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We use Brownian dynamics with hydrodynamic interactions to calculate both the

Kirkwood (short-time) diffusivity and the long-time diffusivity of DNA chains

from free solution down to channel confinement in the de Gennes regime. The

Kirkwood diffusivity in confinement is always higher than the diffusivity obtained

from the mean-squared displacement of the center-of-mass, as is the case in free so-

lution. Moreover, the divergence of the local diffusion tensor, which is non-zero in

confinement, makes a negligible contribution to the latter diffusivity in confine-

ment. The maximum error in the Kirkwood approximation in our simulations is

about 2% for experimentally relevant simulation times. The error decreases with

increasing confinement, consistent with arguments from blob theory and the

molecular-weight dependence of the error in free solution. In light of the typical ex-

perimental errors in measuring the properties of channel-confined DNA, our results

suggest that the Kirkwood approximation is sufficiently accurate to model experi-

mental data. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4917269]

I. INTRODUCTION

The dynamics of DNA in confinement play an important role in biology and biotechnology,

ranging from the processes governing ejection of DNA from a viral capsid1 to electrophoretic

separations of DNA.2 We are particularly interested in the dynamics of DNA molecules con-

fined in nanochannels,3 which form the basis for a new method of genome mapping.4 In this

method, DNA molecules containing sequence-specific fluorescent probes are stretched in an

array of nanochannels, and the distance between probes is measured by fluorescence micros-

copy. The dynamic fluctuations of these probes under thermal energy sets the upper bound on

the accuracy of the genomic measurements. As a result, the further advancement of genome

mapping technology would benefit greatly from models that can predict these fluctuations. In

particular, we would like to have a model that can accurately predict the center-of-mass diffu-

sivity of a DNA chain in a nanochannel at a reasonable computational cost, which can then be

used to model the relaxation time of the probe-laden DNA.5–7

Quantitative modeling of the dynamics of channel-confined DNA is challenging due to the

need to account for the hydrodynamic interactions (HI) between the DNA segments and the

channel walls.8 While hydrodynamic screening by the walls greatly simplifies scaling theories9

for the dynamics by removing hydrodynamic interactions between blobs, obtaining the prefac-

tors for the scaling laws is complicated by the absence of a Green’s function for the Stokes

equation in confinement8 and the cost of incorporating hydrodynamic interactions in general.

Consequently, dynamic simulations of DNA in a nanochannel that incorporate hydrodynamic

interactions10–12 are restricted to relatively short chains or rather coarse models. The results

thus obtained are informative, but the computational cost required to obtain them makes these

methods prohibitive for studying DNA diffusion with the sub-persistence length resolution and

long chains13 required to address genome mapping technologies.
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A possible alternative to dynamic simulations is the Kirkwood-Riseman14,15 approach,

commonly referred to as the Kirkwood approximation, which leads to a computationally effi-

cient simulation method at the expense of an error in the computation of the diffusion coeffi-

cient. The so-called Kirkwood diffusivity is obtained by computing the double-sum

D Kð Þ ¼ 1

3N2
b

X
i

X
j

TrhDiji (1)

over the Nb beads used to represent the chain. In Eq. (1), TrhDiji denotes an ensemble average of

the trace of the 3� 3 block matrix that describes the hydrodynamic interaction (HI) between seg-

ments i and j in the 3Nb� 3Nb diffusion tensor.10 The ensemble averaging operator in Eq. (1)

explains the computational speed of the Kirkwood approximation; the chain configurations

used to compute TrhDiji only need to be drawn from a suitable equilibrium ensemble. This en-

semble can be generated, of course, from a dynamic simulation that incorporates hydrodynamic

interactions.10 However, the ensemble of chain configurations can be generated more quickly by

a dynamic simulation without hydrodynamic interactions or, even better, by a suitable Monte

Carlo method that rapidly explores the configurational phase space.16 Once an equilibrium ensem-

ble of configurations is generated, the diffusivity tensor is computed for each configuration and

the results are averaged with respect to the weight of each configuration in the ensemble. This

decoupling of the hydrodynamics and the chain configurations makes the Kirkwood approxima-

tion especially attractive for computing the diffusivity of DNA confined in nanochannels13 and

nanoslits17 where hydrodynamic interactions with the walls greatly slow down the sampling of

the configurational space in a dynamic simulation.

The improvement in computational speed in the Kirkwood approximation comes at the

expense of accuracy. The Kirkwood approximation is essentially a hydrodynamic mean-field

approximation, where a chain segment feels the average HI at every point in time. Accordingly,

the approximation neglects the dynamic correlations that exist between the intramolecular

hydrodynamic interactions at different points in time. Because these correlations are also small

at short times, D(K) in Eq. (1) can be thought of as a short-time diffusivity. Fixman18 showed

that the Kirkwood approximation is always an overestimate of the long-time diffusivity com-

puted from the Einstein relationship,

DL ¼ lim
t!1

1

6t
hR2

cmi; (2)

for the displacement of the center-of-mass of the chain from its initial position at Rcm¼ 0. In

Eq. (2) and hereafter, we interpret the square of a vector as R2 ¼ R � R, not as a dyadic product

RR. The difference between D(K) and DL has been addressed for flexible and semiflexible poly-

mer chains in free solution,18–26 with errors in the range of 1% to 25% for different approaches

and different polymer models. For example, the error increases by increasing the chain size,24

or by increasing the flexibility of the chain26 or by reducing the solvent quality.23,25

Our goal here is to evaluate the ability of the Kirkwood approximation to model experi-

mental data for DNA confinement, for example, the relaxation time data from Reisner et al.27

The total duration of these experiments is long compared to the autocorrelation time of the

mean span of the chain, but is rarely longer than the time s for center-of-mass diffusion over

the size of the chain. As we will see, there is a fast transient in hR2
cmi that captures much of

the difference between the Kirkwood diffusion coefficient and the long-time diffusion coeffi-

cient. However, there may be an additional, very slow transient before the diffusivity finally

reaches the asymptotic limit in Eq. (2). For example, simulations in free solution24 suggested

that very long simulations, at least 100s in duration, are required to reach the asymptotic limit.

As we will show later, such long simulations are infeasible for channel-confined DNA due to

the cost of incorporating bead-wall hydrodynamic interactions. Fortunately, such long simula-

tions are also irrelevant for the description of experimental data, since the experiments them-

selves only correspond to a few s. So long as the simulations are sufficiently long to capture
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the primary transient in D(K) – D(t), which will be the case here, any additional slow decay of

the diffusivity towards its asymptotic value DL will prove to be irrelevant to the analysis of ex-

perimental data.

The accuracy of the Kirkwood approximation in confinement has not been addressed com-

pletely to date. On the simulation side, Jendrejack et al.10 demonstrated qualitative agreement

between the Kirkwood approximation and the displacement over the center-of-mass trajectory for

a relatively short simulation. This result is promising, but it leaves open questions surrounding

the quantitative accuracy of the Kirkwood approximation in confinement, in particular, the effects

of channel size, molecular weight, and the duration of the simulation. On the experimental side,

there is one piece of indirect evidence7 suggesting that the Kirkwood approximation is reasonable

in confinement, namely, the agreement between experimental data for the longest relaxation time

of channel-confined DNA27 and a dumbbell model7 whose friction coefficient was parameterized

using the Kirkwood approximation.13 However, the latter study7 is not a direct test of the accu-

racy of the Kirkwood approximation since the comparison of the relaxation-time model with

experiment conflates the issues surrounding the accuracy of the Kirkwood approximation in con-

finement with uncertainties arising from sampling of the chain configurations and the experimen-

tal data themselves.

In the present contribution, we provide a direct test of the accuracy of the Kirkwood

approximation for channel-confined DNA. We limit ourselves to confinement no stronger than

that in the de Gennes regime,28 corresponding to channel sizes H satisfying Rg � H � l2
p=w,

where Rg is the radius of gyration of the DNA in free solution, lp is the persistence length, and

w is the effective width.29,30 We simulate an experimentally validated model for DNA in such

weak confinement31 using Brownian dynamics (BD) with hydrodynamic interactions (HIs),10

which provides temporal data for the chain configuration and the forces acting on the DNA seg-

ments. We use the correlations in the velocity perturbation and stochastic fluctuations data

obtained from the configuration and force data to compute the long-time diffusivity DL through

a modification of the method of Liu and D€unweg,24 while the configurational data allow us to

compute the Kirkwood diffusivity. We are thus able to compare D(K) and DL using the same en-

semble of configurations, providing the desired direct test of the Kirkwood approximation. Our

results indicate that the Kirkwood approximation improves as confinement increases, which we

rationalize through the hydrodynamic screening between blobs in the de Gennes regime.

II. DNA MODEL AND SIMULATION ALGORITHM

A. DNA model

Our simulations use the bead-spring model of Jendrejack et al.,10 which was parameterized

for DNA in free solution32 and provides good agreement with experiments on DNA confine-

ment in the de Gennes regime in slits.31 The model represents the DNA as Nb beads connected

through Ns¼Nb� 1 entropic springs. Each spring represents Nk,s¼Nk/Ns Kuhn lengths, where

Nk¼ L/bk is the number of Kuhn segments of length bk in a chain of contour length L. We fol-

low the discretization of Jendrejack et al.10 and use Nk,s¼ 19.8. This is a rather coarse model to

use in confinement, which limits its applicability to the de Gennes regime but allows dynamic

simulations of experimentally relevant molecular weights in such channels.

The semiflexibility of DNA appears in this model through Marko-Siggia spring force FS
ij

between bonded beads,33,34

FS
ij ¼

kBT

2bk
1� Rij

q0

� ��2

� 1þ 4
Rij

q0

" #
Rij

Rij
; (3)

where kB is Boltzmann’s constant, T is the absolute temperature, q0¼Nk,sbk is the maximum

spring length, Rij¼Rj�Ri is the connector vector between beads i and j, and Rij is the magni-

tude of the connector vector. Here, Ri and Rj denote the absolute position vectors of beads i
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and j, respectively. Bead-bead excluded volume interactions are modeled with the narrow

Gaussian potential10

FEV
ij ¼ p / kBT N2

k;s

9

2b2
k Nk;s p

� �5=2

exp
�9R2

ij

2Nk;sb2
k

 !
Rij; (4)

where / is the excluded volume parameter. Bead-wall interactions are governed by a different

potential10

Uw
i ¼

25kBT

3bkd
2
w

h� dwð Þ3 for h < dw ¼
bk

ffiffiffiffiffiffiffiffi
Nk;s

p
2

;

0 for h � dw;

8>><
>>: (5)

where h is the distance of bead i from the wall into the fluid in the wall-normal direction.

In addition to the latter potentials, which govern the thermodynamic properties of the

chain, we also incorporated hydrodynamic interactions between beads i and j via the 3� 3 ma-

trix Dij (which is itself a block of the 3Nb� 3Nb diffusion tensor D). This matrix is given by

Dij ¼ kBT
dij

f
Iþ 1� dij

� �
Xij

� �
; (6)

where dij is the Kronecker delta function, f¼ 6pga is the friction coefficient of a bead of hydro-

dynamic radius a in a solvent of viscosity g, I is an identity tensor, and Xij is the HI tensor,

which relates the velocity perturbation at bead i to a point force at bead j. We computed Xij

following the approach by Jendrejack et al.,10 which is also described in detail elsewhere.35,36

In the original implementation by Jendrejack et al.,10 the wall correction to HI was calculated

using the finite-element method. We have used the finite-difference method instead.13

Jendrejack et al.32 parameterized this model based on free solution data for the relaxation

time, diffusivity, and equilibrium stretch for k-phage DNA at room temperature in a 43.3 cP

solvent. We use their fitted parameters bk¼ 0.106 lm, a¼ 0.077 lm, and / ¼ b3
k ¼ 0:0012 lm3

in our simulations.

B. Brownian dynamics simulation algorithm

The motion of a bead-spring chain is governed by the Itô-Euler stochastic differential

equation37

dR ¼ 1

kBT
D � Fþ @

@R
� D

� �
Dtþ

ffiffiffi
2
p

Br � dW; (7)

where R is a vector containing the 3Nb coordinates of the beads that constitute the DNA chain.

The 3Nb� 1 vector F is the sum of the forces embodied by Eqs. (3)–(5), with Fi denoting the

force vector acting on bead i. The components of the Gaussian noise dW are obtained from a

real-valued Gaussian distribution with zero mean and variance Dt (the time step). The quantity

Br is a tensor whose presence leads to multiplicative noise.38,39 Its evaluation requires the

decomposition of the diffusion tensor using the fluctuation-dissipation theorem, D ¼ Br � BrT .

Note that while the divergence term @=@R � D vanishes in free solution, it is non-zero in

confinement.

We made all equations dimensionless using the length scale a, time scale fa2/kBT, and

energy scale kBT. Previous Brownian dynamics simulations of DNA in square channels with

widths ranging from a few microns to hundreds of nanometers10,35 were carried out by calculat-

ing both the stochastic term (noise term) and the divergence term in a matrix-free manner.40–42

However, we do not use matrix-free approaches here because there is no computational
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advantage —we need to store the diffusion tensor to calculate the Kirkwood diffusivity, so we

can also use it in the integration of Eq. (7). We calculate the stochastic term using the Krylov

subspace method.43 The divergence term is not calculated explicitly but handled using mid-

point algorithm.40,42 The CPU time of the resulting algorithm scales as OðN2:25
b Þ. This algorithm

is useful for relatively small systems and has a favorable prefactor, but the Nb scaling eventu-

ally becomes unfavorable for a large number of beads.

We used a (dimensionless) time step of Dt¼ 0.005, which is an order of magnitude smaller

than that used in Ref. 10. This small time step is important to capture the short-time behavior

of the correlation functions described in Sec. III, which are the dominant contribution to the

integrals required to compute the long-time diffusivity. We simulated molecular weights from

Nb¼ 6 to 41 (L¼ 10.5 lm to 84 lm) in dimensionless channel sizes H¼ 6 to 50 (462 nm to

3.85 lm). All simulations were run for up to 3.25� 105 reduced time units. This corresponds to

approximately 680 s, which is well within the range of typical experimental protocols. In order

to obtain better statistics, we averaged over 24 runs (trajectories) for each set of parameters.

III. AXIAL DIFFUSIVITY OF A DNA CHAIN

We are interested in the axial diffusivity of DNA chain in square channels. This is a one-

dimensional process due to the impenetrable channel walls. The Einstein relation in Eq. (2) for

the one-dimensional diffusion along the axial (x) direction of the channel is

hDR2
cm;xi ¼ 2Dt; (8)

where DRcm,x is the displacement of the x-component of the center-of-mass at some time t.
Since hDR2

cm;xi for a polymer does not necessarily grow linearly with time for all t, then

D¼D(t) with

D Kð Þ � lim
t!0

hDR2
cm;xi

2t
(9)

and

DL � lim
t!1

hDR2
cm;xi

2t
: (10)

An expression for DL for a polymer chain in a channel can be derived by modifying the

approach developed by Liu and D€unweg24 in the context of free solution. The key modification in

their approach for channel confinement is to account for the additional gradient term in Eq. (7). The

detailed derivation, which follows in a straightforward manner from the work of Liu and D€unweg,24

is presented in the supplementary material.44 The key result is the final expression for DL,45

DL ¼ DðKÞ þ
X
H

X
U

DH/ ðH ¼ A;B;C and U ¼ A;CÞ; (11)

where

DHU ¼
z

N2
b

ð1
0

hHx 0ð ÞUx tð Þidt; (12)

with

z ¼
ðDtÞ�1

if H ¼ B and U ¼ B

ðDtÞ�1=2
if ðH 6¼ B and U ¼ BÞ or ðH ¼ B and U 6¼ BÞ

1 if H 6¼ B and U 6¼ B

:

8><
>: (13)
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In Eq. (12), A, B, C correspond to the x-components of the different vector terms in Eq. (7) as

written below

Ax ¼
X

ij

Dij � Fj

� �
x

;

Bx ¼
1ffiffiffiffiffi
Dt
p

X
i

qi

" #
x

;

Cx ¼
X

ij

@

@Rj
� Dij

" #
x

;

(14)

with qi ¼
P

j

ffiffiffi
2
p

Brij � DWj. For notational simplicity, we suppress the subscript x for terms such

as DAA.45

IV. RESULTS

We have obtained data for four different molecular weights (Nb¼ 6, 11, 21, 41) in 10 dif-

ferent channel sizes (H¼ 6, 7, 8, 9, 10, 12, 15, 20, 30, 50). These 40 data sets exhibit many

similar trends, so the basic phenomena are readily explained by considering a single parameter

set. We thus begin here with the data obtained for Nb¼ 11 and H¼ 10, with the understanding

that the qualitative conclusions drawn from this data set apply to the other channel sizes and

molecular weights. We then consider the aggregate data to address our original goal concerning

the accuracy of the Kirkwood approximation for describing experimental data for DNA in chan-

nel confinement.

A. Case study (Nb 5 11 and H 5 10)

In order to compute DL through Eq. (11), we need to compute the correlations between the

quantities Ax, Bx and Cx appearing in Eq. (14). These quantities are readily obtained during the

integration of Eq. (7). Before proceeding to examining the correlations themselves, it is illumi-

nating to examine first the order of magnitude of the different terms and their fluctuations. As

an illustrative example, Fig. 1 presents these data for 100 reduced time units from a single tra-

jectory. The values of Ax, Bx and Cx fluctuate around zero, but the magnitude of their fluctua-

tions varies widely. The fluctuations in Bx are the largest, followed by Ax and then Cx. The

results in Fig. 1 suggest that all of the correlation functions involving Cx will be very small.

Figure 2 shows that this is indeed the case, with the four correlation functions involving the

term Cx being very small in comparison to those excluding the term Cx. This result can be

understood in terms of the variance r2 of the different quantities. For example, the particular

FIG. 1. Relative magnitudes of Ax, Bx, and Cx as functions of time for Nb¼ 11 and H¼ 10. The figure in the inset is the

zoomed-in view to show that the magnitude of Cx is much smaller than that of Ax.
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subset of data in Fig. 1 leads to r2
Bx
¼ 13:9; r2

Ax
¼ 0:07, and r2

Cx
¼ 5� 10�6. As a result, we

will assume that all contributions involving Cx make a negligible contribution to DL. In other

words, we conclude that the drift created due to the monomer concentration gradient, although

non-zero in confinement, plays little role in the long-time diffusivity. Note that this does not

mean that we can neglect the @=@R � D term when integrating Eq. (7), since that would lead to

unphysical drift of the center-of-mass during the dynamic simulation. To compute DL, we need

to integrate correlation functions such as those appearing in Fig. 2. We use 64-point Gaussian

quadrature to calculate these integrals numerically. Note that the total data set for a given corre-

lation function typically contain around 105 points, so this quadrature is still very small and

allows us to capture the details of the tail of the correlation function. To test for the conver-

gence of integrals in Eq. (12), we calculate the cumulative integrals,

~DHU tð Þ ¼ z

N2
b

ðt

0

hHx 0ð ÞUx sð Þids; (15)

for different upper bounds, t. The resulting cumulative integrals for all correction terms are

shown in Fig. 3. In an ideal case,

lim
t!1

~DHUðtÞ ¼ DHU: (16)

FIG. 2. Mean correlation functions of an 11 bead chain as functions of time in a channel of size H¼ 10.

FIG. 3. Six different diffusivity correction terms DAA, DBA, DCC, DAC, DCA, DBC for Nb¼ 11 and for H¼ 10 as functions of

time.
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However, the data in the tails of the correlation become noisier as time-lag increases because

the number of sample points decreases. Nevertheless, ~DHUðtÞ reaches a stable value for some

large t before the sampling error becomes substantial. As expected from the correlation data

shown in Fig. 2, the correction terms DCC, DAC, DCA, and DBC are negligible compared to DAA

and DBA. We thus conclude that Eq. (11) can be written as

DL � DðKÞ þ DAA þ DBA: (17)

The only quantity that remains to be calculated is the Kirkwood diffusivity. The Kirkwood

diffusivity is calculated using one-dimensional form of Eq. (1) or Eq. (S-7) of the supplemen-

tary material,44 where Dij is generated for the configuration in each time step using Eq. (6). For

this case study, we found that D(K)¼ 0.05883 6 0.00002. Figure 4 shows how the diffusivity

DðtÞ ¼ DðKÞ þ DAAðtÞ þ DBAðtÞ depends on time. It is clear that DðKÞ > Dðt!1Þ ¼ DL, and

the overall shape of the curve is reminiscent of results obtained in free solution.24

B. Diffusivity corrections: Error analysis

Due to the finite number of data points available for long times, there is always sampling

error in the tails of the correlation data in Fig. 2. As a result, we cannot estimate DHU by sim-

ply using ~DHUðtmaxÞ, where tmax is the maximum value of the simulation time. In order to

arrive at a reasonable estimate for DHU and its uncertainty, we average over a subset of the

data

DHU ¼
1

Nsub

XNsub

j¼0

~DHU tl þ jDtc
� �

; (18)

where Nsub ¼ ðtu � tlÞ=Dtc is the number of data points between some lower bound tl and upper

bound tu and Dtc¼ 0.01 is the interval used for computing correlation functions. The corre-

sponding error in DHU is estimated by the method of Chodera et al.46 from the time series of

data in this interval. For a given data set, the lower bound tl is decided visually by eye such

that tl is always greater than the time at which the values of diffusivity corrections level off.

We use tu¼ 500 as the upper bound for any data set for which there are at least 30 000 data

points between tl and tu. Note that the time series of these 30 000 data points is not completely

uncorrelated. Therefore, the effective number of uncorrelated data points46 turns out to be of

the order of 100 in our study, which is the source of the error bar on DHU. The value of

tu¼ 500 excludes the poor sampling for long times (e.g., consider DBA in Fig. 3) because the

total simulation length is typically 3� 105; a typical correlation function at t¼ 500 includes 108

data points. In some cases, when the convergence of diffusivity corrections was not achieved

until tl¼ 500, the upper bound was chosen up to be tu¼ 3000. For instance, for the largest

FIG. 4. Illustration of the drop in the diffusivity from its Kirkwood value to DL for Nb¼ 11 and H¼ 10.
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channel H¼ 50, we used tu¼ 2500 for Nb¼ 21 and tu¼ 3000 for Nb¼ 41. For the longest chains

and largest channel sizes, the region between tl and tu becomes relatively small, leading to the

largest errors in DHU. The correlation and diffusivity correction data for these cases, along with

many other cases covering the range of parameters used in this work, are shown in the supple-

mental material.44

C. Convergence of DL with respect to simulation time

As we noted in the introduction, reaching the asymptotic limit for DL implied by Eq. (2)

may require extremely long simulations. To quantify this statement, Fig. 5 shows the duration

of our BD simulations, T, relative to the center-of-mass diffusion time s � hR2
gi=DðKÞ for a par-

ticular molecular weight and channel size. In the latter, hR2
gi is the mean-square radius of gyra-

tion, which we use instead of the mean span of the confined DNA molecule to be consistent

with prior work in free solution.24 Simulations in free solution24 suggest that a value T/s� 102

is required to obtain the asymptotic limit for DL. For the smaller chains and larger channels,

our simulations appear to reach this heuristic for the simulation time. For longer chains and

smaller channels, it is infeasible to run simulations for T/s� 102. For example, consider the

worst case scenario Nb¼ 41 and H¼ 6. For this case, we obtain the diffusion time

s� 2.41� 105. We used one week of CPU time to run the BD simulation for T¼ 3.25� 105,

roughly the same as the diffusion time. To achieve T/s� 100 would require two years to obtain

a single data point. While such a calculation may be of theoretical interest, it is not particularly

interesting in practice—as we noted in the introduction, a simulation time of T¼ 3.25� 105

corresponds to around 10 min and thus exceeds a typical image acquisition time in experiments.

Moreover, it is not entirely clear that the heuristic limit T/s� 102 to obtain DL in free solution24

will hold in confinement. First, the configurational phase space in confinement is considerably

smaller than in free solution. Second, and more importantly, the solid walls provide hydrody-

namic screening and thus remove correlations between different parts of chain. Both of these

factors suggest that the asymptotic limit may be reached more quickly in confinement than in

free solution even after taking into account the slowing of the dynamics by polymer-wall

friction.

Since there is no a priori argument to suggest a good heuristic for T/s in confinement, we

investigated the convergence of the value of DL as a function of simulation time T for the

smallest channel H¼ 6, which we presume will be the slowest to converge. Figures 6(a) and

6(c) plot the values of D(t) obtained using four different values of T for the shortest chain

(Nb¼ 6) and the longest chain (Nb¼ 41), respectively. The data in these figures, which are anal-

ogous to Fig. 4, suggest that the diffusivity is independent of the upper bound T for sufficiently

large T. To be more quantitative, Figs. 6(b) and 6(d) plot the values of DL obtained for both

molecular weights, respectively, as a function of simulation time T. It is clear that the differ-

ence between mean values of DL for the two longest times is not statistically significant, having

p-values of 0.834 for Nb¼ 6 and 0.935 for Nb¼ 41. Table I shows the p-values for all pairs of

FIG. 5. Length of BD simulation T relative to the center-of-mass diffusion time of the chain s.
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simulation lengths. Note that while calculating the p-values, the degree of freedom was 32

(effective number of uncorrelated data points) in these cases.

D. Effect of molecular weight and channel size

We repeated the analysis described in Sec. IV A for Nb¼ 11 and H¼ 10 for the other 39

combinations of molecular weight and channel size. We find the same trend for all sets of pa-

rameters, namely, that there are only two dominating diffusivity correction terms DAA and DBA,

and the others are negligible. Plots of correlation functions and diffusivity corrections for some

of the parameters sets are shown in the supplementary material44 to show the generality of this

trend. We also include a table of Kirkwood diffusivity values for each combination of Nb and

H in the supplementary material.44 These data allow one to produce the equivalent of Fig. 4 for

different channel sizes and molecular weights through Eq. (17).

A careful inspection of Fig. 3 suggests that DBA��2DAA, which is also the case from

Brownian dynamics simulations in free solution.24 Figure 7 shows that this is indeed the case

for all channel sizes and molecular weights, except for channel size H¼ 50. The data for

H¼ 50, which correspond to weak confinement for all of the chain sizes considered here, have

relatively larger error bars for all chains. We cannot confirm DBA��2DAA for this channel.

However, for all other parameters, we can infer that

2DAA þ DBA � 0: (19)

FIG. 6. Convergence of DL for Nb¼ 6 and 41. (a) Time series D(t) based on different simulation lengths for Nb¼ 6, H¼ 6.

(b) Mean value of DL as a function of simulation length T for Nb¼ 6, H¼ 6. (c) Time series D(t) based on different simula-

tion lengths for Nb¼ 41, H¼ 6. (d) Mean value of DL as a function of simulation length T for Nb¼ 41, H¼ 6. Solid black

lines in all four subplots indicate corresponding values of D(K) for that molecular weight.

TABLE I. p-values for various pairs of simulations lengths for both Nb¼ 6 (upper triangular matrix highlighted by italic

cells) and Nb¼ 41 (lower triangular matrix highlighted by boldface cells). T? denotes that it is different for both chains; for

Nb¼ 6, x¼ 3 and for Nb¼ 41, x¼ 3.25.

T¼ 5� 104 T¼ 1� 105 T¼ 2� 105 T?¼ x� 105

T¼ 5� 104 1 0.9862 0.3163 0.2356

T¼ 1� 105 0.8204 1 0.2581 0.1748

T¼ 2� 105 0.6691 0.8243 1 0.8340

T?¼ x� 105 0.6988 0.8693 0.9345 1
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We emphasize that this is not proof of the equality DBA¼�2DAA, but rather data suggesting

that such an equality likely holds in confinement.

The corrections to the diffusion coefficient in channel confinement are essentially the same

as those found by Liu and D€unweg24 in Brownian dynamics simulations of a polymer chain in

free solution. Note, however, a subtle difference in methodology; the Kirkwood diffusivity in

free solution is calculated using Eq. (1), not the one-dimensional form of Eq. (1) or Eq. (S-7)

of the supplementary material,44 and the correction terms are calculated using the 3D version

of Eqs. (11)–(13), where DAA and DBA are given by

DAA ¼
1

3N2
b

ð1
0

hA 0ð Þ � A tð Þidt;

DBA ¼
1

3N2
b

ffiffiffiffiffi
Dt
p

ð1
0

hB 0ð Þ � A tð Þidt;

(20)

with A and B being the vectors defined in Eq. (14).

As a result of Eq. (19), Eq. (17) can further be simplified to

DL � DðKÞ � DAA; (21)

which is exactly the same relationship derived by Fixman18 for free solution for long-time dif-

fusivity in the theoretical limit. Moreover, since DAA is positive in confinement, we further find

that

DL < DðKÞ; (22)

again in agreement with Fixman’s results for free solution for long-time diffusivity in the theo-

retical limit.18

We are now at the stage where we can achieve our original goal of assessing the accuracy

of the Kirkwood approximation in channel-confinement. Following the standard convention in

the literature,18,20 we define the quantity

DD � 100� D Kð Þ � DL

D Kð Þ (23)

as the percent error due to Kirkwood approximation. Using Eq. (17), we can also express this

deviation in terms of the significant correction terms,

FIG. 7. Converged values of DAA and DBA for a range of channels sizes and chain sizes. The black data points, except for

H¼ 50, show that DBA�� 2DAA.
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DD � 100�� DAA þ DBAð Þ
D Kð Þ : (24)

Figure 8 presents the error DD in the Kirkwood approximation for all of the simulations

included in our analysis. The error is always less than about 2%.

V. DISCUSSION

Many of the results for channel-confined DNA mimic those in free solution, most notably

Eqs. (19) and (22) and the negligible contribution to DL from Cx (which is identically zero in

free solution). We also observe an increase in the error for the Kirkwood approximation in free

solution as the molecular weight increases. Similar to Liu and D€unweg,24 we cannot reach suffi-

ciently high molecular weights to determine whether the error in the Kirkwood diffusivity for

this DNA model continues to increase as Nb increases further or whether it plateaus at some

point. Overall, the relatively low error of the Kirkwood approximation for DNA in free solution

is encouraging because we have used the Kirkwood approximation elsewhere47 to make broader

conclusions about the utility of DNA as a model polymer. An important feature of the key

result in Fig. 8 is the collapse of the data for the smaller channel sizes. To understand the col-

lapse, we note that the data in this figure correspond to three cases: (i) free solution (H ! 1),

(ii) weak confinement (H � Rg), and (iii) the de Gennes regime. To distinguish more quantita-

tive between cases (ii) and (iii), Fig. 9 plots the mean span,

FIG. 8. DD for a range of channel sizes and chain sizes. Note that the red data for 1/H¼ 0 correspond to free solution data.

FIG. 9. The ratio of mean extension hXi to contour length L of the chain as a function of channel size H for four different

chain sizes. The solid line is Eq. (26) for the de Gennes scaling for the extension of a chain in a nanochannel. The blue sym-

bols are weak confinement, and the black symbols are those chains that are long enough to be in the de Gennes regime.
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hXi ¼ hmaxðRi;xÞ �minðRi;xÞi; (25)

of the chain as a function of the inverse channel size. In the latter, Ri,x is the x component of

the position vector Ri of bead i. Those data lying on the de Gennes scaling law,28

hXi � H�2=3; (26)

correspond to confinement in the de Gennes regime. The remaining data represent weak con-

finement; the DNA experiences hydrodynamic (and excluded volume) interactions with the

walls, but it has not yet achieved the blob-like configuration that characterizes confinement in

the de Gennes regime because the molecular weight is too low.

Once the chains are long enough to be in the de Gennes regime, we can understand the

error in the Kirkwood approximation (as well as the collapse of the data in Fig. 8) through the

blob hydrodynamics ideas of Brochard and de Gennes.9 In blob theory, each subchain of size

H � L
3=5
blobl1=5

p w1=5 (27)

is envisioned as a swollen excluded volume subchain of length Lblob that is hydrodynamically

decoupled from the other blobs through the screening provided by the walls. As a result, the

properties of the chain are readily computed by determining the properties of a single blob and

then summing up the contribution due to the

Nblob ¼ L=Lblob; (28)

blobs in the chain. For example, blob theory leads to the scaling in Eq. (26) for the chain exten-

sion by noting that span of the confined chain is hXi � NblobH.

In blob theory, the diffusivity of the chain with hydrodynamically independent blobs is

given by9

D � kBT

Nblobfblob

¼ Dblob

Nblob

; (29)

where fblob is the friction coefficient of a blob and Dblob is the corresponding diffusivity of a

blob. Naturally, we would expect that the friction coefficient of a blob in the short-time limit

will differ from that in the longer time limit. If we denote these diffusivities as D
ðKÞ
blob and

Dblob,L, respectively, and insert Eq. (29) in the definition of DD in Eq. (23), we arrive at

DD � 100� D Kð Þ
blob � Dblob;L

D Kð Þ
blob

: (30)

The latter result is independent of the length of the chain, which explains the collapse of the

data in Fig. 8. When we combine Eq. (30) with the dependence of DD on Nb in free solution in

Fig. 8 and prior work,24 we can also rationalize the drop in DD with increasing confinement in

the de Gennes regime. As we reduce H, Eq. (27) indicates that the length of the subchain com-

prising that blob is reduced as well. Since the error in the Kirkwood approximation decreases

with decrease in molecular weight in free solution for any of the blob sizes here (since DD
decreases for all of the chain sizes Nb that we studied and Nb>Nblob by definition), blob theory

implies that the error in the Kirkwood approximation also decreases with the decrease in blob

size.

The mean values of DD in Fig. 8 for chains that are not in the de Gennes regime suggest

that there might be a maximum in DD as channel size increases and approaches infinity (free

solution case). However, due to relatively large error bars on DD in the weak confinement re-

gime, we cannot confirm such a peak using our simulation results. However, if there really

exists such a maximum or if DD decreases as channel size increases beyond that required to
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have a single blob, it might be due to the reduction in the frequency of the monomer-wall

hydrodynamic interactions, which is one of the source of the error due to Kirkwood approxima-

tion (other than monomer-monomer HI).

VI. CONCLUDING REMARKS

Using a Brownian dynamics simulation algorithm with excluded volume and hydrodynamic

interactions (HI),10 we have shown that the error in the Kirkwood diffusivity decreases with the

increase in confinement in the de Gennes regime due to the screening of hydrodynamic interac-

tions between blobs. Overall, the error in the Kirkwood approximation is rather small for this

DNA model, peaking at around 2% in weak confinement for a relatively large chain. Moreover,

the error becomes independent of chain length once the polymer is large enough to be confined

by the channel. These results lend support to conclusions about the diffusivity of DNA drawn

from the Kirkwood approximation in both free solution47 and confinement.13,17

A key open question concerns how the error in the Kirkwood approximation changes as

confinement increases further. In particular, we are motivated in our work by genome mapping

in nanochannels,4 which takes place in channel sizes close to the 50 nm persistence length of

DNA, an order of magnitude smaller than the smallest channel size considered here. As the

channel size approaches the persistence length, the de Gennes blob theory breaks down and it

is not obvious whether hydrodynamic conclusions drawn from a blob model apply to even

stronger confinement. However, we have reason to be optimistic that the error in stronger con-

finement will be no worse (and probably better) than in the de Gennes regime. The error in the

Kirkwood approximation arises from correlations in the monomer-monomer and monomer-wall

hydrodynamic interactions. As we increase the confinement further, there is a decrease in both

(i) the number of monomers inside the hydrodynamic screening volume H3 and (ii) the range

of possible distances between a monomer and the wall. As a result, we would expect that the

correlations in monomer-monomer HI and monomer-wall HI will both decrease; in the former

case, due to a reduction in the number of monomer-monomer pairs, in the latter case, due to a

reduction in the magnitude of the fluctuations in monomer-wall HI.

Testing this hypothesis about the accuracy of the Kirkwood approximation in strong con-

finement is not a simple task. The coarse-grained DNA model that we used here, which has a

discretization of almost 40 persistence lengths per spring, is only valid in the de Gennes re-

gime. This model breaks down in stronger confinement because it is unable to resolve the chain

configurations at the length scale of a persistence length. There are other options to model poly-

mers in such strong confinement, such as the touching-bead model48 that we have used previ-

ously in our studies of the Kirkwood diffusivity of DNA in confinement.13 Unfortunately,

dynamic simulations of the touching-bead model would likely require simulating thousands of

beads to reach the long-chain limit. Moreover, it seems likely that the relaxation time scales

quadratically with molecular weight, making such simulations extremely expensive.

Ultimately, we suspect that detailed simulation of the dynamics of DNA confined in very

small channels is not necessary to model the practical circumstances of interest such as genome

mapping. Our results indicate that the Kirkwood approximation is quite accurate for DNA in

the accessible regimes of confinement for a simulation. Moreover, it seems unlikely that there

would be a sharp increase in the error of the Kirkwood approximation when confinement is

increased further. Given the inherent uncertainty in any experiment relative to the error in the

Kirkwood approximation, we conclude that the Kirkwood approximation is a useful tradeoff

between simulation cost and time for modeling the diffusivity of confined DNA.
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