrichosis

FGF14 Missense mutation/
translocation/deletion

Spinocerebellar ataxia 27 (SCA27) 505,538,539

FGF15/19

FGF16 Nonsense mutation Metacarpal 4–5 fusion 540,541

FGF17 Missense mutation Hypogonadotropic hypogonadism 542

FGF18 Polymorphism Nonsyndromic cleft lip and palate 524

FGF20 Polymorphism Parkinson disease risk 40,543–545

Missense mutation Kidney agenesis (human)

FGF21 Polymorphism Macronutrient intake, obesity, and type-2 diabetes risk 546–548

FGF22

FGF23 Missense mutation Autosomal dominant hypophosphataemic rickets, Familial
hyperphosphatemic tumoral calcinosis

242,549–555

Polymorphism Cardiac abnormality risk in Kawasaki syndrome (increased serum
FGF23)

(b) Heritable mutations in FGFRs associated with disease in humans (and other mammals)

FGFR1 Missense mutation Pfeifer syndrome, Kallman syndrome 2, Normosmic idiopathic
hypogonadotropic hypogonadism, Split hand/foot malformation,
Osteoglophonic dyplasia, Harstfield syndrome

556–566

Missense or frameshift mutation Jackson-Weiss syndrome
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TABLE 3 Continued

Gene Name Mutation Associated Disease Selected References

FGFR2 Missense mutation Apert syndrome, Crouzon syndrome, Jackson-Weiss syndrome,
Pfeifer syndrome, Non syndromic craniosynostosis, Bent bone
dysplasia

567–579

Deletion Saethre-Chotzen-syndrome

FGFR3 Missense mutation Hypochondroplasia, Achondroplasia, Thanatophoric dysplasia,
Coronal craniosynostosis, Crouzon syndrome with acanthosis
nigricans, Platyspondylic lethal skeletal dysplasia,
Achondroplasia with developmental delay, and acanthosis
nigricans (SADDAN), Muenke syndrome,
Saethre-Chotzen-syndrome, CATSHL syndrome, Mouse models
for aberrant osteogenesis, Achondroplasia, Muenke syndrome

288,574,580–611

FGFR4 Overexpression Facioscapulohumeral muscular dystrophy 612–614

Missense mutation Gallstone disease

Polymorphism Bronchopulmonary dysplasia, Neonatal respiratory distress
syndrome

FGFRL1 Frameshift mutation Craniosynostosis, Antley–Bixler-like syndrome 615–617

Deletion Wolf-Hirshchhorn syndrome

FGF8 Subfamily
Nonsense mutations in FGF8 and destabilizing mis-
sense mutations in FGF17 were found in familial
hypogonadotropic hypogonadism with variable
degrees of gonadotropin-releasing hormone defi-
ciency and olfactory phenotypes523,542 (Table 3(a)).
Cleft lip and/or palate (CLP) appear when the two
halves of the palatal shelves fail to fuse completely.
A missense mutation in FGF8 which is predicted to
cause loss-of-function by destabilizing the N-terminal
structure of the protein (important for FGFR binding
affinity and specificity) was found in a patient with
CLP524 (Table 3(a)).

FGF9 Subfamily
An autosomal dominant missense mutation in FGF9
was found in patients with multiple synostosis syn-
drome (SYNS). The mutation leads to significantly
impaired FGF9 receptor binding, reduced chondro-
cyte proliferation, increased osteoblast differentiation,
and matrix mineralization resulting in joint fusions
(synostosis)470 (Table 3(a)). An autosomal dominant
missense mutation in Fgf9 is also responsible for the
mouse mutant, elbow knee synostosis (EKS), show-
ing elbow and knee joint synostosis, and prema-
ture fusion of cranial sutures. The mutation prevents
homodimerization of the FGF9 protein, resulting in
reduced affinity for heparin. Even though receptor
binding affinity is decreased by this mutation, the
EKS phenotype resembles that of a gain-of-function
mutation. The reduced affinity for heparan sulfate
results in increased diffusion of FGF9 through tissue,

leading to ectopic FGF9 signaling and repression of
joint and suture development469 (Table 3(a)). Over-
expression of an activated form of FGFR1 in devel-
oping chondrocytes results in a similar joint fusion
phenotype.618

Sertoli cell–only syndrome (SCOS) patients com-
monly have atrophic testes, azoospermia, and hypog-
onadism. FGF9 is expressed in the Leydig cells of the
testis and FGF9 expression is significantly decreased
in patients with SCOS. A promoter mutation in FGF9
results in weak promoter activity and the resulting
low expression of testicular FGF9529 (Table 3(a)).
Metacarpal 4–5 fusion is a rare congenital malfor-
mation of the hand characterized by the partial or
complete fusion of the fourth and fifth metacarpals
in humans. Nonsense mutations in FGF16 are asso-
ciated with X-linked recessive metacarpal 4–5 fusion,
indicating the involvement of FGF16 in the fine tuning
of skeletal development540,619 (Table 3(a)). Parkinson
disease is a common neurodegenerative disorder
resulting in the inability to control movement. The
disease has been attributed to the severe loss of
dopaminergic neurons within the substantia nigra.
The significant correlation of Parkinson disease with
single nucleotide polymorphisms in FGF20 indicates
that the genetic variability of FGF20 may be a risk
factor for Parkinson disease543–545 (Table 3(a)). A
frameshift mutation in FGF20 also results in bilateral
renal agenesis in humans, indicating that FGF20
is essential for metanephric kidney development40

(Table 3(a)).
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FGF15/19 Subfamily
Dietary intake of macronutrients has been associated
with risk of obesity and type 2 diabetes. Polymor-
phisms in FGF21 are potentially associated with
macronutrient consumption and risk of obesity and
type 2 diabetes in humans546–548 (Table 3(a)). Muta-
tions resulting in either gain- or loss-of-function
of FGF23 result in human disease620 (Table 3(a)).
Autosomal dominant hypophosphatemic rickets
(AHDR) is caused by gain-of-function mutations in
FGF23.242 Tumors that over-produce FGF23 also
cause tumor-induced osteomalacia (TIO), which is a
paraneoplastic disease characterized by renal phos-
phate wasting and resulting hypophosphatemia.621

Reduced FGF23 signaling also causes familial
tumoral calcinosis (FTC); a disease characterized
by ectopic calcification and hyperphosphatemia549,550

(Table 3(a)). Kawasaki syndrome (KS) is a childhood
vascular inflammatory disease with an increased
risk of developing subsequent cardiac abnormalities.
Thirty three percent of patients examined were found
to have a polymorphism in FGF23 and elevated serum
levels of FGF23.551,552 FGF23 polymorphisms were
significantly associated with cardiac abnormalities
(Table 3(a)).

FGF11 Subfamily
Brugada syndrome (BrS) is a potentially life-
threatening inherited cardiac arrhythmia. FGF12
(FHF1) is the major intracellular FGF expressed
in the human ventricle. A single missense muta-
tion in FGF12 in Brugada syndrome patients
reduces binding to the voltage gated sodium chan-
nel (NaV1.5) C-terminus, resulting in reduced Na+

channel current density and availability without
affecting Ca2+ channel function535 (Table 3(a)).
Börjeson–Forssman–Lehmann syndrome (BFLS) is an
X-linked mental retardation syndrome. A duplication
breakpoint identified in a patient with BFLS maps
near the FGF13 (FHF2) gene at Xq26.3. This disease
association and the high expression of FGF13 in brain
and skeletal muscle makes it a good candidate gene for
BFLS536 (Table 3(a)). X-linked congenital generalized
hypertrichosis is an extremely rare condition of hair
overgrowth on different body sites. This disease maps
to Xq24-27 and a large interchromosomal insertion
at Xq27.1 co-segregates with the disease. In patients
with this disease, FGF13 expression is significantly
decreased throughout the outer root sheath of affected
hair follicles, suggesting a role for FGF13 in hair fol-
licle growth and in the hair cycle537 (Table 3(a)).
Spinocerebellar ataxias (SCAs) are neurodegenerative
disorders with multiple genetic etiologies. SCA27 is
characterized by early onset tremor, dyskinesia, and

slowly progressive cerebellar ataxia. SCA27 is caused
by missense, translocation, or deletion mutations in
FGF14506,622,623 (Table 3(a)). Loss of binding of the
mutant FGF14 protein to Nav channel 𝛼 subunits
and instability of the mutant protein are thought to
be the primary factors leading to this disease505,624

(Table 3(a)).

FGFR1
Gain-of-function missense mutations in FGFR1
are found in several craniosynostosis syndromes
including Pfeiffer syndrome, Jackson-Weiss syn-
drome, Muenke syndrome, and osteoglophonic
dysplasia556,557,567,625,626 (Table 3(a)). These are auto-
somal dominant syndromes that affect cranial suture
closure and have various additional skeletal and soft
tissue phenotypes. Interestingly, Pfeiffer syndrome,
Jackson-Weiss syndrome, and Muenke syndrome phe-
notypes also can be caused by activating mutations
in FGFR2 (Pfeiffer) or FGFR3 (Pfeiffer, Muenke),
suggesting possible redundant or parallel function of
these FGFRs in skeletal development.568,626

Loss-of-function missense mutations have also
been identified in FGFR1 as a cause of Kallmann syn-
drome 2 (hypogonadotropic hypogonadism 2) with
or without anosmia558,559 (Table 3(a)). Dominant
or recessive mutations in FGFR1 that are likely
loss-of-function are found in Harstfield syndrome
(holoprosencephaly and ectrodactyly, with or without
cleft lip and palate)560 (Table 3(a)).

FGFR2
Autosomal dominant gain-of-function missense
mutations, deletions, and insertions in FGFR2 result
in Apert syndrome, Crouzon syndrome, non syn-
dromic craniosynostosis syndrome, Saethe-Chotzen
syndrome, Pfeiffer syndrome, and Jackson-Weiss
syndrome567–574,627,628 (Table 3(b)). Pfeiffer and
Jackson-Weiss syndromes also result from mutations
in FGFR1, as described above. All of these syndromes
have in common synostosis of at least one cranial
suture; many of these syndromes also affect the appen-
dicular skeleton and other organs. For example, the
Crouzon syndrome mutation, FGFR2C342Y, affects
the shape of the brain, but not its overall volume.629

The biochemical consequences of the clas-
sic Apert syndrome mutations (FGFR2S252W and
FGFR2P253R) and a relatively rare Alu element inser-
tion, or deletion of an intronic splicing element in
the intron between exon 8 (IIIb) and exon 9 (IIIc)
of FGFR2 is to change the ligand binding affinity to
an extent that mesenchymal ligands such as FGF10
are able to activate mesenchymal splice variants of
FGFR2575,630 (Figure 5(b)). Importantly, the Apert
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mutations all remain ligand dependent. The Alu
element insertion acts by disrupting splicing to exon
9, encoding the IIIc splice variant (Figure 1(b)),
leading to alternative mesenchymal misexpression of
exon 8, encoding the IIIb splice variant. The missense
mutations directly affect ligand affinity for the mutant
receptor.575,576,631–638

Bent bone dysplasia, which is a perinatal lethal
skeletal dysplasia characterized by osteopenia, cran-
iofacial dysmorphology and bent bones, results from
mutations in FGFR2 that decrease plasma membrane
signaling without affecting nuclear localization of the
mutant receptor577 (Table 3(b)). The consequence of
this mutation is enhanced nucleolar occupancy of the
receptor at the ribosomal DNA promoter where it acti-
vates rDNA transcription.639

Loss-of-function mutations in FGFR2 are seen
in lacrimo-auriculo-dento-digital (LADD) syndrome,
which is characterized by lacrimal-duct aplasia, dys-
plastic ears, hearing loss, small teeth, and digital
malformations531 (Table 3(b)). Mutations in FGFR2
disrupt the catalytic pocket of the tyrosine kinase
domain resulting in reduced substrate binding and
reduced tyrosine kinase activity.640,641 Other individu-
als with LADD syndrome have inactivating mutations
in FGF10 (see above), a ligand for FGFR2b,533 or a
missense mutation in FGFR3531 (Box 2).

FGFR3
Hypochondroplasia, Achondroplasia, Thanatophoric
dysplasia, and Platyspondylic lethal skeletal dysplasia
are autosomal dominant disorders characterized by
short-limbed dwarfism.580,581 These syndromes are
caused by gain-of-function missense mutations in
FGFR3. Among the mutations, the G380R mutation
in the transmembrane domain of FGFR3 activates the
receptor in a ligand dependent manner resulting in
Achondroplasia, the most common form of skeletal
dwarfism in humans (Figure 5(c)). By contrast, in
the lethal skeletal dysplasia syndrome, Thanatophoric
dysplasia, type I or type II, the R248C mutation in
the extracellular domain or the K650E mutation in the

BOX 2

DEVELOPING A PHARMACOLOGICAL
TREATMENT FOR ACHONDROPLASIA

Achondroplasia is caused by a ligand depen-
dent autosomal dominant mutation in FGFR3.
Because the disease phenotypes form dur-
ing the prepubertal years when bones are
actively growing, it was anticipated that direct

or indirect inhibition of the FGFR3 signaling
pathway could form the basis of a therapy
for Achondroplasia.738 The direct inhibition of
the FGFR3 kinase has thus far not succeeded
in vivo, possibly because of difficulties in achiev-
ing therapeutic levels of FGFR3 kinase inhibitors
in the avascular growth plate. However, over
the past 20 years, other therapies have been
aimed at indirectly augmenting skeletal growth
or indirectly suppressing FGFR3 signaling. One of
the first therapies to be evaluated was the use of
human growth hormone; however, no long-term
benefit was observed.581,739 More recently, it
was discovered that C-type natriuretic peptide
(CNP) signaling through its receptor, natri-
uretic peptide receptor 2 (guanylate cyclase B)
in chondrocytes, inhibits the MAPK signaling
pathway at the level of RAF1, to regulate skele-
tal growth. Overexpression of CNP in mice or
humans results in skeletal overgrowth through
attenuation of FGFR3 signaling.740,741 BMN-111,
a CNP agonist with an extended half-life, was
found to normalize skeletal growth in a mouse
model for Achondroplasia604,742,743 and this drug
is currently being evaluated in a clinical trial for
the treatment of Achondroplasia.

Other indirect strategies involve the use of
a soluble FGFR3 extracellular domain (sFGFR3)
to interfere with endogenous FGFR3 signaling
by binding FGF ligands (FGF9 and FGF18) that
normally are required to activate the receptor
during postnatal skeletal development.47,85–87,744

In a mouse model for Achondroplasia,132 sub-
cutaneous injections of recombinant sFGFR3
throughout the growth period normalized
skeletal growth and decreased mortality with-
out having any apparent toxic side effects.
Several inhibitory antibodies have also been
developed to target the FGFR3 extracellular
domain for potential cancer therapeutics, but
these have not yet been evaluated for treatment
of Achondroplasia.745–747

Statins (drugs that inhibit cholesterol
biosynthesis) were recently identified through
a screen for drugs that could improve chon-
drogenic differentiation of induce pluripotent
stem cells (iPSCs) derived from patients with
Thanatophoric dysplasia.748 Treatment of a
mouse model for Achondroplasia132 with Rosu-
vastatin, which is one of the statin drugs,
increased anteroposterior skull length and the
lengths of the ulnas, femurs and tibiae.748

Although the mechanism is poorly defined,
statin treatment was found to increase degrada-
tion of the mutant FGFR3.
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(a) (b) (c) (d) (e)

FIGURE 5 | Activating mutations in FGFRs in heritable and acquired disease. (a) Wild type FGFR-FGF-HS complex. (b) Missense mutations in the
linker between immunoglobulin-like domain II and III affect the affinity and specificity of the receptor. The Apert syndrome mutation, S252W, allows
FGF10 to activate the IIIc splice variant of FGFR2. (c) Missense mutations in the transmembrane domain, as seen in the G380R Achondroplasia
mutation, weakly activates the receptor in a ligand dependent manner by impeding receptor internalization. (d) The strongly activating ligand
independent mutation, R248C, in Thanatophoric dysplasia, type I, causes constitutively active disulfide linked receptor dimers. (e) Mutations in the
tyrosine kinase domain, as seen in the K640E Thanatophoric dysplasia, type II mutation, are often ligand independent and result in receptor
autophosphorylation and signaling from intracellular sites such as the endoplasmic reticulum.

intracellular domain activates FGFR3 in a ligand
independent manner288,582–595,642,643 (Figure 5(d)
and (e)). Muenke syndrome (Muenke nonsyn-
dromic coronal craniosynostosis) is an autosomal
dominant disorder characterized by synostosis,
macrocephaly, midfacial hypoplasia, and hearing
loss caused by gain-of-function missense mutations
in FGFR3596–602,644 (Table 3(b)). Mouse models for
aberrant osteogenesis, Achondroplasia, and Muenke
syndrome have been developed603–606 (Table 3(b)).
Two craniosynostosis syndromes, Crouzon syndrome
and Saethe-Chotzen syndrome, can result from
mutations in FGFR2 or FGFR3, suggesting overlap-
ping or redundant functions of these FGFRs.592,607,608

Loss-of-function missense mutations, that likely
function through a dominant negative mechanism,
have been identified in FGFR3 as the cause of CAT-
SHL syndrome (autosomal dominant syndrome char-
acterized by camptodactyly, tall stature, and hearing

loss)609 (Table 3(b)). A recessive loss-of-function
mutations in FGFR3 has also been identified in two
siblings with tall stature, severe skeletal abnormalities,
camptodactyly, arachnodactyly, scoliosis and hearing
impairment.610 A similar disease, spider-lamp syn-
drome in sheep, is characterized by abnormally long
limbs, kyphoscoliosis, malformed ribs and sternebrae,
hooked or ‘Roman’ nose, lack of body fat, and mus-
cular atrophy.645,646 This disease is associated with
a missense mutation in the FGFR3 tyrosine kinase
domain coupled with poorly described interactions
with other genetic and environmental factors.

A mutation in FGFR3 has also been associated
with LADD syndrome (Table 3(b)). Although the
function of the mutation, localized to the conserved
proximal tyrosine kinase domain (TK1, Figure 1(b)),
is not known, the phenotypes of affected individuals
are distinct from both known gain-of-function muta-
tions causing chondrodysplasia syndromes and
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loss-of-function mutations resulting in skeletal over-
growth and hearing loss.531,581,609

FGFR4
Facioscapulohumeral muscular dystrophy is an auto-
somal dominant disorder, ranging from mild dys-
function to severe respiratory failure. Overexpres-
sion of FGFR4 in muscle and surrounding connec-
tive tissue and overexpression of FGF1 and FGF2
on the sarcolemma may be associated with this
disease.612 Bronchopulmonary dysplasia, character-
ized by impaired alveolar development and inflamma-
tion is the most common chronic lung disease resulting
from premature birth. Neonatal respiratory distress
syndrome is a pulmonary disease affecting preterm
neonates. A single nucleotide polymorphism (I>V) in
exon 10 of FGFR4 is a potential risk factor for these
diseases613 (Table 3(b)). The common allelic variant
(G388R) in FGFR4 is associated with breast cancer
progression and increased insulin secretion and risk of
diabetes.647

FGFRL1/FGFR5
Antley–Bixler syndrome is a disorder characterized by
craniosynostosis, radio-ulnar synostosis, and genital
abnormalities. A C-terminal frameshift mutation in
FGFRL1 was found in one patient with this disease.
The mutation results in preferential localization of the
mutant protein to the plasma membrane, compared
to the localization of wild-type FGFRL1 to vesicular
structures and the Golgi complex615 (Table 3(b)).
Wolf-Hirschhorn syndrome (WHS) is a disease
resulting in growth delay, craniofacial dysgenesis,
developmental delay, and epilepsy. Micro deletions
containing FGFRL1, but not the WHSC1 gene have
craniofacial features resembling that seen in WHS
patients, suggesting that FGFRL1 could be a possible
candidate gene616 (Table 3(b)). Analysis of a new null
allele for Fgfrl1 in mice revealed skeletal and other
defects that resemble WHS.617

FGFs and FGFRs: Mutations
and Expression in Cancer
Deregulation of FGF signaling pathways have been
implicated in many types of human and animal
cancers. Deregulation can occur at the level of
gene/protein expression of ligands or receptors, which
can result from changes in transcriptional activity or
gene amplification. Deregulation can also result from
mutations in FGF ligands, receptors, or downstream
signaling pathways. A more detailed discussion of
FGF signaling in cancer can be found in a review by
Turner and Grose.152

FGF Family
Mechanisms of FGF ligand activation involve
aberrant expression, gene amplification leading to
overexpression, or mutations that increase diffu-
sion through tissue or increase affinity for FGFRs
(Table 4(a)). Aberrant expression and mutations
in FGFs have been observed in many human
cancers.163,418,649–653,656–662,664,665,667–669,671,672 Gene
amplification of FGFs has also been observed.648,654

Overexpression and gene amplification leads to
excessive FGF signaling, which can result in cancer
initiation or progression. In contrast to the oncogenic
properties of many FGF ligands, in some human
colon and endometrial cancers that lack 𝛽-catenin
activation, homozygosity for loss-of-function somatic
mutations in FGF9 have been observed. Addition-
ally, mice lacking Fgf22 have normal skin, but show
increased papilloma formation in a DMBA/TPA
induced tumorigenesis model96 (Table 4(a)). These
examples show that in at least some cases, FGF sig-
naling can also function to suppress tumorigenesis,
possibly by promoting cell differentiation.664 Sin-
gle nucleotide polymorphisms in FGF23 have been
associated with an increased risk of prostate cancer,
although it remains unclear whether polymorphisms
result in gain- or loss-of-function.673

FGFR Family
FGFRs can be activated by gene amplification leading
to receptor overexpression, by activating mutations
(Figure 5), or by translocations resulting in activating
gene fusions.720,721 FGFR1 gene amplification has
been identified in 20% of lobular breast cancer, in
3% of lung adenocarcinomas and 21% of squamous
cell lung cancer.192,674,722,723 FGFR1 or FGFR2 was
amplified in 47% of hormone resistant prostate
cancers.724 FGFR3 was amplified in 3% of bladder
cancers.725 FGFR4 overexpression (65% of cases) and
amplification (30% of adult tumors) were observed
in adrenocortical tumors and amplification was asso-
ciated with worse prognosis.726 FGFR4 amplification
was also found in 10% of primary breast tumors.727

Thus, FGFR gene amplification may be pathogenic in
a large fraction of some of the major cancer subtypes
(Table 4(b)).

Oncogenic gene fusions that activate the
FGFR tyrosine kinase domain is a relatively com-
mon occurrence in myeloproliferative syndrome,
glioblastoma, bladder, lung, breast, thyroid, oral, and
prostate cancers.193,684 In the 8p11 myeloprolifer-
ative syndrome (myeloid and lymphoid neoplasms
with FGFR1 abnormalities), FGFR1 translocations
result in at least 10 fusion proteins with N-terminal
dimer forming partners fused to the C-terminal
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TABLE 4 Acquired and Heritable Mutations in FGFs and FGFRs in Malignancy

Gene Name Mutation Type of Cancer Selected References

(a) Contributions of FGFs to malignancy (in vivo)

FGF1 Amplification Ovarian cancer 648

FGF2 Over expression Bladder cancer, Prostate cancer, Small cell lung carcinoma,
Melanoma, Hepatocellular carcinoma

649–653

FGF3 Amplification Breast cancer 654

FGF4 Amplification Breast cancer 655

FGF5 Over expression Glioblastoma 656

FGF6 Over expression Prostate cancer 657

FGF7 Over expression Lung adenocarcinoma 658

FGF8 Over expression Breast cancer, Prostate cancer, Hepatocellular carcinoma,
Colorectal cancer

659–663

Fgf9 Frameshift/missense/
nonsense mutation

Colorectral and endometrial carcinomas 418,664–666

Over expression Non small cell lung cancer

FGF10 Over expression Breast carcinomas, Prostate cancer 667,668

FGF15/19 Over expression Prostate cancer, Hepatocellular carcinoma 162,163,513,669,670

FGF16 Over expression Ovarian cancer 671

FGF17 Over expression Prostate cancer, Hepatocellular carcinoma 660,672

FGF18 Over expression Hepatocellular carcinoma 660

FGF22 Knockout Suppresses skin papilloma (in mice) 96

FGF23 Polymorphism Increased risk of prostate cancer 673

(b) Contributions of FGFRs to malignancy (in vivo)

FGFR1 Amplification Small cell lung cancer, Squamous cell lung cancer, Breast cancer,
Ovarian cancer, Pancreatic ductal adenocarcinoma, Tongue
squamous cell carcinoma

191,192,674–682

Missense mutation Melanoma, Pilocytic astrocytoma 683

Translocation Leukemia, Lymphoma, Alveolar rhabdomyosarcoma, Glioblastoma,
Myeloproliferative syndrome (fusion with CUX1, FGFROP2, FIM,
RANBP2/NUP358, SQSTM1, TRP, ZNF198)

681,684–692

Over expression Glioblastoma 656

FGFR2 Amplification Gastric cancer, Breast cancer 693–697

Missense mutation Endometrial carcinoma, Gastric cancer 693,698

Translocation Cholangiocarcinoma 699–702

FGFR3 Missense mutation Gastric cancer, Colorectal cancer, Breast cancer, Endometrial
carcinoma, Urothelial carcinoma, Bladder tumor, Skin tumor,
Myeloma

608,693,703–706

Mis-localization Brest cancer 707

Translocation Myeloma, Squamous cell lung cancer, Bladder cancer,
Glioblastoma, Lymphoma

708–712

Over expression Breast cancer, Colon cancer (FGFR3c) 713,714

FGFR4 Missense mutation Rhabdomyosarcoma, Adenoid cystic carcinoma, Breast Cancer
(resistance to adjuvant therapy)

715–717

Over expression Ovarian cancer, hepatocellular carcinoma 256,718,719
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FGFR1 tyrosine kinase domain684 (Table 4(b)).
FGFR1–FGFR3 are also closely linked to the trans-
forming, acidic coiled-coil containing protein 1–3
genes (TACC1–TACC3).236 FGFR1 and TACC1
or FGFR3 and TACC3 gene fusions have been
identified in glioblastoma, non–small cell lung cancers
(NSCLC), bladder cancer, multiple myeloma, and lung
squamous cell carcinoma685,708,728–730 (Table 4(b)).
These gene fusions can generate constitutively active
FGFR kinase domains that are localized to the mitotic
spindle. FGFR2 translocations resulting in gene
fusions with AHCYL1, BICC1, MGEA5, AFF3,
and TACC3 have been identified in subtypes of
cholangiocarcinoma.699–701 Gene fusions can also
result in 3′ UTR deletion, allowing escape from reg-
ulation by microRNAs, as seen in an FGFR3-TACC3
fusion in multiple myeloma729 (Table 4(b)).

Activation of FGFR3 in multiple myeloma can
occur through several mechanisms and is thought
to contribute to the neoplastic transformation. A
common translocation between the immunoglobulin
heavy chain locus on chromosome 14q32 and the
FGFR3 and MMSET (multiple myeloma set domain)
region of chromosome 4 is found in 15–20% of
multiple myeloma cases and many of these result in
increased expression of FGFR3731,732 (Table 4(b)).
However, although this translocation is associated
with poor survival, survival does not correlate with
FGFR3 expression.733,734

Activation of FGFRs by somatic acquisition of
missense mutations is another common tumorigenic
mechanism. Missense mutations in FGFR2 have been
found in gastric and endometrial cancer693,698,735

(Table 4(b)). Missense mutations in FGFR3 have been
observed in 25% of cervical carcinomas and 35%
of bladder carcinomas736 (Table 4(b)). Interestingly,
these mutations are identical to the activating muta-
tions that cause Thanatophoric dysplasia. Tyrosine
kinase domain mutations were found in 7.5% of
rhabdomyosarcomas.715 In gastric cancer, at least
one allele of the common G388R variant of FGFR4
was present in 57% of patients, and expression of
this allele was associated with worse prognosis737

(Table 4(b)).

CONCLUSION

Since the purification of the first FGF over thirty years
ago, an amazing amount of research has uncovered
biochemical and biological functions of FGFs, FGFRs,
and other interacting molecules that are essential for
almost all aspects of life through the regulation
of developmental, physiological, and pathological
processes, from the earliest stages of embryonic
development, to organogenesis, tissue maturation,
homeostasis, response to injury, and cancer. Biochem-
ical studies have identified mechanisms that regulate
the expression of FGFs, their bioavailability, and
their ability to activate cellular responses through
interaction with cell surface receptors. Within the cell,
signal transduction mechanisms have been identified
that reveal interactions with multiple cellular signal-
ing pathways, complex feedback mechanisms, and
regulatory molecules that control FGF signaling, both
extracellularly and intracellularly. Developmental
studies have uncovered redundant functions of FGFs
and FGFRs, and interactions with most of the other
major signaling pathways, including BMP, WNT,
Notch and Hedgehog. The discovery of endocrine
FGFs has uncovered new mechanisms that regulate
metabolism, lipid, and mineral homeostasis, and has
provided potential therapeutic targets for a vari-
ety of common diseases, including type 2 diabetes,
chronic kidney disease, and obesity. Understanding
pathogenic mechanisms resulting from mutations,
gene fusions, and gene amplifications in FGFs and
FGFRs has led to therapeutic approaches for chon-
drodysplasia and craniosynostosis syndromes, as well
as a variety of cancers. Future directions will be aimed
at acquiring a deeper mechanistic understanding of
the roles of FGF signaling in development and in
adult tissues with a goal of understanding how these
pathways become reactivated during injury response
and cancer. The development of highly selective phar-
macological agonists and antagonists that function
at all levels of FGF signaling should provide new
tools to protect tissues from injury, enhance cell and
tissue repair, treat a variety of metabolic diseases, and
inhibit cancer.
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