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Abstract

The synthesis of inositol provides precursors of inositol lipids and inositol phosphates that are 

pivotal for cell signaling. Mood-stabilizers lithium and valproic acid (VPA), used for treating 

bipolar disorder, cause cellular inositol depletion, which has been proposed as a therapeutic 

mechanism of action of both drugs. Despite the importance of inositol, the requirement for inositol 

synthesis in neuronal cells is not well understood. Here, we examined inositol effects on 

proliferation of SK-N-SH neuroblastoma cells. The essential role of inositol synthesis in 

proliferation is underscored by the findings that exogenous inositol was dispensable for 

proliferation, and inhibition of inositol synthesis decreased proliferation. Interestingly, the 

inhibition of inositol synthesis by knocking down INO1, which encodes inositol-3-phosphate 

synthase, the rate-limiting enzyme of inositol synthesis, led to inactivation of GSK-3α by 

increasing the inhibitory phosphorylation of this kinase. Similarly, the mood-stabilizer VPA 

effected transient decreases in intracellular inositol, leading to inactivation of GSK-3α. As GSK-3 

inhibition has been proposed as a likely therapeutic mechanism of action, the finding that 

inhibition of inositol synthesis results in inactivation of GSK-3α suggests a unifying hypothesis 

for mechanism of mood-stabilizing drugs.
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Introduction

Inositol, a six-carbon cyclitol, is an essential metabolite. It serves as the precursor of inositol 

lipids and inositol phosphates (Carman and Han, 2011; Henry et al., 2012; Michell, 2008; 

Michell, 2011), which play crucial roles in gene expression, signal transduction, lipid 

signaling, vesicle trafficking, and membrane biogenesis (De Camilli et al., 1996; Lemmon, 

2003; Majerus and York, 2009; Michell, 2013; Shen et al., 2003; Steger et al., 2003; van 

Meer et al., 2008). Many types of cultured mammalian cells require supplementation of 

exogenous inositol for growth, and inositol-requiring mammalian cells and mutants of yeast 
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undergo cell death in response to inositol deprivation (Culbertson and Henry, 1975; Eagle, 

1955; Eagle et al., 1957; Kao and Puck, 1968; Keith et al., 1977).

Eukaryotic organisms can potentially obtain inositol from the environment, by the de novo 

synthesis of inositol from glucose, or via recycling of inositol by dephosphorylation of 

inositol phosphates. These processes are orchestrated to maintain intracellular inositol 

homeostasis. Inositol uptake in yeast (Lai et al., 1995; Lai and McGraw, 1994) and 

mammals (Wolfson et al., 2000; Wolfson et al., 1998), and inositol biosynthesis in yeast 

(Henry et al., 2014; Hirsch and Henry, 1986; Loewen et al., 2004) are affected by exogenous 

inositol. In mammals, inositol uptake is also regulated in response to glucose, pH, 

osmolality, growth factors, and other stimuli (Di Daniel et al., 2009; Fu et al., 2012; 

Miyakawa et al., 1999; Novak et al., 1999; Olgemoller et al., 1993; Spizz and Pike, 1992; 

Uldry et al., 2004; Yorek et al., 1998). Inositol de novo synthesis is a highly conserved 

pathway that is carried out in two steps, of which the conversion of glucose-6-phosphate to 

inositol-3-phosphate, catalyzed by the INO1 gene product inositol-3-phosphate synthase (EC 

5.5.1.4), is rate-limiting (Eisenberg, 1967; Kindl and Hoffmann-Ostenhof, 1964; Loewus 

and Kelly, 1962a; Loewus and Kelly, 1962b; Strausberg et al., 2002). The regulation of 

inositol biosynthesis has been intensively studied in yeasts (Bachhawat et al., 1995; Carman 

and Han, 2011; Chen et al., 2007; Henry et al., 2012; Loewen et al., 2004; Ye et al., 2013). 

In addition to the transcriptional regulation of INO1 in response to exogenous inositol 

(Henry et al., 2014; Hirsch and Henry, 1986; Loewen et al., 2004), optimal inositol 

biosynthesis requires glycogen synthase kinase-3 (GSK-3) (Azab et al., 2007) and inositol 

pyrophosphates (Ye et al., 2013). Furthermore, Ino1 is posttranslationally regulated by 

phosphorylation (Deranieh et al., 2013), and enzyme activity is inhibited by the glycolysis 

intermediate dihydroxyacetone phosphate (DHAP) (Migaud and Frost, 1996; Shi et al., 

2005). Mammalian INO1 expression is altered by estrogen, glucose, and lovastatin, and is 

regulated by the transcription factor E2F1 (Guan et al., 2003; Rivera-Gonzalez et al., 1998; 

Seelan et al., 2004; Seelan et al., 2011). Highly regulated inositol synthesis underscores the 

importance of maintaining inositol homeostasis.

The brain maintains a high level of free inositol (5–50 mM), which is about 100 times higher 

than that in blood and other tissues (Palmano et al., 1977; Sherman et al., 1977; Stokes et al., 

1983; Wong et al., 1987). Altered inositol levels in the brain are associated with psychiatric 

and neurological problems (Seelan et al., 2009; Shi et al., 2006). For example, levels of 

inositol are altered in the brains of patients with Down syndrome (Acevedo et al., 1997; 

Berry et al., 1995), stroke (Rumpel et al., 2003), bipolar disorder (Belmaker et al., 2002; 

Shimon et al., 1997), and suicide victims (Shimon et al., 1997). Although dietary inositol 

can cross the blood-brain barrier and enter the cerebrospinal fluid and brain parenchyma, 

this process is very slow (Aukema, 1994; Spector and Lorenzo, 1975). Inositol levels in the 

brain primarily depend on inositol recycling and de novo synthesis (Williams et al., 2002). 

Interestingly, brain phosphatidylinositol levels are not affected when inositol uptake is 

blocked in inositol transporter-deficient mice (Berry et al., 2004), suggesting that inositol 

synthesis may be important for the synthesis of inositol lipids. However, the requirement of 

brain cells for inositol synthesis and the cellular consequences of perturbation of inositol 

synthesis in neuronal cells are not well studied.
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Lithium, a mood-stabilizer used for the treatment of bipolar disorder, is an uncompetitive 

inhibitor of inositol monophosphatase and inositol polyphosphatase (Allison and Stewart, 

1971; Berridge et al., 1989; Hallcher and Sherman, 1980; Pollack et al., 1994), and causes a 

decrease in intracellular inositol by blocking inositol recycling and synthesis. The mood-

stabilizer valproic acid (VPA) inhibits inositol biosynthesis by indirectly decreasing activity 

of the rate-limiting enzyme Ino1 (Ju and Greenberg, 2003; Shaltiel et al., 2004; Vaden et al., 

2001). Both drugs decrease cellular inositol and inositol 1,4,5-trisphosphate levels (Eickholt 

et al., 2005; Shimshoni et al., 2007; Williams et al., 2002), indicating that inositol depletion 

may attenuate inositol-dependent signaling. While inositol depletion may be therapeutically 

relevant (Berridge et al., 1989), another proposed target of mood-stabilizers is GSK-3 (Klein 

and Melton, 1996; Lucas and Salinas, 1997). The two major isoforms of GSK-3 (EC 

2.7.11.1 and EC 2.7.11.26), GSK-3α and GSK-3β, share 85% sequence homology and are 

encoded by independent genes (Cohen and Frame, 2001). Both isoforms are expressed in the 

brain and have many regulatory functions in neural systems, including neurogenesis, 

neuronal structure, synaptic plasticity, and neuronal survival (Hur and Zhou, 2010). Lithium 

is a competitive inhibitor of GSK-3, and lithium treatment increases the inhibitory 

phosphorylation of this kinase (Klein and Melton, 1996; Lucas and Salinas, 1997; Ryves and 

Harwood, 2001; Zhang et al., 2003). Lithium-induced GSK-3 phosphorylation is caused by 

disrupting the signaling complex of Akt, β-arrestin 2, and protein phosphatase 2A (Beaulieu 

et al., 2008). Previous studies have not linked lithium-mediated inhibition of GSK-3 to 

inositol depletion. Interestingly, however, the inositol-depleting drug VPA has also been 

shown to inhibit GSK-3 activity (Chen et al., 1999; Chen et al., 2006; De Sarno et al., 2002; 

Kim et al., 2005). Common cellular effects of inositol depletion and GSK-3 inhibition in 

response to lithium and VPA treatment suggest that inositol metabolism and GSK-3 activity 

may be interdependent. It has not been determined if inositol metabolism affects GSK-3 

activity in neuronal cells. Elucidating the interplay between inositol synthesis and GSK-3 in 

neuronal cells will have important implications for the pathophysiologic basis of a wide 

range of disorders in which inositol levels play a role.

In the current study, we characterized the role of inositol synthesis in proliferation of SK-N-

SH neuroblastoma cells. We found that INO1 expression is essential for cell proliferation 

and neurite outgrowth. We further showed that inositol synthesis regulates GSK-3α 

activation, as inhibition of inositol synthesis by knocking down INO1 expression or 

exposure to VPA leads to increased phosphorylation at Ser21 of GSK-3α, which inactivates 

the kinase. Interestingly, inositol depletion caused by starving for exogenous inositol did not 

affect proliferation and GSK-3 phosphorylation. This is the first demonstration in neuronal 

cells of the importance of inositol de novo synthesis, and the first report showing that 

inositol synthesis affects GSK-3α activation. These findings have implications for the 

therapeutic mechanisms of mood-stabilizers and suggest that inositol synthesis and GSK-3 

activity are intrinsically related.
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Materials and Methods

Materials

Dulbecco’s Modified Eagle Medium (DMEM), Medium 199, and penicillin-streptomycin 

solution (100X) were purchased from Invitrogen. Fetal bovine serum (FBS) and dialyzed 

FBS were purchased from Hyclone. Inositol, lithium chloride, valproic acid, glucose-6-

phosphate, NAD+, inositol dehydrogenase, and diaphorase were purchased from Sigma. 

Control shRNA lentiviral particles and INO1 (also named ISYNA1) shRNA lentiviral 

particles, puromycin dihydrochloride, and polybrene were purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA). The protease inhibitors and phosphatase inhibitors were 

purchased from Roche.

The rabbit polyclonal IgG against the Ino1 protein (H-300), mouse monoclonal IgG against 

actin (C-2), and anti-mouse IgG were purchased from Santa Cruz Biotechnology (Santa 

Cruz, CA). The rabbit monoclonal IgG against phospho-GSK-3α (ser21) (36E9), rabbit 

monoclonal IgG against GSK-3α (D80E6), rabbit monoclonal IgG against phospho-GSK-3β 

(Ser9) (D85E12), rabbit monoclonal IgG against GSK-3β (27C10), and anti-rabbit IgG were 

purchased from Cell Signaling Technology. All the primary antibodies were diluted 1:1000 

and secondary antibodies 1:5000 in dilution buffer containing 1X tris-buffered saline (TBS), 

0.1% Tween-20 with 5% nonfat dry milk.

Cell culture

SK-N-SH neuroblastoma cells were obtained from ATCC. Cells were regularly cultured in 

DMEM supplemented with 10% FBS and 1% penicillin-streptomycin. For experiments to 

test effects of inositol deficiency, Medium 199 supplemented with 10% dialyzed FBS was 

used as inositol-deficient media. Inositol was added to this medium where indicated for 

inositol-rich media. All cells were cultured at 37°C in 95% air and 5% CO2. Of note, 

DMEM contains 40 μM inositol, and Medium 199 has 0.28 μM inositol. The dialyzed FBS 

contains trace amounts of small molecules.

Establishment of stable cell lines

SK-N-SH cells were transduced with lentiviral particles that contain 3 specific constructs 

targeting human INO1, or with control lentiviral particles containing non-specific scrambled 

shRNA. Cells were grown for 24 hours after the transduction, and stable cells were selected 

after culture in fresh media with 5 μg/ml puromycin for 2 weeks. The knockdown efficiency 

was determined by measuring Ino1 protein levels in the knockdown cells compared to levels 

in the control cells.

Proliferation assay

Cell proliferation was carried out using a proliferation assay kit (CellTiter 96 AQueous One 

Solution cell proliferation assay, Promega) and following the manufacturer’s instruction. 

Cells were inoculated at a concentration of 5,000 cells per well in 96-well plates. On the 

indicated days, the assay reagent containing tetrazolium compound [3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium 

(MTS) was added and incubated at 37°C for 4 hours. Relative cell numbers were quantified 
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by absorbance at 490 nm. The quantity of MTS formazan produced from MTS tetrazolium is 

directly proportional to the number of living cells (Cory et al., 1991).

RNA isolation and real-time quantitative PCR (RT-qPCR)

SK-N-SH cells were cultured in 6-well plates. Total RNA was extracted using the RNeasy 

Mini Plus kit (QIAGEN, Valencia, CA). Complementary DNA (cDNA) was synthesized 

using the First Strand cDNA synthesis Kit (Roche Applied Science, Indianapolis, IN) 

according to the manufacturer’s manuals. RT-qPCR reactions were performed in a 20 μL 

volume using Brilliant III Ultra-Faster SYBR Green QPCR Master Mix (Agilent 

Technologies, Santa Clara, CA). Triplicates were included for each reaction. The primers for 

RT-qPCR are listed in Table 1. RNA levels were normalized to succinate dehydrogenase, 

SDHA. Relative values of mRNA transcripts are shown as fold change relative to indicated 

controls.

SDS-PAGE and Western blots

Cell extracts were obtained by breaking cells in lysis buffer containing 50 mM Tris, 125 

mM sodium chloride, 1% NP-40, 2 mM EDTA, 1x protease inhibitor cocktail, and 1× 

phosphatase inhibitor cocktail and were clarified twice by 10 min-centrifugation at 13,000 g 

at 4°C to remove cell debris. Protein concentration was determined using the BCA™ protein 

assay (Pierce Protein), with bovine serum albumin as the standard. Cell extracts containing 

20 μg protein were boiled with protein gel sample buffer, separated on 10% SDS-PAGE, 

and electrotransferred to a polyvinylidene difluoride (PVDF) membrane (Millipore). The 

membrane was incubated with antibodies and visualized using ECL substrate (Pierce 

Protein). ImageJ software was used to quantify the intensities of bands.

Measurement of intracellular inositol

Intracellular inositol was measured as described previously (Ju and Greenberg, 2003; Ye et 

al., 2013) with minor modifications. Briefly, cell extracts were obtained in lysis buffer 

containing 50 mM Tris, 125 mM sodium chloride, 1% NP-40, 2 mM EDTA and were 

clarified twice by 10 min-centrifugation at 13,000 g at 4°C to remove cell debris. Cell 

extracts containing 50 μg protein were used to measure intracellular inositol. Protein was 

precipitated using ice-cold 7.5% perchloric acid. After centrifugation, perchloric acid in the 

supernatants was removed by titration to pH 7.0 with ice-cold 10 M potassium hydroxide. 

The cell extracts were again clarified by centrifugation for 5 min at 2,000 g at 4°C. The 

supernatants were collected, and intracellular inositol was measured by enzyme-coupled 

fluorescence assay (Maslanski and Busa, 1990). Inositol content in cell extracts of 50 μg 

protein was normalized to the indicated controls.

Statistical Analysis

The data were presented as the mean ± SD. The p value was calculated by two-tailed 

Student’s t-test, and differences were considered significant when p < 0.05. All experiments 

were carried out in at least triplicates.
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RESULTS

Exogenous inositol is not essential for cell proliferation or maintaining inositol 
homeostasis in SK-N-SH cells

Inositol is an essential growth factor that is required for survival and proliferation of many 

types of cultured cells (Eagle et al., 1957). Inositol deficiency in these cells causes an arrest 

of cell growth, cytopathogenic defects, and cell death. However, some cells are able to 

proliferate in inositol-free or inositol-deficient culture media due to active inositol 

biosynthesis (Eagle et al., 1957). To determine if inositol is essential for SK-N-SH neuronal 

cells, we assayed cell growth in inositol-deficient media (Medium 199 with 10% dialyzed 

serum). Medium 199 contains only 0.28 μM inositol, which is significantly less than the 

minimal requirement (1 μM) reported for most types of cells (Eagle et al., 1957). As seen in 

Fig. 1A, proliferation of cells cultured in the inositol-deficient media was similar to that of 

cells grown in media supplemented with exogenous inositol. The ability of SK-N-SH cells 

to grow in inositol-deficient media indicates that the de novo synthesis of inositol provides 

sufficient inositol for cell proliferation. Interestingly, cells cultured in inositol-deficient 

media exhibited levels of intracellular inositol similar to those of cells grown in media 

supplemented with 0.5–10 mM inositol (Fig. 1B). The homeostatic inositol pool in SK-N-

SH cells suggests that inositol biosynthesis may be upregulated in inositol-deficient media.

Inositol biosynthesis is essential for cell proliferation

To understand if inositol biosynthesis is required for SK-N-SH cell growth, we decreased 

inositol biosynthesis by stably knocking down expression of the gene encoding inositol-3-

phosphate synthase, INO1, which encodes the rate-limiting enzyme of inositol biosynthesis. 

As shown in Fig. 2A, INO1 knockdown cells exhibited a 90% decrease in Ino1 protein 

levels. As expected, INO1 knockdown resulted in a profound decrease in intracellular 

inositol levels (Fig. 2B). Cell proliferation was significantly decreased in INO1 knockdown 

cells (Fig. 2C). In addition, neurite outgrowth was remarkably inhibited in cells in which 

INO1 expression was decreased (Fig. 2D). These findings indicate that de novo inositol 

synthesis is essential for cell proliferation and neurite outgrowth in SK-N-SH cells.

Because INO1 knockdown causes inositol depletion leading to decreased proliferation, we 

questioned if the defect might be rescued by exogenous inositol or exacerbated by the 

inositol-depleting drugs, lithium and VPA. Unexpectedly, neither exogenous inositol nor 

lithium and VPA affected proliferation in control and INO1 knockdown cells (Fig. 2C). To 

determine if exogenous inositol restores the decreased intracellular inositol in INO1 

knockdown cells, control and INO1 knockdown cells cultured in DMEM supplemented with 

10% serum were replenished with inositol-rich (containing 1 mM inositol) or inositol-

deficient media for 5 hours. As shown in Fig. 3A, in inositol-deficient media, inositol levels 

in INO1 knockdown cells were only 20% of those in control cells, whereas inositol in INO1 

knockdown cells cultured in inositol-rich media was similar to the control levels. While 

exogenous inositol was able to restore the inositol depletion caused by INO1 knockdown, it 

was not able to rescue the proliferation defect (Fig. 2C). It is likely that the regulation of 

inositol synthesis may provide a pool of inositol functionally distinct from imported inositol, 

which is important for proliferation.
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Exogenous inositol does not regulate transcription of genes for inositol synthesis and 
uptake, INO1, SMIT1, and HMIT

In yeast cells, exogenous inositol modulates the biosynthesis and uptake of inositol by 

controlling transcription of the inositol biosynthetic gene INO1 (Henry et al., 2014; Hirsch 

and Henry, 1986; Loewen et al., 2004) and the genes encoding inositol transporters (Lai et 

al., 1995; Lai and McGraw, 1994). To ascertain if this is a conserved mechanism regulating 

inositol metabolism in SK-N-SH cells, we determined the effects of exogenous inositol on 

mRNA levels of INO1, Na+/inositol transporter SMIT1, and H+/inositol transporter HMIT 

in these cells. Cells were initially cultured in inositol-deficient media to deplete inositol. 

After supplementation with inositol (0.1, 1, 10 mM) for the indicated times, cells were 

harvested for mRNA analysis. As shown in Fig. 3B, mRNA levels of human INO1 were not 

affected by the addition of inositol. Consistent with this finding, INO1 protein levels were 

also not altered by exogenous inositol (Fig. 3B). In addition, the genes encoding inositol 

transporters were not regulated by inositol, as mRNA levels of SMIT1 (Fig. 3C) and HMIT 

(Fig. 3D) were not significantly changed in response to exogenous inositol. Therefore, in 

contrast to regulation of inositol biosynthesis in yeast cells, the biosynthesis and uptake of 

inositol were not transcriptionally regulated in response to exogenous inositol in SK-N-SH 

cells.

Decreased Ino1 leads to inactivation of GSK3α

Previous studies showed that lithium and VPA inhibit inositol synthesis (Allison and 

Stewart, 1971; Berridge et al., 1989; Hallcher and Sherman, 1980; Ju and Greenberg, 2003; 

Pollack et al., 1994; Shaltiel et al., 2004; Vaden et al., 2001) and GSK-3 activity (Chen et 

al., 1999; Chen et al., 2006; De Sarno et al., 2002; Kim et al., 2005; Klein and Melton, 1996; 

Lucas and Salinas, 1997). To address the possibility that inositol synthesis affects GSK-3 

activity, we measured levels of phosphorylation at Ser21 of GSK-3α and at Ser9 of GSK-3β 

in SK-N-SH cells as a function of inositol depletion. Phosphorylation of these sites 

inactivates the kinase activity of GSK-3 (Cross et al., 1995; Srivastava and Pandey, 1998). 

As seen in Fig. 4A, GSK-3α phosphorylation was increased in response to inhibition of 

inositol synthesis, while GSK3β was not significantly altered. GSK-3α phosphorylation was 

dependent on the level of Ino1 knockdown. Thus, an 82% decrease in Ino1 protein in 

shRNA-INO1–2 cells led to a 2.4-fold increase in GSK-3α phosphorylation, while a 60% 

decrease in shRNA-INO1–1 led to a 1.5-fold increase. These results indicated that 

decreasing the de novo synthesis of inositol led to GSK-3α inactivation.

To investigate if GSK-3α inactivation resulting from INO1 knockdown is due to inositol 

depletion, we determined the effects of exogenous inositol on GSK-3 phosphorylation. 

While intracellular inositol was significantly decreased by starving for exogenous inositol 

(Fig. 3A), GSK-3 phosphorylation remained similar in cells cultured in the absence or 

presence of inositol (Fig. 3C). Therefore, it is the inhibition of Ino1-catalyzed inositol 

synthesis, but not the resulting inositol depletion, that leads to the inactivation of GSK-3α.

VPA-induced transient decrease in inositol is associated with GSK-3α inactivation

We have previously shown that the mood stabilizer VPA inhibits inositol synthesis in both 

yeast and human cells (Ju and Greenberg, 2003; Shaltiel et al., 2004; Vaden et al., 2001). If 
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inhibition of inositol synthesis was the cause of inhibitory phosphorylation of GSK-3α as 

seen in Fig. 4A, VPA may be expected to cause a similar effect. To address this possibility, 

we assayed GSK-3 phosphorylation in cells treated with VPA. As seen in Fig. 4B, VPA 

caused a significant decrease in inositol levels in the first hour of exposure, after which 

inositol levels were restored, probably as a result of recycling from inositol phosphates. As 

predicted, GSK-3α phosphorylation was increased in response to VPA (Fig. 4C), while 

GSK-3β phosphorylation was not affected (Fig. 4C). However, GSK-3α phosphorylation 

continued to increase, even after inositol levels were restored (Figs. 4B and 4C), suggesting 

that inhibition of inositol synthesis, but not inositol depletion, is responsible for inactivation 

of GSK-3α.

DISCUSSION

Despite the importance of inositol, there are very few reported studies of the consequences 

of inhibition of inositol synthesis in human cells. Here, we report that inositol synthesis is 

essential for proliferation and neurite outgrowth of SK-N-SH human neuroblastoma cells, 

and that inhibition of inositol synthesis leads to GSK-3α inactivation.

The interplay between inositol biosynthesis and GSK-3 activity reported in the current study 

has implications for understanding the therapeutic mechanisms of the mood-stabilizers used 

to treat bipolar disorder. Lithium and VPA are mood-stabilizers with disparate chemical 

properties. Interestingly, both drugs have been shown to decrease cellular inositol content by 

blocking inositol biosynthesis, and both drugs also inhibit GSK-3 activity. Consistent with 

these findings, two prevailing hypotheses for the therapeutic mechanisms of action of these 

drugs are inositol depletion (Berridge et al., 1989) and GSK-3 inhibition (Klein and Melton, 

1996). While the common effects of lithium and VPA on inositol signaling and GSK-3 

highlight the potential interplay between inositol metabolism and GSK-3 regulation, several 

studies reported different effects of these drugs on inositol signaling and GSK-3 (Eickholt et 

al., 2005; Jin et al., 2005; Whitworth et al., 1990), which complicates our understanding of 

the mechanism of action of these drugs. The drug-induced perturbation of inositol signaling 

and GSK-3 activity may be dependent on cell type and study model, the pattern of treatment, 

and experimental procedures. A potential link between inositol depletion and GSK-3 

inhibition has not been previously tested in human cells. While the inositol-depleting drug 

lithium leads to increased phosphorylation of GSK-3β (Beaulieu et al., 2008; Zhang et al., 

2003), we showed that VPA causes transient inositol depletion leading to increased 

phosphorylation of GSK-3α. Interestingly, during VPA treatment, GSK-3α phosphorylation 

continued to increase even after inositol levels were restored, suggesting that inhibition of 

inositol synthesis, but not inositol depletion, is sufficient to inactivate GSK-3α. We further 

report a direct link between inositol synthesis and GSK-3 activity in neuronal cells. 

Specifically, inositol synthesis inhibited by knocking down INO1 expression results in 

GSK-3α inactivation.

While GSK-3α phosphorylation was increased in response to inhibition of inositol synthesis, 

GSK-3β was not significantly altered. Previous studies have shown that inhibitory 

phosphorylation and kinase activity of GSK-3 are affected by exposure to lithium and VPA 

(Beaulieu et al., 2008; Chen et al., 1999; Chen et al., 2006; De Sarno et al., 2002; Kim et al., 
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2005; Kim et al., 2013; Klein and Melton, 1996; Lucas and Salinas, 1997; Phiel et al., 2003; 

Ryves and Harwood, 2001; Zhang et al., 2003). While some studies characterized the 

inhibitory effects of the drugs on both GSK-3α and GSK-3β, most have focused on the 

effects on GSK-3β. This is the first demonstration in SK-N-SH cells that a decrease in 

inositol biosynthesis led to the preferential inactivation of GSK-3α. Further studies are 

needed to elucidate the significance of the differential inhibition of GSK-3α and GSK-3β, 

which do not have identical functions.

Inactivation of GSK-3α in SK-N-SH cells was dependent on the degree of Ino1 knockdown 

(Fig. 4A). The degree of inactivation of GSK-3α also correlated with exposure times to 

VPA (Fig. 4C). While inhibition of inositol synthesis potently increases GSK-3α 

phosphorylation, inositol homeostasis is highly maintained, as intracellular inositol levels 

were restored upon prolonged exposure to VPA (Fig. 4B). A similar VPA effect was 

observed in our previous study in mice, in which mouse brain inositol was only depleted 

following acute, but not chronic, VPA administration (Shaltiel et al., 2004). It is likely that 

turnover of phosphatidylinositol and/or recycling of inositol phosphates are increased to 

compensate for decreased inositol biosynthesis when subjects are exposed to VPA. 

However, the mechanism whereby inhibition of inositol synthesis causes inactivation of 

GSK-3α activity (by increasing phosphorylation of this kinase) remains unclear. 

Perturbation of inositol homeostasis resulting from disrupted inositol synthesis may 

modulate PI3K/AKT signaling. We speculate that inhibition of inositol synthesis activates 

the synthesis of PI3,4,5P3. The synthesis of PI3,4,5P3 is required for recruiting AKT, and 

the subsequent activation of AKT on the plasma membrane potently inhibits GSK-3 by 

phosphorylation (Cantley, 2002; Czech, 2003; Di Paolo and De Camilli, 2006). The 

inactivation of GSK-3α in response to inhibition of inositol synthesis suggests that GSK-3α 

may have a unique role in regulating cellular activity. GSK-3α has been shown to regulate 

amyloid-β production by processing the amyloid precursor protein in cultured cells and in 

mouse brain, suggesting that GSK-3α may be a valuable target for the treatment of 

Alzheimer’s disease (Phiel et al., 2003). We speculate that GSK-3α may regulate 

proliferation. Therefore, inactivation of GSK-3α by inhibition of inositol synthesis may lead 

to decreased proliferation.

Surprisingly, exogenous inositol did not affect proliferation or GSK-3α phosphorylation, 

suggesting that exogenous inositol does not regulate inositol synthesis. Indeed, exogenous 

inositol did not affect inositol biosynthesis or uptake by controlling expression of the 

inositol biosynthetic gene INO1 or the genes encoding inositol transporters SMIT1 and 

HMIT. In contrast, the transcription of INO1 and the inositol transporter genes in yeast cells 

is highly regulated in response to exogenous inositol, and inositol synthesis and uptake are 

modulated by this regulation (Henry et al., 2014; Hirsch and Henry, 1986; Lai et al., 1995; 

Lai and McGraw, 1994; Loewen et al., 2004). This indicates that neuronal cells have 

evolved different mechanisms to regulate inositol metabolism. For example, inositol uptake 

in mammals is regulated by glucose, pH, osmolality, and growth factors (Di Daniel et al., 

2009; Fu et al., 2012; Miyakawa et al., 1999; Novak et al., 1999; Olgemoller et al., 1993; 

Spizz and Pike, 1992; Uldry et al., 2004). While the genes encoding inositol transporters are 

not transcriptionally regulated in response to exogenous inositol in SK-N-SH cells, the 
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activity of inositol uptake may be controlled by different mechanisms. Inositol synthesis in 

yeast is also regulated by the synthesis of inositol pyrophosphates (Ye et al., 2013) and the 

glycolysis intermediate dihydroxyacetone phosphate (DHAP) (Migaud and Frost, 1996; Shi 

et al., 2005), and requires GSK-3 (Azab et al., 2007). One or more of these mechanisms 

identified in yeast may also control inositol biosynthesis in mammalian cells.

Interestingly, the effects of exogenous inositol on intracellular inositol vary with the 

experimental conditions. When cells were inoculated and continuously grown to about 70% 

confluence for about 5 days in inositol-deficient media or inositol-containing media, 

intracellular inositol levels in cells grown in inositol-deficient media were similar to those 

grown in inositol-containing media. However, intracellular inositol levels were profoundly 

decreased in cells that were shifted to inositol-deficient media for 5 hours compared to those 

shifted to inositol-rich media after they reached about 70% confluence in DMEM 

supplemented with regular serum. While intracellular inositol levels were greatly altered in 

response to an acute manipulation of exogenous inositol, it is curious that those levels are 

similar in cells grown in media with or without inositol supplementation. We speculate that 

inositol synthesis is upregulated and/or utilization of inositol for phosphatidylinositol 

synthesis is decreased in cells grown in inositol-deficient media, thus these cells manifest 

similar inositol levels and are able to grow similar to cells grown in inositol-containing 

media.

In summary, we showed that de novo inositol synthesis catalyzed by Ino1 is required for 

proliferation of SK-N-SH cells during inositol-deficient conditions and for GSK-3α 

activation. These findings have implications for understanding the therapeutic mechanisms 

of the mood-stabilizers used for treatment of bipolar disorder.
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Fig. 1. Exogenous inositol is not essential for cell proliferation or maintaining inositol 
homeostasis in SK-N-SH cells
(A) SK-N-SH cells were inoculated at a concentration of 5,000 cells per well in 96-well 

plates at day 0, and cell numbers were estimated by the proliferation assay described under 

“Materials and Methods.” (B) Intracellular inositol levels were assayed in cells cultured in 

inositol-deficient media without (control) or with inositol supplement (0.5, 1, 5, 10 mM). 

The data shown in A and B are the average of at least three experiments ± S.D, n≥3.

Ye and Greenberg Page 16

J Neurochem. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Inositol biosynthesis is essential for cell proliferation
(A) Western blot analysis of Ino1 protein levels (left) and quantitative analysis of INO1 

knockdown efficiency (right). (B) Inositol levels were measured in control and INO1 

knockdown cells cultured in DMEM supplemented with 10% serum. (C) Cell proliferation 

was assayed as described in Fig. 1A, and cell numbers were estimated 4 days after 

inoculation. (D) Control and INO1 knockdown cells (about 1×106) were plated in 100-mm 

dishes and photographed at day 2 using a microscope at 200 X magnification. The data in A, 

B, and C are presented as the mean ± S.D, n=3, and **p< 0.01.
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Fig. 3. Exogenous inositol does not regulate transcription of the genes for inositol biosynthesis or 
uptake
(A) Inositol levels were measured in control or INO1 knockdown cells in inositol-rich (I+) 

and inositol-deficient (I-) media. Cells were cultured in DMEM with 10% serum to reach 

70% confluence, washed twice with PBS, and replenished with media as indicated. The data 

are presented as the mean ± S.D, n=3, and **p<0.01. (B) mRNA levels of INO1 were 

measured in SK-N-SH cells incubated in the presence of inositol (0, 0.1, 1, 10 mM) for the 

indicated times (1, 5, and 10 hours) after growth in inositol-deficient media. Values were 

normalized to the internal control SDHA (succinate dehydrogenase complex, subunit A). 

INO1 mRNA levels normalized to SDHA were represented as fold change relative to cells 

exposed to 0 mM inositol for 1 hour. (C) Western blot analysis of Ino1 protein levels. SK-N-

SH cells were cultured to reach about 70% confluence and then were incubated with either 

serum or inositol for indicated times. Cells were harvested and lysed for Western blot 

analysis as described under “Materials and Methods.” Actin was used as the loading control. 

The figure is representative of experiments in triplicate. (D) mRNA levels of Na+/inositol 

transporter SMIT1 and (E) H+/inositol transporter HMIT were measured as described 

above. The data in B, D, and E are presented as the mean ± S.D, n≥3.
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Fig. 4. INO1 knockdown and VPA treatment lead to inactivation of GSK3α

(A) Western blot analysis and quantification of Ino1 and inhibitory phosphorylation levels 

of GSK-3α (Ser21) and GSK-3β (Ser9). Actin was used as the loading control. Scrambled 

control and Ino1 knockdown (shRNA_INO1_1 and shRNA_INO1_2) SK-N-SH cells were 

cultured to about 70% confluence, and cells were refreshed with media containing 10% 

serum (+serum) or no serum (-serum) for 4 hours. Cells were harvested and lysed for 

Western blot analysis as described under “Materials and Methods.” The figure is 

representative of experiments in triplicate. The quantification data are presented as the mean 

± S.D, n=3, and *p< 0.05. (B) Intracellular inositol levels were measured in SK-N-SH cells 

after exposure to VPA for the indicated times. The data are presented as the mean ± S.D, 

n=3, and **p< 0.01. (C) Western blot analysis and quantification of the protein levels of 

GSK-3α (Ser21) and GSK-3β (Ser9) and total protein levels of GSK-3α and GSK-3β. Actin 

was used as the loading control. The figure is representative of at least three independent 

experiments. The quantification data are presented as the mean ± S.D, n≥4, and *p< 0.05, 

**p<0.01.
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Table 1

Real-time PCR primers used in this study.

Gene Primers Sequence (5′ to 3′)

SDHA Forward CGAACGTCTTCAGGTGCTTT

Reverse AAGAACATCGGAACTGCGAC

INO1 Forward CTGCATCGAGAACATCCTCAG

Reverse GTTCAACATAGGGTAGGTGGC

SMIT1 Forward AAGGTGGTGGTTCGAATCTG

Reverse CCACAGGATTGTTTTGGGTC

HMIT Forward CATCTGCAGAATGGTTGCAC

Reverse AACTCGCCGAGCTTTAATTG
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