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Purpose: The purpose of this study is to develop an improved filtered-back-projection (FBP) algo-
rithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality
compared to images reconstructed through traditional algorithms.
Methods: A rigorous expression of a weighting function has been derived directly from a photoa-
coustic wave equation and used as a ramp filter in Fourier domain. The authors’ new algorithm
utilizes this weighting function to precisely calculate each photoacoustic signal’s contribution and
then reconstructs the image based on the retarded potential generated from the photoacoustic sources.
In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass
filter. Two computational phantoms were created to test the algorithm. The first phantom contained
five spheres with each sphere having different absorbances. The phantom was used to test the
capability for correctly representing both the geometry and the relative absorbed energy in a planar
measurement system. The authors also used another phantom containing absorbers of different sizes
with overlapping geometry to evaluate the performance of the new method for complicated geometry.
In addition, random noise background was added to the simulated data, which were obtained by
using an arc-shaped array of 50 evenly distributed transducers that spanned 160◦ over a circle with a
radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting
measurement signals in PAT simulations. The authors assumed that the scanned object was mounted
on a holder that rotated over the full 360◦ and the scans were set to a sampling rate of 20.48 MHz.
Results: The authors have obtained reconstructed images of the computerized phantoms by utilizing
the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new
approach allows not only obtaining a sharp image but also showing the correct signal strength of
the absorbers. The reconstructed image of the second phantom further demonstrates the capability to
form clear images of the spheres with sharp borders in the overlapping geometry. The smallest sphere
is clearly visible and distinguishable, even though it is surrounded by two big spheres. In addition,
image reconstructions were conducted with randomized noise added to the observed signals to mimic
realistic experimental conditions.
Conclusions: The authors have developed a new FBP algorithm that is capable for reconstructing
high quality images with correct relative intensities and sharp borders for PAT. The results demon-
strate that the weighting function serves as a precise ramp filter for processing the observed signals
in the Fourier domain. In addition, this algorithm allows an adaptive determination of the cutoff
frequency for the applied low pass filter. C 2015 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4915532]
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1. INTRODUCTION

Optical imaging techniques have been widely used in a
number of important biomedical applications, but they face a
serious challenge for deep tissue imaging due to the difficulty
of recovering scattered photons in turbid media. Photoacoustic
tomography (PAT), also termed as optoacoustic tomography
(OAT), is a noninvasive imaging method for high-resolution
mapping of optical-absorption energy in deep tissue. PAT
is based on a hybrid technology that combines rich optical
contrast mechanisms and superior ultrasonic penetration
depth and resolution. In recent years, PAT technology has
successfully addressed some of the most challenging issues

in conventional optical and ultrasound imaging methods and
is now attracting growing interest in preclinical and clinical
research.1–18 For PAT, photons from a short-laser pulse are
absorbed by certain tissues, causing impulsive heating and
acoustic stress in the tissue. The tissue then re-emits the
absorbed energy as broadband ultrasonic pressure waves,
which propagate to the outside of the tissue and are detected
by a mechanically scanned ultrasound receiver or an array of
receivers. In the process of photoacoustic imaging formation,
the kernel is the algorithm of imaging reconstruction (AIR).
From a technical point of view, photoacoustic imaging
remains challenging with a multitude of approaches under
development for imaging method improvement, such as signal
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acquisition, algorithmic processing, and image quantification
capacities,19–25 as well as for hardware performance, such as
laser delivery and ultrasound detection technologies.26–30 As
a fast reconstruction method, current back-projection (BP)
algorithms are able to produce good images for spherical,31,32

cylindrical,33 and planar geometries34 in simulations and have
widely been applied in volumetric image reconstruction for
PAT applications.14,35–38 As reviewed by Beard,10 Kuchment,
and Kunyansky,39,40 the recent developments of BP algorithms
lead to improved image quality,41,42 which has increased
the capabilities of PAT toward important new studies in the
biomedical settings.1–10,38,43 BP formulas are implemented
either in the spatiotemporal domain or in the Fourier
domain.36,38 In BP algorithms, one of the representative
works36 is based on a closed-form inversion formulas (a
modified back-projection formula),

p0(r)≈

Ω0

dΩ
Ω0


2p(r0,t)−2t

∂p(r0,t)
∂t

 �����ct=r−r0

. (1)

This well-known algorithm is very successful in detecting
the position and shape of absorbing objects in turbid media.11

While filtered back-projection (FBP) techniques have
proven to be useful when solving for time-dependent partial
differential equations through Fourier spectral methods, there
are still several critical issues that need to be addressed to
further improve the quality of FBP-reconstructed images. A
disadvantage of conventional back-projection algorithms is
that they are not exact in experimental settings25 and may lead
to the appearance of substantial artifacts in the reconstructed
image, such as the accentuation of fast variations in the image,
which is accompanied by negative optical-absorption values
that otherwise have no physical interpretation.25 Although
these artifacts have not prevented the use of BP algorithms
for structural imaging,11 they may limit the quantification
capacity, the image fidelity, and the accurate use of the
method for functional and molecular imaging applications,44

including multispectral imaging applications, since these
imaging modes require high quantification ability. Up to
now, the kernel for FBP algorithm used in PAT, i.e., the
choice of the negative wing around the back-projected data
which originated from the raw data modified in the frequency
domain, does not contain a general expression that can
indicate to what extent the restrictions are on spectrum leakage
by using window functions in Fourier domain for different
sampling frequencies. In addition, there is no criterion about
the limit of the low-pass filter’s cutoff frequency in the
frequency domain. A fast method is also needed to simulate
the photoacoustic pressure signal of complex tissues.

In this paper, we report a novel and robust FBP algorithm
that improves the image fidelity through calculations in the
Fourier domain with a rigorous expression of a weighting
function that precisely counts the contribution of each
photoacoustic signal and an adaptive criterion that sets a cutoff
frequency of filtering. Also we introduce a fast calculation
method to generate the model of photoacoustic pressure
signals. This paper is organized as follows: In Sec. 2, we derive
a precise expression for a new FBP algorithm, which is started

from fundamental formulae of PAT. In Sec. 3, we propose
using the ACE method, which is based on the fast multipole
method (FMM), to create the photoacoustic pressure model.
Section 4 presents numerical simulation results of phantom
samples based on our new algorithm. Section 5 concludes
the paper with the main ideas and our contributions to image
reconstruction for PAT.

2. MATHEMATICS FOR PHOTOACOUSTIC
TOMOGRAPHY

In PAT, acoustic stresses are created inside a tissue after it
absorbs energy from a short-laser pulse. The acoustic stresses
relax by launching ultrasound waves (i.e., photoacoustic
emission), which act as instantaneous acoustic sources. The
detection of the ultrasound waves that propagate to the outside
of the tissue can be used to reconstruct three-dimensional
(3D) images of the tissue. The basic physics background and
mathematical formula for the photoacoustic wave generation
and propagation are described below.

2.A. Photoacoustic wave equations

When a short-laser pulse irradiates on a sample with certain
absorbers, the incident light is absorbed [the absorbed energy
is H(r,t)] before the sample density (ρ) changes.45 For the
case that laser pulse duration is much shorter than the thermal
diffusion time, the thermal diffusion can be neglected, and then
one has the pressure field p(r,t) corresponding to an ultrasonic
wave,(
∇2− 1

c2

∂2

∂t2

)
p(r,t)=− α

Cp

∂H (r,t)
∂t

, (2)

where Cp is the constant pressure specific heat capacity, c is
acoustic speed, and α is the volume thermal expansion-index.

2.B. Heating function

It is applicable in most experimental conditions to consider
the incident laser pulse having a Gaussian profile

H (r,t)=H (r) · exp
�
t2/2τ2�

τ
, (3)

where τ is a characteristic time. Based on the definition of
a Dirac function that δ(x) = limn→∞

√
n/πe−nx

2
, the heating

function can be modeled as a Dirac delta function if c · τ is
much shorter than the scale across the “heating” area,

H (r,t)=H(r)δ(t). (4)

For photoacoustic effect, this is satisfied when the duration
of the laser pulse is much shorter than the time it takes for the
sound to travel across the heated region, a condition known
as stress confinement. This means that the laser pulse is short
enough; the density of the sample has no time to change during
the heating process. Under this condition, the photoacoustic
wave equation can be written as
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(
∇2− 1

c2

∂2

∂t2

)
p=− α

Cp
H (r) ∂δ(t)

∂t
. (5)

2.C. Weighting function in Fourier space

The source pressure p0(r) can be expressed as

p0(r) = 1

(2π)3

k

p(k,t)W (k,r,t)e−ik·rd3k,

=
1

(2π)3


k
pf (k,t)e−ik·rd3k, (6)

where W (k,r,t)= e−2ik·r/cos(ckt) is a weighting function and
pf (k,t)= p(k,t)W (k,r,t).46

The weighting function has a rigorous form directly derived
from the photoacoustic wave equation (see Appendix A).
It is seen that weighting function represents the amount of
contributions from a signal p(k,t) in the Fourier domain. As
demonstrated in our numerical simulations shown in Sec. 4,
the weighting function plays a critical role for determining
the image quality in the process of photoacoustic image
reconstruction. The weighting function has a series of singular
points when ckt =±(n+1/2), therefore, in Fourier domain for
a sampling period (T), one should, naturally, choose the cutoff
frequency fcutoff using ckt < π/2 or 2π fcutoffT < π/2 to avoid
singular points. This allows us to obtain an objective upper
limit for setting the cutoff frequency fcutoff for a low pass
filter. We obtain that fcutoff <

�
fsampling/4

�
, where fsampling is

the sampling rate.

2.D. Image of retarded potential

From the photoacoustic wave equation, Landau and Lif-
shitz introduced the result47

p(r,t)= 1
4πc

∂

∂t


|∆r|=ct

p0(r−∆r)
ct

dS. (7)

Considering the first-order approximation of (7), Kruger3

and Liu48 obtained the following expression (8) for a spherical
measurement geometry

0

(r0)≈−K
 

2π
dn


t
∂p(r,t)
∂t

+2p(r,t)
 �����t=|r−r0|/c

, (8)

where K is a constant and


0(r) represents the image of
retarded potential which is generated by the optically absorbed
parts of the samples.48

For an object located near the center of the spherical (or
circular) detection geometry, Eq. (8) can provide a good
reconstructed configuration, but it does not hold when the
object deviates from the center of the spherical geometry.49

In addition, the reconstruction artifacts occur when the
integration spherical shells are different from the planar
surfaces. Therefore, based on the result in the spherical
geometry given by Finch et al.,31 Xu and Wang studied
Fourier domain reconstruction method and further wrote a
back-projection form as Eq. (1). In their algorithm, instead
of using measured signals, they used filtered pressure signals

to reconstruct the absorbers and reduced the reconstruction
artifacts to some extent.

We consider that there are a total number of transducers,
N , which are evenly distributed in a 2π-solid angle and
each transducer occupies a solid angle of ∆Ω. Evaluating the
contribution of measured signals via Eq. (6) for the discretized
space, we can replace Eq. (8) with the following expression:

0

(r0)=−K∆Ω
N
i=1


t
∂pf (ri,t)

∂t
+2pf (ri,t)



t=|ri−r0|/c
, (9)

where pf represents the filtered signal.
If the transducers are not evenly distributed, a normal-

ization factor, Ai, which also depends on measurement
configuration, needs to be introduced and Eq. (9) becomes

0

(r0)=−
N
i=1

Ai∆Ω


t
∂pf (ri,t)

∂t
+2pf (ri,t)



t=|ri−r0|/c
, (10)

where
(r0) =

0(r)/K represents the relative intensity of
reconstructed image.

3. MODELING AND NUMERICAL COMPUTATION

For more complex configurations of absorbers, the cost
of generating measurement data for numerical modeling
simulation is huge. To address this challenging issue, our
previous research demonstrated that the FMM based algo-
rithmic structure of ACE could perform the computations in
an optimal manner.50–53

Under stress and thermal confinements in a homogeneous
acoustic medium, the pressure of the acoustic signals gener-
ated by a short-laser pulse is given by Poisson’s solution of
Eq. (4),

p(r,t)= Γ
4πc

∂

∂t


S′

H(r′,t)
|r−r′| dS′, (11)

where Γ is the Gruneisen coefficient, a dimensionless constant
that represents the efficiency of the conversion of heat to pres-
sure, and S′ is a time-dependent surface for which |r−r′| = ct.

Equation (11) states that the pressure signal in a homoge-
neous acoustic medium is solely due to the optical absorption
at locations r′ so that the generated acoustic signals require
time t to reach the detector r. In practice, a discrete version
of (11) is used to simulate the signals collected with a finite
number of transducers,

p(r,t)= ΓA ∂

∂t
Φ(r,t), (12)

where ΓA= Γ/4πc can be treated as a constant and

Φ(r,t)=

i

H(r,t)
|r−ri | . (13)

Consider a source domain ΩS ∈R3 and a sensing domain
ΩO ∈R3. Centers of ΩS and ΩO are denoted by rS and rO. It
is also assumed that ΩS ⊂ΩS and ΩS ∈ΩS and ΩS ∈ΩO =Ø.
In what follows, the domains ΩS and ΩO are called parents of
ΩS and ΩO, respectively. The parent domains centered at rS
and rO, respectively, with rS <ΩS and rO <ΩO.

Medical Physics, Vol. 42, No. 5, May 2015



2172 Huang et al.: An adaptive filtered back-projection for photoacoustic image reconstruction 2172

The potential Φ(r,t) at time t due to sources ∀ri ∈ ΩS

observed at r is given by

Φ(r,t)=
∞
n=0

k
i

(−1)n H(ri,t)
n!

rni ·n ·∇
n 1

r
, (14)

where ·n· means n contraction of two tensors.
We finally calculate Φ(r,t) in a local area via

Φ(r,t)=
T
n=0

L(n) ·n · (ρoi)n, (15)

where r− ro = ρoi and T is a truncation number. Detailed
formulations and derivations omitted here are given in
Appendix B.

The following expression can be used to generate complex
models:

p(ri,t)= ΓA ∂

∂t

T
n=0

L(n) ·n · (ρoi)n. (16)

Besides the significant improvement in model simulation
speed, the error analysis for the potential parts of Eq. (12)
is calculated in order to make our study more complete. The
absolute error in making the multipole approximation can be
obtained using

εm =

������
Φ(r,t)−

T
n=0

M (n) ·n ·∇n 1
r

������

≤
∞

n=T+1

Cmdn
ar−n−1

∞
l=0

(−1)l
l

r l ≤ Cm

(r−da)
(

da

r

)T+1

, (17)

where da denotes the size of the smallest subdomain in ACE
scheme and Cm can be treated as a constant.52

For a uniform sample spherical absorber, one can adopt the
approximate model suggested in36,48

p(r,t)= A0U (a− |R−ct |)(R−ct)/2R, (18)

where A0 is a constant, U(a− |R−ct |) is Heaviside function,
a is radius of sphere, and R denotes the distance between the
center of absorber and detector.

4. NUMERICAL SIMULATIONS AND RESULTS

In order to test the new FBP algorithm, we have conducted
numerical simulations on different phantom samples, which
are comprised of several spherical absorbers arranged in
different configurations and suspended in a nonabsorbing

F. 1. Geometry of the phantom sample used for the first simulation. Details
can be found in the text.

F. 2. The first simulation for our back-projection algorithm. (a) Recon-
structed image at the plane z = 15.0 mm; (b) relative intensities of the
absorbers in the reconstructed image at a cross section plan (x,0,15).

medium. In the simulations, we treated the transducer as an
ideal point detector.

Two sampling geometries were used in these simulations.
First, we consider a planar measurement configuration, where
an acoustic detector scanned on a plane to receive the
photoacoustic emission signals from the absorbers. The
new algorithm requires multiplying Fourier signals with the
weighting function defined in Eq. (6) before back-projection.
The treated signals are then projected back via Eq. (10) in
time domain. This signal processing will greatly reduce the
blurring effect and background noise of measurement signals.

In the following simulations, we assume that the data-
sampling rate is set to be 20.48 MHz and the sound of
speed is 1500 m/s. Based on the discussion in Sec. 2, our
cutoff frequency will be set adaptively; in this case, the cutoff
frequency for the low-pass filter is set to 5.0 MHz.

Our first numerical simulation is designed to test the
geometry and the contour of cross sectional images. The
phantom sample contains five uniform spherical absorbers,
which are arranged on a plane with a distance of 15.0 mm
to the detection plane (Fig. 1). Each spherical absorber has a
radius of 1.5 mm. The center positions of the absorbers are at
(−18.0, 0.0, 15.0), (−9.0, 0.0, 15.0), (0.0, 0.0, 15.0), (9.0, 0.0,
15.0), and (18.0, 0.0, 15.0) in a unit of mm, respectively.
The relative intensities per unit volume are 1.0, 2.0, 3.0,

F. 3. Geometry of absorbers for second simulation (details can be found in
text).
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F. 4. The second simulation without noise: (a) Reconstructed image using
the new algorithm at plane z = 15.0 mm; (b) relative intensity of recon-
structed image at (x, 0, 15); (c) relative intensity of reconstructed image at
(−4, y, 15).

4.0, and 5.0 for the absorbers counted from left to right,
respectively. In this simulation, we assume that a rectangular-
shaped detector moves in a plane along both x- and y-axis
from −30.0 to 30.0 mm with a spatial sampling period of
2/3 mm. Therefore, the photoacoustic signals are collected at
8281 (91×91) total positions. We also chose a small number of
pixels (i.e., only 91 pixels×91 pixels) for the cross-sectional
reconstructed image in our numerical simulation to test if
our FBP algorithm can still generate a high quality image
even under poor measurement conditions. The detected area
of 45.0×45.0 mm for the total pixel numbers used corresponds
to a spatial resolution of 0.495 mm/pixel.

A cross section of a reconstructed image is shown in
Fig. 2(a). We can see that this new approach allows us

F. 5. The second simulation without noise. After subtracting the back-
ground, the intensity well matches the original values of the model. (a)
Reconstructed image using the new algorithm at plane z = 15.0 mm; (b)
relative intensity of reconstructed image at (x, 0, 15); (c) relative intensity
of reconstructed image at (−4, y, 15).

obtaining not only a sharp image [Fig. 2(a)] but also correct
signal strength from the absorbers that well matches with the
values of the absorption assumed for each absorber [Fig. 2(b)].

In our second numerical simulation, we designed a
phantom sample containing absorbers with different sizes
and overlapping areas, as shown in Fig. 3. We want to
evaluate the performance of the new FBP algorithm for this
complicated geometry. In addition, we also add a noise source
to the observed signals to mimic more realistic experimental
conditions. In details, the configuration of the second model
is as follows: seven spherical absorbers are arranged in a way
as shown in Fig. 3. Their center positions are at (0.0, 0.0,
0.0), (−4.0, 0.0, 0.0), (−4.0, 2.0, 0.0), (−4.0, −2.0, 0.0), (9.0,

Medical Physics, Vol. 42, No. 5, May 2015
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F. 6. An example of time domain signals from a detector used for the
simulation. (a) Noiseless signal and (b) signal with 10% AWGN relative to
the signal’s maximum.

0.0, 0.0), (11.0, −8.0, 0.0), and (7.0, 8.0, 0.0), respectively,
where the coordinate unit is millimeter. Sphere 1 contains the
other six spherical absorbers, while sphere 2 further contains
spheres 3 and 4. The seven spherical absorbers have a radius
of 15.0, 4.0, 0.5, 0.5, 2.0, 1.0, and 1.0 mm, respectively. For
sphere 1, the intensity per unit volume is 1.0 except for the
overlapping area. Sphere 2 has intensity per unit volume of
2.0 except for the overlapping area. For spheres 3, 4, 5, 6, and
7, the intensity per unit volume is 3.0, 3.0, 3.0, 2.0, and 2.0,
respectively.

The second measurement configuration is an arc-shaped
detector array composed of 50-point detectors, evenly spaced
over a span of 160◦, with a radius of 65 mm. The detector array
rotates in 2◦ steps over 360◦, giving 9000 (50×180) detection
points (see Fig. 3).

For the second model, we first performed the simulation
of the phantom sample without noise. Figure 4(a) is a gray
scale image of the reconstructed cross sectional image in the
z = 0 mm plane. The reconstructed image is sharp enough and
well represents the geometry of the absorbers. Although some

F. 7. The second simulation with noise added to the observed signals: (a)
Reconstructed image using the new algorithm at plane z = 15.0 mm; (b)
relative intensity of reconstructed image at (x, 0, 15); (c) relative intensity
of reconstructed image at (−4, y, 15).

small artificial structures can be seen around the reconstructed
images of the absorbers, they are minimal and are mainly due
to the limited detection angle and bandwidth. Figures 4(b) and
4(c) show a comparison of the intensities between the original
and the reconstructed distributions along the lines at (x, 0,
0) and (−4, y , 0), respectively. The reconstructed intensity
profiles are sharp and the values closely match with the original
ones. Due to surrounding artifacts caused by the ringing effect,
the intensity of the largest sphere was slightly higher than the
initial intensity. This was mended by subtracting the average
of the background from the image (Fig. 5). The high quality
of the reconstructed images demonstrates the advantages of
the new FBP algorithm, which benefits from the rigorously
derived weighting function in the Fourier domain and an
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F. 8. The second simulation with noise added to the observed signals and
the background subtracted: (a) Reconstructed image using the new algorithm
at plane z = 15.0 mm; (b) relative intensity of reconstructed image at (x, 0,
15); (c) relative intensity of reconstructed image at (−4, y, 15).

adaptive cutoff frequency, which differs from the usage of the
filter functions in conventional FBP.

Next, we consider the case with additional noise in the
measurements for the second model. From Eq. (16), we have
(19), where the noise is 10% additive white Gaussian noise
(AWGN), relative to maximum of each signal. Figure 6 gives
an example of the time domain signal from a detector used for
the simulations, where Fig. 6(a) shows an ideal signal without
noise and Fig. 6(b) shows the signal with noise added,

p(r,t)= ΓA ∂

∂t

T
n=0

L(n) ·n · (ρoi)n+noise. (19)

Figures 7(a) and 8(a) are reconstructed gray-scale images
of the cross section of the absorbers in the z = 0 mm plane

F. 9. Simulation with Hanning window applied to noiseless signals: (a)
Reconstructed image using the new algorithm at plane z = 15.0 mm; (b)
relative intensity of reconstructed image at (x, 0, 15); (c) relative intensity
of reconstructed image at (−4, y, 15).

with noise introduced to the observed signals, where Fig. 8(a)
is with the background subtracted. Although noise appears
in the images, they are still clear enough to well present the
geometry of the absorbers. Figures 7(b), 7(c), 8(b), and 8(c)
show a comparison of the intensities between the original
and the reconstructed intensity distributions along the lines
(x, 0, 0) and (−4, y , 0). Despite the significant amount of
noise, the reconstructed intensity profiles are still in good
agreement with the original ones. The fact that the noise
remains at a minimal level demonstrates the robustness of
the new FBP algorithm for reconstructing PAT images of
complicated structures with reasonable amount of detection
noise.

Medical Physics, Vol. 42, No. 5, May 2015
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F. 10. Simulation with Hanning window applied to noiseless signals and
the background subtracted: (a) Reconstructed image using the new algorithm
at plane z = 15.0 mm; (b) relative intensity of reconstructed image at (x, 0,
15); (c) relative intensity of reconstructed image at (−4, y, 15).

It is worth noticing that even under the assumed poor detec-
tion condition with a spatial resolution of 0.495 mm/pixel, the
reconstructed image still well reproduces the geometry of the
smallest absorbers, i.e., sphere 3 and sphere 4 with a radius of
0.5 mm for the cases either without (Figs. 4 and 5) or with det-
ection noise (Figs. 7 and 8). In comparison, the results of utiliz-
ing a Hanning Window, with a cutoff frequency of 4 MHz, indi-
cate that the image boundaries are well displayed but informa-
tion of intensity is lost within the spheres (Figs. 9 and 10).

5. CONCLUSIONS

In this paper, we have developed an improved FBP
algorithm for PAT image reconstruction. We obtained an exact

form of a weighting function from the basic photoacoustic
wave equation. The weighting function serves as a precise
ramp filter for processing the observed signals in the Fourier
domain. Utilizing the weighting function, one can precisely
calculate the contribution of the measured signals in Fourier
domain. In addition, we also obtained an adaptive criterion to
determine the cutoff frequency for the low-pass filter in Fourier
domain. These new approaches allow us to obtain a sharper
image. For fast numerical modeling, based on traceless, totally
symmetric Cartesian tensors, we have introduced the ACE
method to create the pressure model for simulating photoa-
coustic signals. In addition, our image reconstruction method
utilizes the retarded potential generated by photoacoustic
sources. We conducted numerical simulations on different
phantom samples and demonstrated the effectiveness and
robustness of our new FBP image reconstruction method.
High quality reconstructed images were achieved using this
algorithm, which have sharp borders and precise relative
absorbed energy, even for complicated sample structures and
with introduced noise in the observed signals.
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APPENDIX A: WEIGHTING FUNCTION

Photoacoustic wave Eq. (2) has a general solution that can
be expressed as,26

p(r,t)= α

Cp

 t′=∞

t′=0


V

G(r,r′,t,t ′)H (r′)δ′(t ′)d3r′dt ′, (A1)

where G(r,r′,t,t ′)= δ(|r−r′|−c(t− t ′))/4π |r−r′|, i.e., Green’s
function.

In order to further derive the solution for the photoa-
coustic wave equation, we first utilize the following math-
ematics substitution:


δ′(t− t0) f (t)dt = f ′(t0) and ∂G/∂t ′

=−(∂G/∂t).
We then obtain

p(r,t)= α

Cp


V

H (r′) ∂G(r,r′,t)
∂t

d3r′. (A2)

From the inverse Fourier transform of Green’s function, we
also have

G(r,r′,t,t)= 1

(2π)4
 

e−ik·(r−r′)eiω(t−t′)

k2− (ω/c)2 dωd3k. (A3)

For the frequency axis, we can see that there are two simple
poles when ω =±ck because

e−ik·(r−r′)eiω(t−t′)

k2− (ω/c)2 =
e−ik·(r−r′)eiω(t−t′)

(k+ω/c)(k−ω/c) . (A4)
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For t > 0, we can calculate the integration based on
Cauchy’s residue theorem,54

G(r,r′,t)= c

(2π)3


sin(ckt)
k

eik·(r−r′)d3k. (A5)

Hence, we have

∂G(r,r′,t)
∂t

=
c2

(2π)3


cos(ckt)eik·(r−r′)d3k. (A6)

The pressure distribution function p(r,t) can be further
derived by utilizing the above equation. We have

p(r,t)= 1

(2π)3


p0(k)cos(ckt)eik·rd3k. (A7)

We know that

p(r,t)= 1

(2π)3


p(k,t)e−ik·rd3k . (A8)

Comparing Eqs. (A7) and (A8), we obtain in Fourier space
that

p0(k)= p(k,t)
cos(ckt) e−2ik·r. (A9)

Therefore, the initial pressure source function in time
domain can be expressed as

p0(r)= 1

(2π)3

k

p(k,t)W (k,r,t)e−ik·rd3k, (A10)

where W (k,r,t)= e−2ik·r/cos(ckt) is the weighting function,
which represents the amount of contributions from a signal
p(k,t) for the image reconstruction in the Fourier domain.

APPENDIX B: ACCELERATED CARTESIAN
EXPANSIONS
1. Multipole expansion

The total potential at any point r ∈ΩO due to k sources qi,
i = 1,. . .,k located at points ri ∈ΩS is given as

Φ(r)=
∞
n=0

M(n) ·n ·∇n 1
r
,

M(n)=
k
i=1

(−1) qi
n!

rni , (B1)

where M(n) is the totally symmetric multipole tensor about
the origin rS = {0,0,0}.

2. Multipole-to-multipole expansion

Given a multipole expansion of k sources about the rS
= {0,0,0},

M(n)=
n

m=0


p(m,n)

m!
n!

�
rPs
�n−mOm, (B2)

where O(n) is old multipole tensor and P(m,n) is the permu-
tation of all partitions of n into sets n−m and m.

3. Multipole to local translation

Assume that the domains ΩS and ΩO are sufficiently
separated, and the distance between their centers rOS = |rS
−rO| is greater that diam {ΩS} and diamf {ΩO}. If a multi-
pole expansion M(n) is located at rS, then another expansion
L(n) that produces the same field ∀r ∈ΩO is given by

Φ(r)=
∞
n=0

ρ(n) ·n ·L(n),

L(n)=
∞

m=n

1
n!

M(m−n) · (m−n) · ∇̃m 1
ros , (B3)

where ρ= r−rO.

4. Local to local expansion

A local expansion O(n) that exists in the domain ΩO

centered around rO can be shifted to the domain ΩO centered
at rO using

L(n)=
n

m=0

*
,

m
m−n

+
-

O(m) · (m−n) · �rC�m−n, (B4)

where rC = rO−rO.

5. Local to source

Finally, the potential at any point in theΩO can be obtained
using

Φ(r,t)=
∞
n=0

L(n) ·n · (ρoi)n, (B5)

where ρoi = r−rO.
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