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Abstract

Motivation: Gene expression is influenced by variants commonly known as expression quantitative

trait loci (eQTL). On the basis of this fact, researchers proposed to use eQTL/functional information

univariately for prioritizing single nucleotide polymorphisms (SNPs) signals from genome-wide asso-

ciation studies (GWAS). However, most genes are influenced by multiple eQTLs which, thus, jointly

affect any downstream phenotype. Therefore, when compared with the univariate prioritization ap-

proach, a joint modeling of eQTL action on phenotypes has the potential to substantially increase sig-

nal detection power. Nonetheless, a joint eQTL analysis is impeded by (i) not measuring all eQTLs in

a gene and/or (ii) lack of access to individual genotypes.

Results: We propose joint effect on phenotype of eQTL/functional SNPs associated with a gene

(JEPEG), a novel software tool which uses only GWAS summary statistics to (i) impute the sum-

mary statistics at unmeasured eQTLs and (ii) test for the joint effect of all measured and imputed

eQTLs in a gene. We illustrate the behavior/performance of the developed tool by analysing the

GWAS meta-analysis summary statistics from the Psychiatric Genomics Consortium Stage 1 and

the Genetic Consortium for Anorexia Nervosa.

Conclusions: Applied analyses results suggest that JEPEG complements commonly used univari-

ate GWAS tools by: (i) increasing signal detection power via uncovering (a) novel genes or

(b) known associated genes in smaller cohorts and (ii) assisting in fine-mapping of challenging

regions, e.g. major histocompatibility complex for schizophrenia.

Availability and implementation: JEPEG, its associated database of eQTL SNPs and usage

examples are publicly available at http://code.google.com/p/jepeg/.

Contact: dlee4@vcu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Univariate analysis of genome-wide association studies (GWAS)

has emerged as the main tool for identifying trait/disease-associated

genetic variants (Burton et al., 2007). However, against initial

expectations, most variants reported by complex trait GWAS are

common single nucleotide polymorphisms (SNPs) with weak or

moderate effect sizes, which account for only a small fraction of the

overall phenotypic variation (Manolio et al., 2009). Presumably,

most common causal variants are not detected in GWAS due to their

small effect sizes (Yang et al., 2010). Therefore, to identify a greater
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number of causal variants, GWAS of (significantly) larger sample

sizes is needed. However, such dramatic increase in sample size

might be both time consuming and cost prohibitive.

One reasonable approach to increase the power to detect true as-

sociation signals with small effect sizes is to use prior biological

knowledge. For instance, researchers can prioritize the genetic vari-

ants by utilizing evidence/information of their impact on biological

processes giving rise to the desired phenotypes. One such biological

process is the regulation of gene expression, which is believed to

have influenced human evolution and play an important role in dis-

eases (Emilsson et al., 2008; Kudaravalli et al., 2009). Expression of

most genes is influenced by expression quantitative trait loci

(eQTLs), which were hypothesized to be prime candidates for causal

variants affecting various phenotypes (Gaffney et al., 2012; Gilad

et al., 2008). This hypothesis was subsequently empirically sup-

ported by the detection of significant eQTL enrichment among

GWAS association signals (Nica et al., 2010; Nicolae et al., 2010).

Recent studies making use of eQTL/functional information

showed a boost in the detection rate of GWAS signals (Fehrmann

et al., 2011; Nicolae et al., 2010; Schork et al., 2013). These func-

tional approaches can take advantage of a diverse collection of data-

bases/tools of functional annotations, which have become publicly

available (ENCODE Project Consortium et al., 2012; Wang et al.,

2010). For instance, the Encyclopedia of DNA Elements (ENCODE)

Consortium has already catalogd huge amount of information on

functional elements including gene expression, transcripts, transcrip-

tion factor binding sites, chromatin, DNA methylation and histone

modification patterns (ENCODE Project Consortium et al., 2012).

As mentioned earlier, to increase causal variant detection, signal

enrichment in functional variants was used to justify prioritization/fil-

tering procedures based on functional annotation (Schork et al.,

2013). Recently, an improvement of this method was proposed. It first

identifies functional annotations associated with phenotypes of inter-

est and then uses them to prioritize SNPs (Pickrell, 2014). However,

while useful, such an approach has the disadvantage of considering

only the univariate effect of eQTL/functional SNPs. To leverage infor-

mation from multiple SNPs, multi-SNP based association tests (Ehret

et al., 2012; Wood et al., 2011; Yang et al., 2012) have been also pro-

posed. Compared with univariate approaches, these methods certainly

offer better detection power, but typically test all SNPs, not only the

functional ones. Nonetheless, under the reasonable assumption that

the causal pathways are mostly composed of functional SNPs, such

approaches are likely to incur a power loss. Even more, under the

same assumption, these approaches might diffuse [via linkage disequi-

librium (LD)] the signals to relatively distant non-functional regions,

which might add another layer of difficulty to any subsequent attempt

to fine-map association signals.

Given the joint impact of eQTLs on gene expression, it is of great

interest to multivariately analyse eQTL/functional SNPs in a gene.

Nevertheless, for such a test, researchers need to impute a large frac-

tion of these variants. Unfortunately, the commonly used genotype

imputation methods need access to genetic data, which, unlike sum-

mary statistics, are not always available. Summary statistics-based im-

putation methods offer fast imputation with great accuracy (Lee et al.,

2013; Pasaniuc et al., 2014; Pickrell, 2014). However, by default they

impute all SNPs, not only the much less numerous eQTL SNPs. The

unnecessary imputation of mostly unused SNPs makes these methods

much more computer intensive than it is really necessary.

To improve over the state of the art, we propose joint effect on

phenotype of eQTL/functional SNPs associated with a gene (JEPEG).

JEPEG is an integrated method/software tool which uses only GWAS

summary statistics to (i) rapidly and accurately impute summary

statistics of unmeasured eQTL/functional SNPs and (ii) jointly test the

effect of these (measured and imputed) functional SNPs associated

with each gene in the genome. The associated software consists of

four major components (Fig. 1): (i) an extensive database of eQTL/

functional SNPs (Section 2.1), (ii) a module for directly imputing sum-

mary statistics of unmeasured eQTL/functional SNPs [i.e. Direct

Imputation of summary STatistics (DIST) (Lee et al., 2013)] (Section

2.2), (iii) a module for testing the joint effect of all reliably measured/

imputed functional SNPs associated with a gene (i.e. JEPEG) (Section

2.3) and (iv) reference population panels available/needed for both

imputation and joint testing (Section 2.4).

2 Methods

2.1 SNP annotation database
To facilitate the pooling of SNPs effects within the same functional

category (Section 2.3), the initial version of the database focuses on

autosomal SNPs for which we can predict the direction and magni-

tude of allelic effects on gene expression. Because our applied ana-

lyses focus mainly on neuropsychiatric disease, the current version

of the database is limited to SNPs affecting expression levels for

brain-expressed genes. However, given that most genes are brain ex-

pressed, the use of this database for the analysis of non-psychiatric

phenotypes might provide a tolerable first iteration in the absence of

an eQTL database for the relevant tissue(s). The current SNP anno-

tation database contains functional annotations for SNPs from the

publicly available 1000 Genomes (1KG) (Altshuler et al., 2010)

reference panel, Phase I version 3, which were subsequently screened

in silico for an impact on the expression/function of brain-expressed

genes. (The exception being the empirically derived cis- and trans-

eQTL came from studies using smaller GWAS SNP panels.) The

functional annotations include reference SNP cluster identifier (ID)

(rsid), SNP location (chromosome and position), reference/alterna-

tive allele, associated gene ID, functional category, weight score, etc.

Whenever available, we use human genome organization (HUGO)

name for the gene having its expression/function affected by the

eQTL/SNP entry. Conceptually, within each functional category,

the weight score is a proxy measure for the predicted amount of in-

crease in the expression of a gene brought on by the reference allele

of its functional SNP. (Weight is negative when the reference allele is

predicted to decrease gene expression.) Due to their diverse mode of

acting on gene expressions, different functional categories might

have different such proxy measures, e.g. free energy for the micro

RNAs and deleteriousness score for protein function variants

(Section 1 in Supplementary Data for more details). In the

Fig. 1. JEPEG flowchart. More detailed explanations on SNP annotation data-

base, DIST, JEPEG and the reference population can be found in Sections 2.1–2.4
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gene-based statistical analysis, the proxy measures act as weight

scores that are used to combine, within each gene, the univariate

summary statistics of measured and imputed SNPs within functional

categories. Subsequently, these functional category statistics are

combined in an overall gene level statistic.

In its current version, JEPEG uses SNPs belonging to six func-

tional categories: (i) SNPs directly affecting protein function/struc-

ture encoded by a gene, i.e. protein function/structure (PFS) (e.g.

stop codons), (ii) SNPs affecting expression of a gene by disrupting

its transcription factor binding sites (TFBS), (iii) SNPs affecting the

gene function by interrupting biogenesis of an miRNA (miRNA

Structure), (iv) SNPs affecting miRNA–mRNA target interaction

(miRNA Target) and non-categorized/empirically derived (v) cis-

and (vi) trans-eQTLs. While PFS variants are not technically eQTLs,

given the similarities between the two functional categories, we

henceforth extend the definition of eQTLs to include PFS variants.

2.2 Direct imputation of summary statistics at

unmeasured eQTLs
The SNP annotation database includes many functionally annotated

SNPs that are not available in GWAS panels. Thus, before testing

the multivariate effect of all functionally annotated SNPs affecting a

gene, JEPEG imputes normally distributed statistics (two tailed

Z-scores, henceforth called summary statistics) of the unmeasured

functional SNPs. The imputation is achieved by employing DIST,

one of our recently developed method/software which directly im-

putes summary statistics of unmeasured SNPs (Lee et al., 2013), i.e.

without the need of a prior genotype imputation. When compared

with the commonly used genotype imputation methods, e.g.

IMPUTE2 (Howie et al., 2009), DIST was found to be of compar-

able accuracy and two orders of magnitude more efficient in terms

of both running time and memory usage. Within JEPEG software,

DIST module is silently run to impute summary statistics for un-

measured functional SNPs. Due to imputing only the less numerous

set of unmeasured functional SNPs, the imputation module is much

faster than the stand-alone DIST software. The high-quality imput-

ation is achieved by applying the classical conditional expectation

formula for multivariate normal variates using only (i) association

summary statistics of reported markers within sliding windows with

a fixed length and (ii) correlation matrix of homologous genotypes

estimated from an external reference panel (e.g. 1KG).

In more detail, let Zu be the vector of Z-scores of unmeasured

functional variants in the non-overlapping prediction window with

a fixed length [0.1 mega base pairs (Mb) by default]. Denote as Zm

the vector of Z-scores of all measured variants (including non-anno-

tated measured variants) within the extended window (i.e. the pre-

diction window with two fixed-length flanking regions (0.2 Mb by

default)). Let
P

u,m be the correlation matrix between the unmeas-

ured and measured variants and
P

m,m be the correlation matrix

among the measured variants, which are both estimated from a ref-

erence panel. By using the classical conditional mean formula (Lee

et al., 2013), Zu can be imputed as

Zu ¼
X

u;m

�X
m;m

��1

Zm:

The variance–covariance matrix (proxy imputation information

measure) of Zu can be subsequently estimated as

Iu ¼
X

u;m

�X
m;m

��1X
u;m

T:

To obtain imputation Z-scores with a variance of one, we normalize

Zu using the square root of Iu (Pasaniuc et al., 2014).

Due to the strongly correlated structure of the genotype data, the

correlation matrix can be ill-conditioned and, therefore, result in a

large standard error for the imputed Z-scores. The high variability

of estimates can lead to poor accuracy and false positives. To cir-

cumvent the degradation of DIST performance, similar to Pasaniuc

et al. (2014) and Pickrell (2014), we add a ridge adjustment (with a

heuristical default value k ¼ 2=
ffiffiffi
n
p

, where n is the sample size of the

reference panel) to the diagonal elements of the estimated correl-

ation matrix. To avoid the detrimental effects of SNPs of low imput-

ation accuracy, for the joint testing we retain only eQTL SNPs

having the imputation information above a user-selectable threshold

(0.3 by default).

2.3 Testing for the joint effect of eQTL/functional SNPs
To test for the joint effect of eQTL/functional SNPs known to affect

the expression of a gene, JEPEG was designed to rely solely on the

(univariate) measured and imputed summary statistics. Based on the

database-derived functional category information, JEPEG first

groups eQTL/functional SNPs affecting the same gene into the

aforementioned six categories: (i) PFS, (ii) TFBS, (iii) miRNA

Structure, (iv) miRNA Target, (v) uncategorized cis-eQTLs and (vi)

uncategorized trans-eQTLs. These functional SNPs can belong to

one or more categories/genes simultaneously. A simple method for

estimating the joint effect of all eQTLs associated with a gene might

be to combine all eQTL association statistics regardless of their

functional category. However, such an approach may result in a

saturated statistical model with a large number of degrees of free-

dom (df), i.e. the number of all eQTLs associated with a gene. When

the pairwise LD is elevated, it leads to statistical power loss (Bacanu

et al., 2008; Chapman et al., 2003). To avoid a large number of df

for the resulting test statistic (while simultaneously assessing the

contribution of each functional category to the overall signal), we

pool together statistics of all SNPs from the same functional cat-

egory in a single synthetic category score. This score is a weighted

sum of the Z-scores associated with the SNPs in the functional cat-

egory. The weighted sums of all functional categories influencing a

gene are subsequently combined in a gene-level statistic by using a

Mahalanobis-type statistic, which takes into account their multivari-

ate correlation (as estimated from a relevant reference panel).

In more detail, let Z be the vector of Z-scores for m SNPs func-

tionally associated with the gene under investigation, Y be the diag-

onal matrix of the square root of imputation information for the m

functional SNPs, S be the weight matrix, as derived from the SNP

annotation database, for the m functional SNPs belonging to the k

functional categories. S consists of m column vectors representing

weight scores of the k functional categories per SNP, which are

precalculated on the basis of the consensus of results from diverse

prediction methods (Section 1 in Supplementary Data) and stored in

the JEPEG annotation database. To downweight SNPs with low

imputation information, based on Y and S, we compute the adjusted

weight matrix by accounting for the imputation information of the

SNPs: W¼ SY. Let
P

G be the correlation matrix of SNP genotypes,

e.g. as estimated from a reference panel, U be the vector of weighted

sum of Z-scores by category (i.e. the synthetic scores) and
P

U be

the variance–covariance/correlation matrix of U. Then, in mathem-

atical notation:

U ¼ WZ and
X

U
¼ W

X
Z

WT;

where
P

Z is the covariance/correlation matrix of Z. Given that,

under the null hypothesis of no association between genotype and

trait (H0), Z is asymptotically distributed as a multivariate normal
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with a zero mean vector and covariance matrix
P

G, it follows that:

X
U
¼ W

X
G

WT:

Due to LD,
P

G might be close to singular, which results in unstable

estimation of the gene-based test statistic. Thus, to stabilize JEPEG

statistic, we add the DIST ridge adjustment to the diagonal elements

of
P

G. Based on the synthetic scores of all functional categories af-

fecting the gene and their correlation structure, JEPEG computes an

omnibus gene-level test as

T ¼ UT
X

U

�1U;

which, under H0, is asymptotically distributed as a central v2 statis-

tic with k df. The two-tailed P-values associated with the normalized

U can be used as a post hoc measure to evaluate the contribution of

each functional category to the omnibus gene signal.

Adjustment for the background enrichment of GWAS signals

Large GWAS/meta-analyses [such as Psychiatric Genomics

Consortium (PGC)] harbor abundant small or moderate association

signals not reaching significance thresholds across the entire gen-

ome. Thus, even when a gene is not related to the trait, due to the

background enrichment of the entire genome, we have elevated

chances to detect a signal in such a gene. Intuitively, background en-

richment makes the sum of squares of the univariate statistics to be-

have like a non-central v2 variable. Consequently, for large studies,

it is more desirable (and conservative) to assess the statistical signifi-

cance/P-value of T after adjusting for background enrichment. In

more detail, let N be the total number of tested genes and Ti and ki

be the JEPEG test statistic and df of the ith gene, respectively. The

enrichment adjusted P-value of the ith gene is then obtained under

the assumption that Ti follows a non-central v2 distribution

with ki df and a non-centrality parameter per df

k ¼ maxð
XN

i¼1

Ti � ki

ki

� �
=N; 0Þ (Bacanu et al., 2014).

2.4 Reference population
In the current version, we have the capability of using as reference

populations 1KG Europeans (n¼379), Asians (n¼286), Africans

(n¼246) and Americans (n¼181). These panels were obtained

from 1KG Phase I release version 3 database, by including only bial-

lelic SNPs, indels and structural variants with two or more allelles.

These reference panels are available for both imputation (DIST) and

gene-level testing (JEPEG) modules. Future iterations of the software

will be able to (i) use larger reference panels and (ii) be applied to

cosmopolitan cohorts.

2.5 Assessment of Type I error rate of JEPEG
To estimate the Type I error rates of JEPEG, we simulated (under

H0) 100 realistic Illumina 1 M (http://www.illumina.com) GWAS

summary datasets for both continuous and binary phenotypes. For

each simulation, the genotypic data were obtained by randomly

drawing with replacement 10 000 subjects from UK10K dataset

(http://www.uk10k.org) and retaining as GWAS (measured) SNPs

only those found on Illumina 1 M chip. The continuous phenotype

was simulated as random standard normal variables, and the binary

phenotype was obtained by randomly assigning case status to 5000

subjects and control status to the remaining subjects. The summary

statistics were obtained by testing for association between SNP and

phenotype using linear/logistic regression. We applied JEPEG to the

100 simulated H0 summary dataset from each phenotype type and

estimated the empirical Type I error rates. To evaluate the robust-

ness of the proposed method when the LD matrix of the study co-

hort and reference population is not perfectly matched, we used the

more ethnically diverse 1KG Europeans as a reference population to

analyse the UK10K-derived data.

2.6 Assessment of JEPEG performance
To evaluate the performance of the proposed method, we compared it

to the commonly used univariate GWAS methods and, at default set-

tings, with VErsatile Gene-based Association Study (VEGAS), a

broadly used gene-based test for association (http://gump.qimr.edu.au/

VEGAS/) (Liu et al., 2010). VEGAS uses as a test statistic the sum of

univariate v2 of SNPs within a gene and assesses its statistical signifi-

cance using an empirical H0 distribution simulated from a multivariate

normal distribution with LD matrix of the SNPs as a covariance ma-

trix. We applied the earlier methods to four real summary datasets: (i)

PGC1 bipolar disorder (BD) (Sklar et al., 2011), (ii) schizophrenia

(SCZ) (Ripke et al., 2011), (iii) major depressive disorder (MDD)

(Sullivan et al., 2013) cohorts and (iv) anorexia nervosa cohort from

Genetic Consortium For Anorexia Nervosa (GCAN) (Boraska et al.,

2014). Before the applied analyses, we converted all four summary

datasets to National Center for Biotechnology Information (NCBI)

build 37 (hg19) using liftOver (Hinrichs et al., 2006). 1KG Europeans

data was used as the reference panel for JEPEG.

To limit the increase in Type I error rates of JEPEG due to

certain genes being non-causal but very close to GWAS peaks, we

adjusted all JEPEG gene level statistics for background enrichment.

Enrichment-adjusted JEPEG gene-level P values were subsequently

adjusted for multiple testing by using the false discovery rate

(FDR) procedure. Genes with FDR-adjusted JEPEG P-value

(q-value)<0.05 were deemed significant. We also deemed as sug-

gestive genes having non-significant q-values below 0.16, i.e. the

P-value threshold corresponding to Akaike Information Criterion.

Due to the difficulty of assigning df to their statistics, VEGAS gene

statistics were not adjusted for background enrichment but they

were adjusted for multiple testing using FDR.

3 Results

While H0 summary datasets were simulated based on the fairly

homogenous samples from UK10K and analysed using the multi-

ethnic 1KG Europeans reference panel, JEPEG still controls the

Type I error rates at or below the nominal level (Fig. 2). The results

suggest that JEPEG with the ridge correction is reasonably robust to

(non-African) intracontinental LD variations.

In PGC1 BD cohort, out of 13 552 genes with reliable functional

information, we detected 10 significant and 4 suggestive signals

(Table 1). The most significant gene (q-value¼3�10�4) was

RASGEF1A (10q11.21), which was never reported to be associated

with BD. For this gene, JEPEG database contained functional anno-

tation information for only six trans-eQTL SNPs on chromosome 6,

with the most significant residing near SYNE1, a gene already de-

tected univariately in PGC1 BD meta-analysis (Sklar et al., 2011).

The second most significant gene was the SYNE1 gene

(q-value¼8�10�4) itself, for which the statistic was obtained based

on 38 nearby eQTL SNPs. Five of the significant genes belong to

ITIH cluster on chromosome 3, which also encompasses two other

suggestive genes. It is notable that ITIH cluster did not yield any sig-

nificant SNP signal in PGC1 BD (or SCZ) but was detected univari-

ately only in the (much larger) combined analysis of PGC1 BD and

SCZ (Sklar et al., 2011). For the same cohort, VEGAS detected 27
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significant and 8 suggestive gene signals out of 17 789 genes

(Supplementary Table S1). Significant signals were obtained from

six gene regions, where, except the marginally significant chr2

LMAN2L and chr19 NFIX (albeit VEGAS standard errors are

orders of magnitude larger than the small estimated P-values), also

detected by JEPEG. VEGAS did not detect RASGEF1A. We note

that while most regions were detected by both multivariate methods,

JEPEG appears to fine-map these regions by returning smaller gene

lists.

For the SCZ cohort, out of 13 420 genes with functional infor-

mation, 18 and 13 genes harbored significant and suggestive signals,

respectively (Table 2). However, only six significant genes were out-

side the major histocompatibility complex (MHC) region (chr6:

28–33.5 Mb), which has been associated with SCZ in many

Caucasian GWAS (Purcell et al., 2009; Stefansson et al., 2009).

We underscore the detection of a significant signal for MAD1L1

(q-value¼0.01). This gene was not identified in univariately in

PGC1 SCZ, but was detected in a larger PGC1 follow-up study,

which included additional Swedish cohorts (Ripke et al., 2013).

We also detected 3 significant and 3 suggestive gene signals from

ITIH cluster. We also note the strong significant SCZ signals in

NKAPL and ZKSCAN4, which were the only MHC genes harbor-

ing significant signals in a Han Chinese SCZ GWAS (Yue et al.,

2011). Meanwhile, for the same data, VEGAS detected only 3 sig-

nificant (ABCC12, SRCAP and ZNF629) and 2 suggestive (PHKG2

and ZNF681) gene signals out of 17 704 genes (Supplementary

Table S2). We mention that none of the genes with significant

VEGAS signal are located within LD independent SCZ association

regions from the latest PGC SCZ Stage 2 study (Ripke et al., 2014).

For PGC1 MDD and GCAN studies, neither multivariate

method yields any significant findings. While disappointing, our

findings closely mirror the univariate results. An increase in sample

size for the two disorders might help increase signal detection power

for all methods.

On a computation node with 4x Intel Xeon 6 core 2.67-GHz pro-

cessor and 64 GB of RAM, the single core JEPEG analyses for any of

the four summary datasets required slightly under 2 h of running time

and less than 8 GB of peak memory usage. The web-based VEGAS

software (http://gump.qimr.edu.au/VEGAS/) at default settings

required around 1 day of computation time for each summary dataset.

4 Conclusions

In this article, we propose JEPEG, a new software/method for test-

ing the joint effects on trait for SNPs functionally associated with a

gene. The proposed method (i) imputes unmeasured functional

SNPs, (ii) pools in a synthetic variable the information of all (meas-

ured and imputed) SNPs in the same functional category, (iii) to ob-

tain an omnibus gene statistic, combines these synthetic variables in

a Mahalanobis-type test and (iv) provides single functional category

Table 1. JEPEG results for PGC1 BD

Gene Chr Start End v2 df P q n Top Categ (P) Top SNP (P)

Significant Genes (q< 0.05)

RASGEF1A 10 43,194,533 43,266,919 31.2 1 2.30� 10�8 0.0003 6 TRN (2.30� 10�8) rs9371601 (4.33� 10�9)

SYNE1 6 152,121,684 152,637,399 35.0 3 1.19� 10�7 0.0008 38 PFS (1.06� 10�7) rs214976 (2.47� 10�8)

DDN 12 48,995,150 48,999,305 26.5 2 1.76� 10�6 0.0064 2 CIS (8.85� 10�7) rs10783299 (2.53� 10�7)

GLT8D1 3 52,694,484 52,706,083 22.7 1 1.90� 10�6 0.0064 21 CIS (1.90� 10�6) rs2251219 (5.45� 10�7)

GNL3 3 52,685,920 52,694,497 22.0 1 2.69� 10�6 0.0066 1 PFS (2.69� 10�6) rs2289247 (8.55� 10�7)

SNORD19 3 52,689,240 52,689,315 21.9 1 2.92� 10�6 0.0066 1 PFS (2.92� 10�6) rs11177 (9.35� 10�7)

ITIH1 3 52,777,586 52,792,068 23.7 2 7.12� 10�6 0.0138 4 PFS (4.05� 10�6) rs1042779 (1.90� 10�6)

C15orf53 15 38,696,598 38,700,038 19.7 1 8.98� 10�6 0.0152 1 PFS (8.98� 10�6) rs7165988 (3.21� 10�6)

PC 11 66,848,522 66,958,376 18.0 1 2.20� 10�5 0.0332 1 TFB (2.20� 10�5) rs3741194 (8.57� 10�6)

MUSTN1 3 52,833,115 52,835,219 17.2 1 3.32� 10�5 0.0450 2 PFS (3.32� 10�5) rs4687657 (1.02� 10�5)

Suggestive Genes (0.05< q< 0.16)

NEK4 3 52,710,780 52,770,949 16.1 1 6.10� 10�5 0.0751 2 PFS (6.10� 10�5) rs1029871 (8.97� 10�7)

ANKRD18DP 3 198,057,531 198,080,671 15.6 1 8.01� 10�5 0.0904 6 TRN (8.01� 10�5) rs1077352 (4.80� 10�5)

PCSK7 11 117,199,836 117,232,525 18.6 2 9.29� 10�5 0.0968 4 TFB (2.23� 10�4) rs201598301 (1.08� 10�4)

TUBA1B 12 49,127,782 49,131,521 14.9 1 1.14� 10�4 0.1105 1 TFB (1.14� 10�4) rs1057725 (5.20� 10�5)

Bold denotes significant genes not reported in PGC1 but in the supersets of PGC1. Underline denotes newly found non MHC significant genes, with solid

underline for genes with more than one eQTL SNP and dashed underline����������� for genes with only one non-significant eQTL. Gene, HUGO gene name; Chr, chromo-

some number; Start, start position of gene; End, end position of gene; v2, JEPEG test statistic; df, degrees of freedom; P, P-value before background enrichment ad-

justment; q, background enrichment adjusted FDR q-value; n, number of eQTLs associated with gene; Top Categ (P), top functional category and its P-value;

Top SNP (P), SNP ID of top eQTL and its P-value; PFS, Protein Function/Structure; TFB, TFBS; STR, miRNA Structure; TAR, miRNA Target; CIS, cis-eQTLs;

TRN, trans-eQTLs.

Fig. 2. JEPEG relative Type I error rate (the empirical Type I error rate divided

by the nominal Type I error rate) as a function of the nominal Type I error

rate, (log 10 scale) and the phenotype used. The dashed line denotes the

nominal threshold for the relative Type I error rate

- - - - - - - - - -

- - -
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statistics, which can be used to identify the categories driving the

overall omnibus signal. We use realistic simulated datasets, to show

that JEPEG controls the Type I error rates at or below nominal

rates. The application of the method to PGC1 BD and SCZ datasets

suggests that JEPEG has the potential to improve both gene detec-

tion and fine mapping of challenging regions, such as MHC for SCZ

and ITIH cluster for BD (SCZ).

The argument that the joint eQTL testing might substantially in-

crease detection power is strongly supported by three key findings

from the applied analyses. First, we identified at least one novel can-

didate gene for BD, RASGEF1A, based on its trans-eQTL SNPs.

Due to trans-eQTLs being generally considered less reliable, the evi-

dence for this gene should be viewed with caution. However, we

note that RASGEF1A is already known to be implicated in a periph-

eral neural disorders (Hirschprung’s disease) (Fernandez et al.,

2012). Second, we detected both significant BD and SCZ signals in

ITIH cluster, which was univariately uncovered only in a much

larger combined analysis of PGC1 BD and SCZ cohorts (Sklar et al.,

2011). Third, in PGC1 we detected a significant SCZ signal for

MAD1L1, which was not identified by VEGAS and was univariately

detected only in a larger superset of PGC1 (Ripke et al., 2013).

The practical applications suggest that JEPEG has the potential

to aid fine-mapping of challenging regions. For instance, some of the

largest MHC signals for SCZ were in NKAPL and ZKSCAN4,

which were the only MHC genes with significant signals in a Han

Chinese SCZ cohort (Yue et al., 2011). Even more, while VEGAS

detected 12 BD signals in ITIH cluster, the strength of JEPEG BD

signals suggests that the five JEPEG genes in ITIH cluster are more

likely to be functionally involved in BD etiology. The three JEPEG

SCZ signals in the ITIH cluster support the hypothesis of a pleio-

tropic effect on both disorders. If we are further willing to assume

that the same ITIH genes might predispose to both disorders, the

intersection of SCZ and BD signals might be used to further narrow

the list of candidate genes to just GLT8D1 and MUSTN1.

Given its novel multivariate testing of functional SNPs, JEPEG is

a complementary tool to the commonly used univariate GWAS ap-

proach and agnostic multivariate approaches like VEGAS. Our ap-

proach will augment the performance of these methods for certain

biologically plausible causal models that are less suitable to univari-

ate/agnostic detection, e.g. genes with multiple functional SNPs

jointly acting on a trait. Due to basing its inference solely on sum-

mary statistics, the proposed method can be used even when subject-

level genotype data is not available. Even more, because the LD

structure used by JEPEG is unaffected by the relatedness between

samples, it can be used in its current form to analyse summary data

coming from large family studies.

We plan to further develop and update JEPEG along three main

directions. First, we plan to upgrade the SNP annotation database

by extending the number of SNPs and their functional annotations.

For instance, we plan to add to the database variants specific to (i)

1KG non-Caucasian cohorts, (ii) UK10K (http://www.uk10k.org)

and (iii) X-linked eQTL SNPs. We will also continuously update the

Table 2. JEPEG results for PGC1 SCZ. (see Table 1 for background and notation.)

Gene Chr Start End v2 df P q n Top Categ (P) Top SNP (P)

Significant Genes (q< 0.05)

BTN3A2 6 26,365,159 26,378,320 39.4 3 1.45� 10�8 0.0007 56 TRN (1.67� 10�9) rs17693963 (1.56� 10�10)

HLA-DRB5 6 32,517,374 32,530,229 36.5 3 5.90� 10�8 0.0010 58 TRN (8.07� 10�9) rs116115875 (9.90� 10�7)

NKAPL 6 28,259,297 28,260,958 32.6 2 8.26� 10�8 0.0010 3 TRN (4.40� 10�8) rs1679709 (9.39� 10�9)

BTN2A1 6 26,457,904 26,476,621 30.0 2 3.00� 10�7 0.0027 7 PFS (6.64� 10�8) rs13195401 (3.41� 10�7)

HLA-A 6 29,942,470 29,945,884 27.0 2 1.34� 10�6 0.0073 15 CIS (2.05� 10�7) rs114197794 (8.69� 10�9)

HIST1H2BL 6 27,807,479 27,807,931 23.1 1 1.51� 10�6 0.0073 1 PFS (1.51� 10�6) rs200484 (4.56� 10�7)

HIST1H2BPS1 6 25,731,728 25,732,166 22.5 1 2.10� 10�6 0.0086 1 TAR (2.10� 10�6) rs9461209 (6.51� 10�7)

MAD1L1 7 1,815,792 2,232,948 25.6 2 2.82� 10�6 0.0099 9 PFS (3.30� 10�6) rs1801368 (1.07� 10�6)

OR12D3 6 29,373,423 29,375,291 25.5 2 2.83� 10�6 0.0099 30 CIS (9.03� 10�7) rs114071887 (2.59� 10�7)

ZKSCAN4 6 28,244,626 28,259,252 21.1 1 4.32� 10�6 0.0119 2 PFS (4.32� 10�6) rs9986596 (3.94� 10�9)

MUSTN1 3 52,833,115 52,835,219 20.7 1 5.37� 10�6 0.0133 2 PFS (5.37� 10�6) rs4687657 (3.65� 10�6)

OR2B2 6 27,911,185 27,912,396 19.7 1 8.98� 10�6 0.0193 4 PFS (8.98� 10�6) rs34788973 (6.31� 10�9)

ITIH4 3 52,812,990 52,830,701 19.6 1 9.50� 10�6 0.0193 1 TRN (9.50� 10�6) rs2276817 (3.41� 10�6)

ZNF323 6 28,324,737 28,337,366 24.5 3 1.98� 10�5 0.0375 16 CIS (1.12� 10�6) rs2859365 (2.45� 10�6)

VKORC1L1 7 65,873,270 65,959,563 18.1 1 2.08� 10�5 0.0375 1 CIS (2.08� 10�5) rs4962347 (8.04� 10�6)

HIST1H2AL 6 27,865,329 27,865,798 17.9 1 2.34� 10�5 0.0375 3 TFB (2.34� 10�5) rs200981 (1.70� 10�7)

GLT8D1 3 52,694,484 52,706,083 17.6 1 2.78� 10�5 0.0408 21 CIS (2.78� 10�5) rs3733047 (1.06� 10�5)

TCP10L 21 32,574,841 32,585,535 17.3 1 3.12� 10�5 0.0429 1 PFS (3.12� 10�5) rs9622 (1.25� 10�5)

Suggestive genes (0.05< q< 0.16)

BTN3A1 6 26,402,237 26,415,216 20.3 2 3.99� 10�5 0.0565 5 PFS (1.26� 10�4) rs41266839 (1.78� 10�7)

PTGES 9 129,738,336 129,753,065 16.6 1 4.66� 10�5 0.0565 1 CIS (4.66� 10�5) rs6592945 (1.95� 10�5)

LIN28B 6 104,950,467 105,083,332 16.5 1 4.95� 10�5 0.0570 2 TRN (4.95� 10�5) rs17195211 (3.26� 10�4)

MIR8064 3 52,846,463 52,846,552 16.0 1 6.26� 10�5 0.0680 1 STR (6.26� 10�5) rs4687672 (2.69� 10�5)

ZSCAN31 6 28,324,737 28,337,366 15.3 1 9.01� 10�5 0.0916 3 PFS (9.01� 10�5) rs853678 (1.06� 10�9)

KATNAL2 18 46,917,602 47,102,243 14.8 1 1.20� 10�4 0.1150 1 PFS (1.20� 10�4) rs7233515 (5.48� 10�5)

ITIH1 3 52,777,586 52,792,068 17.8 2 1.40� 10�4 0.1292 4 PFS (6.68� 10�5) rs678 (4.08� 10�5)

PTK7 6 43,076,268 43,161,720 14.5 1 1.42� 10�4 0.1248 4 PFS (1.42� 10�4) rs34764696 (6.37� 10�5)

SNORD19 3 52,689,240 52,689,315 14.5 1 1.42� 10�4 0.1248 1 PFS (1.42� 10�4) rs11177 (6.61� 10�5)

CUL9 6 43,182,175 43,224,587 17.3 2 1.77� 10�4 0.1501 6 TFB (4.40� 10�5) rs2273709 (5.98� 10�6)

ZBED4 22 49,853,849 49,890,078 17.2 2 1.84� 10�4 0.1501 2 PFS (9.01� 10�4) rs910799 (4.99� 10�4)

SCARNA3 1 175,968,397 175,968,540 13.9 1 1.91� 10�4 0.1501 10 TRN (1.91� 10�4) rs12220941 (8.81� 10�5)

ZKSCAN8 6 28,141,910 28,159,472 13.7 1 2.10� 10�4 0.1511 1 TFB (2.10� 10�4) rs17774663 (1.01� 10�4)

- - - - - - - - - - - - -
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functional categorization and SNP weights based on the latest avail-

able detection tools and practical evidence from larger empirical

studies. Second, based on the available scientific evidence, we will

add functional SNPs from other potentially relevant tissues/cell

types (e.g. lymphocytes and monocytes). Third, we plan to add add-

itional functional categories. The current version relies heavily on

functional categories for which we are able to predict the direction

and magnitude of the effect of SNP’s reference allele on gene expres-

sion. This feature was convenient because it allowed for pooling of

Z-scores within each functional category in a one df statistic.

However, while expedient, this is not a requirement for our method.

When the direction of the allelic effect on gene expression is hard to

predict, we can still employ the computationally more complex

weighted sum of v2 statistics within such categories (Davies, 1980).

Thus, by using such a weighted v2 statistics approach, we plan to ex-

tend JEPEG to include other important functional categories such as

methylation tagging SNPs, Dnase hypersensitivity sites and histone

marks.

We note that JEPEG and its summary statistics-based imputation

module (DIST) offer best performance when the pairwise LD matrix

of the study cohort and reference panel is identical. Thus, when the

study and reference population are not ethnically well matched or

the study cohort is multiethnic, JEPEG might provide suboptimal re-

sults including some spurious signals. However, our extensive simu-

lation experiments (e.g. Fig. 2) suggest that JEPEG might be

reasonably robust to (non-African) intracontinental LD patterns of

variation.

JEPEG is written in Cþþ with open-source numerical libraries.

JEPEG software along with database of eQTL SNPs, reference pan-

els, usage instructions and examples are publicly available at http://

code.google.com/p/jepeg. For more details on (or usage of) the direct

imputation method employed internally by JEPEG, please see http://

code.google.com/p/dist. We welcome user critiques and suggestions

for improvement regarding the method itself and the functional SNP

database.
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