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Abstract

The neurovascular unit coordinates many essential functions in the brain including blood flow 

control, nutrient delivery, and maintenance of blood-brain barrier integrity. These functions are the 

result of a cellular and molecular interplay that we are just beginning to understand. Cells of the 

neurovascular unit can now be investigated in the intact brain through the combined use of high-

resolution in vivo imaging and non-invasive molecular tools to observe and manipulate cell 

function. Mouse lines that target transgene expression to cells of the neurovascular unit will be of 

great value in future work. However, a detailed evaluation of target cell specificity and expression 

pattern within the brain is required for many existing lines. The purpose of this review is to 

catalog mouse lines available to cerebrovascular biologists and to discuss their utility and 

limitations in future imaging studies.
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INTRODUCTION

The cerebrovascular endothelium is ensheathed in several layers of cells including pericytes, 

vascular smooth muscle cells (SMCs), astrocytes and perivascular neurons (Fig. 1). This 

assembly of cells, collectively referred to as the neurovascular unit (NVU), works in concert 

to serve many purposes including regulation of cerebral blood flow, nutrient delivery, 

maintenance of blood-brain barrier (BBB) integrity and vascular remodeling after injury. 

The mechanisms by which NVU cells communicate to perform these tasks remain poorly 

understood.

In vivo two-photon laser-scanning microscopy (TPLSM) enables precise measurement of 

cellular and vascular activity in the intact rodent brain and is thus a key tool for dissecting 

the specific functions of NVU components [34,66,116]. Since TPLSM is a fluorescence-

based technique [31], the presence of fluorescent moleculesis a prerequisite for its use in 

chronic preparations [124]. Future in vivo studies will therefore rely heavily on an 
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expanding catalog of transgenic mice, many of which arise from crossings between 

promoter-specific Cre lines and reporter lines that express bright fluorescent proteins [78], 

genetically-encoded calcium indicators (GECIs) [139] and optogenetic actuators [77]. The 

field of cerebrovascular biology will see great advances as these tools become better 

characterized and more widely adopted by researchers. In this review, we discuss existing 

transgenic mouse lines useful for labeling cells of the NVU (Table 1). We further highlight 

key in vivo imaging studies and address the potential limitations and opportunities that come 

with non-specific expression.

Primer for genetic mouse tools

Many transgenic mice carry ectopic genes, i.e., transgenes, driven by specific promoters to 

limit expression to specific cell types of interest. The generation of these mice falls into 

general two categories [56]. In the knock-in approach, transgenes can be spliced directly into 

the coding sequence of an endogenous gene, effectively hijacking its promoter to express 

another product. This approach tends to reproduce the expression pattern of the native gene, 

but can potentially lead to unwanted side effects due to loss of target gene function. Some 

lines avoid this issue by using an internal ribosome entry site (IRES) so that the endogenous 

gene and transgene can be expressed bicistronically from the same mRNA, but potentially at 

the cost of reduced expression efficiency. A second approach involves use of a bacterial 

artificial chromosome to insert the transgene along with its own promoter sequence and cis-

acting elements at a random locus within mouse genome. This method allows insertion of 

large DNA cassettes, but may lead to substantial variability between founder lines due to 

modulation of expression by additional cis-acting elements near the insertion site as well as 

variation in transgene copies inserted [36].

While several mouse lines described in Table 1 directly express a trangene for cellular 

monitoring or modulation, the vast majority express Cre recombinase, a powerful tool for 

genetic manipulation [89]. Cre recombinase deletes, inverts, or translocates segments of 

DNA between short, specific nucleotide sequences called loxP sites. When crossed with 

“reporter” lines, Cre activates transgene expression by removing floxed (flanking loxP sites) 

STOP codons that gate expression of the coding sequence. To achieve more control over 

when Cre activity is initiated, some lines express a variant of Cre recombinase that is fused 

to the estrogen receptor, which prevents the entry of Cre into the nucleus where 

recombination must occur. Several versions of the Cre-estrogen receptor fusion protein 

exist, Cre-ERT2 being the most common [35]. Cre activity can then be deployed at any post-

natal time by administration of tamoxifen, an estrogen receptor ligand.

Viruses also serve as an efficient method to deliver transgenes to neurons and astrocytes of 

the brain [75]. In this case, specificity of expression can be achieved by using minimal 

promoters also carried by the virus, or by gating expression with loxP sequences that can 

only be activated when the virus is injected into Cre lines. While not discussed in this 

review, in utero electroporation of DNA vectors is also being rapidly adopted for transgene 

delivery to neurons and astrocytes [111].
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Endothelial Cells

Vascular endothelial cells serve many important functions in the brain including BBB 

formation and selective metabolite trafficking to and from the blood [51]. Several transgenic 

mouse lines have been generated to target the vascular endothelium, the most common of 

which uses the promoter for Tie2, an endothelium-specific receptor tyrosine kinase that 

binds angiopoietin-1 [41]. In Tie2-GFP mice, GFP fluorescence is uniformly distributed 

throughout the cerebrovascular endothelium [131]. These mice were crossed with SMC and 

pericyte-labeled NG2-DsRed mice (see below) to discern between subsurface arterioles and 

venules in studies on CSF flow within the paravascular space [58]. Similarly, these mice 

have been used in conjunction with exogenous astrocyte-specific dyes to visualize the layers 

of the vascular wall in vivo [81]. Tie2-GFP mice can be advantageous over injectable 

plasma-labeling dyes when the goal is to chronically image vascular structure as it avoids 

problems associated with dye leakage [116]. These mice have been used to track 

angiogenesis during development [131] and in response to hypoxia [79], as well as to 

elucidate mechanisms of microvascular embolus extravasation [70]. Variants of this mouse 

line include a Tie2-claudin-GFP line, in which the tight-junction protein claudin is fused 

with eGFP, and has been used to track early BBB changes in stroke [67]. Tie2-Cre [64] and 

inducible Tie2-CreERT2 mice [39] will be useful to drive transgenes for observing and 

manipulating endothelial cell activity in vivo, though reports of their use in brain are 

currently scarce.

Mouse lines that provide sparse cell labeling may be useful when intending to track or count 

individual endothelial cells. While VE-cadherin-Cre mice have not been widely used for live 

imaging, histological evidence suggests that a sparse labeling of endothelium can be 

achieved when crossed with YFP reporter mice [88]. Similarly, heterozygous ephrinB2-

H2B-GFP knock-in mice [30] appear to have sparse labeling of endothelial cell nuclei, and 

have been used to study growth of arteriovenous malformations resulting from hyperactive 

Notch4 signaling [86].

In order to observe calcium transients in arteriolar endothelial cells, the first generation 

GECI GCaMP2 was placed under transcriptional control of connexin 40 (Cx40), a gap 

junctional protein [120]. We are not aware of any evidence showing that Cx40-GCaMP2 is 

expressed in the brain of these mice, but if so, this line may represent an opportunity to 

investigate how endothelial activity is coordinated with the activity of other NVU cells. To 

make use of new, more sensitive GCaMP variants, endothelial Cre driver lines may also be 

crossed with the Ai38/Ai95 (GCaMP3/GCaMP6) reporter lines to achieve a similar type of 

expression pattern (Table 1) [139].

A number of endothelial Cre lines require further characterization for in vivo imaging, but 

appear to be useful driver lines based on histological data. PDGFB-iCreERT2 animals show 

remarkably complete labeling of the brain endothelium when crossed with reporter mice 

[21]. The Alk1-GFP-Cre knock-in mouse exhibits widespread Cre activity in cerebral 

arteries and veins [91]. Finally, von Willebrand factor (vWF)-Cre mice exhibit endothelial 

expression in the brain but not other organs [26].
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Pericytes

Pericytes play important roles in vascular development [28], BBB integrity [5], and 

regulation of blood flow [48]. Deficiencies in pericyte function accelerates 

neurodegeneration secondary to vascular degradation [11,110], providing an impetus to 

advance our understanding of pericyte action in the NVU.

The most common promoter used to drive transgene expression in pericytes is that of 

chondroitin sulfate proteoglycan 4 (CSPG4), a gene that codes for the transmembranous 

proteoglycan NG2. One mouse line driving expression of DsRed, a red fluorescent protein, 

under the NG2 promoter (Fig. 2A-C)(NG2-DsRed) was recently used to visualize pericyte 

location along the brain microvasculature using TPLSM. This enabled studies on the role of 

pericytes in cortical blood flow control [48]. Due the promiscuity of the NG2 promoter, 

oligodendrocyte precursors and SMCs are also labeled in these mice [94], but pericytes 

remain easily distinguishable based on their morphology and apposition to the 

microvasculature. An NG2-Cre driver line is available to express other transgenes in 

pericytes [141]. In practice, crossing constitutive NG2-Cre mice with the tdTomato reporter 

line Ai14 [78] leads to labeling of the same cells seen in the NG2-DsRed, but also a large 

number of neurons, which makes detection of pericytes difficult in vivo due to high 

background fluorescence (Fig. 2D-F). The use of inducible NG2-CreER™ mice circumvents 

this problem by initiating Cre activity after a time when neural precursors are no longer 

NG2-positive [142]. NG2-CreER™-Ai14 bigenic mice may be more useful than the NG2-

DsRed mice for visualizing the fine structure of pericytes in vivo because tdTomato exhibits 

brighter fluorescence than DsRed (Fig. 2G-I) [114]. Finally, yellow fluorescent protein 

(YFP) has also been knocked in downstream of the endogenous mouse promoter in 

NG2+/YFP mice, providing another means to visualize pericytes with fluorescence [62]. 

However, the effect of losing an NG2 allele has not been investigated.

Promoters for other pericyte markers have been used to drive Cre or fluorescent protein 

expression. For instance, regulator of G protein signaling 5 knock-in GFP mice (RGS5+/GFP) 

appear to have selective brain pericyte labeling based on histology [99]. However, 

homozygous RGS5GFP/GFP mice show a reduced mean arterial pressure in comparison to the 

wild-type, and this should be considered if investigating hemodynamics. While GLAST-

CreERT2 mice are predominantly used in the study of cerebral astrocytes [117](see below), 

crossing these mice with R26R-YFP reporter mice selectively labels pericytes in the spinal 

cord. These pericytes co-express accepted pericyte markers PDGFRβ and CD13, and show 

ultrastructural features of pericyte morphology [45]. With regard to other potential pericyte-

targeting lines, platelet-derived growth factor receptor-β (PDGFRβ)-Cre mice exhibit 

efficient targeting of brain SMCs, but brain pericyte expression has not been reported in 

detail [27]. Additionally, α-smooth muscle actin (α-SMA), has been used as a marker for 

brain and peripheral pericytes [37,136]. Alpha-SMA-RFPcherry mice were used to study 

pericytes in peripheral tissues [104], but expression in brain pericytes remains unclear. 

Similarly, α-SMA-CreERT2 mice are useful for targeting SMCs, but their specificity for 

brain pericytes is unknown [130].
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Smooth Muscle Cells

Vasoreactivity during functional hyperemia is mediated by relaxation and constriction of 

SMCs [90], making these cells a critical player in the regulation of blood supply. Smooth 

muscle cells also have important signaling and transport roles in the brain, the disruption of 

which is involved in pathologies such as arteriovenous malformations and cerebral amyloid 

angiopathy [10,143].

Alpha smooth muscle actin, PDGFRβ- and NG2-Cre driver mice, as described above for 

pericyte-targeting, are known to target SMCs. Additional SMC targeting promoters include 

smooth muscle myosin heavy chain (smMHC or Myh11) and SM22α/transgelin. There are 

two independent mouse lines utilizing an smMHC promoter to drive Cre [106,134], both of 

which were reported to have Cre expression in cerebral arteries based on crosses with R26R-

LacZ reporter mice. The smMHC-Cre-GFP line from the Kotlikoff lab expresses a 

bicistronic transgene consisting of both Cre and eGFP, enabling direct visualization of 

SMCs by fluorescence imaging. However, crossing these mice with reporter lines (i.e., 

Ai14) will reveal other cell types including sparsely distributed neurons, astrocytes and 

pericytes (A. Shih and D. Kleinfeld, unpublished findings). The same lab also generated a 

line expressing GCaMP2 under the smMHC promoter offering the ability to visualize 

relative calcium changes within SMCs in vivo [60,65]. With a similar goal, the α-SMA 

promoter was used to drive the expression of myosin light chain kinase (MLCK) fused with 

a construct containing CFP and YFP linked by a Ca2+-calmodulin binding site. This enabled 

fluorescence resonance energy transfer (FRET)-based measurements of SMC calcium that 

are more robust to movement artifacts and can be potentially calibrated ex vivo to obtain 

absolute calcium concentrations [80]. Three different SM22α/transgelin mouse lines exist, 

though only one has been crossed with a reporter mouse. This cross with the R26R-LacZ 

reporter line revealed Cre activity in some brain structures [40,54] but cerebrovascular 

labeling was not described. Crossing these mice with bright fluorescent reporter lines may 

be necessary to more thoroughly evaluate vascular expression. Central nervous system 

expression of Cre in the other SM22α mouse lines remains undetermined [69,73].

Astrocytes

Astrocytes are a heterogeneous population of cells in the CNS with specialized functions 

ranging from synaptic signaling to blood flow regulation. Here we will focus on a subset of 

Cre lines that have been used for in vivo imaging studies of the NVU. For comprehensive 

reviews on the numerous Cre drivers for astrocyte targeting, we refer the reader to previous 

literature [74,102].

The promoter of human and mouse glial fibrillary acidic protein (GFAP), a classic astrocyte 

marker, has been used to generate Cre mouse lines [43,145]. With the hGFAP promoter, Cre 

is expressed in embryonic radial glia [145], which gives rise to Cre-expressing neurons in 

the adult [53]. Greater astrocyte specificity may be achieved by using one of the many 

available inducible hGFAP-CreERT2 lines [24,42,53], or by using Cre lines driven by the 

murine GFAP promoter [47].
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Two independently generated hGFAP-GFP mouse lines [96,144] have been used for in vivo 

studies on NVU function. Adult hGFAP-GFP mice exhibit relatively sparse labeling of 

cortical astrocytes, but not neurons, allowing individual cells to be distinguished during 

imaging [96]. Calcium-sensitive dyes were used in conjunction with the Messing lab GFAP-

GFP mice in the discovery that odor detection leads to concurrent astrocyte calcium 

elevation and vasodilation in the olfactory glomerulus [101]. Using a traumatic brain injury 

model, the edematous swelling of astrocytic endfeet and its relationship with local capillary 

flow could be addressed in the mice generated by the Kettenmann lab [119]. Unlike the 

GFAP-GFP line, which labels the relatively small percentage of astrocytes with high GFAP 

expression, it has been reported that GFP is visible in all cortical astrocytes in Aldh1l1-GFP 

mice, including astrocytes near microvessels [8].

GLAST-CreERT2 mice, which drive expression of inducible Cre under the promoter of an 

astrocyte-specific glutamate transporter, predominantly targets protoplasmic astrocytes 

when crossed with reporter mice, but also label occasional oligodendrocyte precursors and 

neurons [84]. Importantly, there is some control over labeling density as a varying 

percentage of astrocytes are visible depending on the dose of tamoxifen administered [84]. 

GLAST-CreERT2 mice have enabled studies on astrocyte migration and proliferation in 

perivascular niches following cortical stab wound injury [8]. The promoter for Glt1, a gene 

that encodes another astroglial glutamate transporter, is active in a different subset of 

astrocytes than the GLAST promoter, and appears to have a very similar distribution of 

expression as GFAP [107]. Astrocytic endfeet are clearly labeled in Glt-1-GFP mice [105]. 

Newer mouse lines are also now available such as Cx30-CreERT2 and Fgfr3-CreERT2 that 

show highly specific astrocyte labeling throughout the brain [117,138], making them 

promising tools for future imaging studies.

Calcium transients within astrocytes are thought to mediate activity-induced vasodilation 

and/or vasoconstriction [7]. However, there remains some debate on this idea [13,95]. The 

newly engineered calcium sensor GCaMP6 exhibits increased sensitivity over the organic 

dye Oregon Green Bapta 1-AM, and greatly increases the ability to observe small, restricted 

signaling events that may be important for blood flow control [23]. The Khakh lab further 

engineered Lck-GCaMP3 (and more recently Lck-GCaMP6) to tether the sensor to the 

plasma membrane, which unveils a greater diversity of calcium transients in astrocytic 

processes and endfeet [50,115]. These tools have been efficiently targeted to astrocytes 

using AAVs driving expression under a minimal hGFAP promoter.

Neurons

The mechanisms responsible for neural activity-induced changes in blood flow are still 

being elucidated, but it is generally accepted that neurons can alter blood flow directly, 

through release of vasoactive neurotransmitters onto the vasculature [17,127], or indirectly 

through astrocytic vasoactive pathways [7]. We briefly discuss mouse and viral strategies 

that have been used to study neuronal modulation of blood flow. For comprehensive reviews 

on tools and genetic strategies to monitor and manipulate neuronal populations in vivo we 

refer the reader to excellent resources [6,49,56,122].
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There is evidence that certain interneuron subtypes directly contact the basement membrane 

of brain microvessels and modulate vessel flux by releasing the vasoactive substances nitric 

oxide (NO), neuropeptide Y (NPY), somatostatin (SST), vasoactive intestinal peptide (VIP) 

and GABA [18,68]. However, the role that these interneuron subtypes play in blood flow 

control remains poorly understood. Parvalbumin (PV)-Cre mice have been used to 

selectively express the light-gated cation channel channelrhodopsin-2 (ChR2) [15] in 

GABAergic fast-spiking interneurons by transducing the brain with AAVs carrying floxed 

ChR2. Optically activated PV interneurons were found to elicit a positive BOLD signal 

surrounded by zone of negative signal, suggesting that both dilatory and constrictive 

vascular changes were evoked [33,71]. Consistent with this, it was found that optical 

activation of ChR2-expressing PV neurons consistently led to arteriole constriction in brain 

slices [125]. Inhibitory neuron activity is thus involved in shaping of the hemodynamic 

response. The PV-Cre line appears highly specific for PV expressing interneurons, though a 

small fraction of pyramidal neurons may also be targeted [52,125]. Interneurons expressing 

the ionotropic serotonin receptor 5HT3aR, are preferentially located near penetrating 

arterioles [100] and are capable of mediating vasodilation or vasocontriction via NO or 

NPY, respectively, in response to serotonergic input. Somatostatin and VIP-expressing 

interneurons have been shown to influence arteriolar diameter in brain slices [18]. Similarly, 

the in vivo role of these interneuron populations in blood flow regulation can potentially be 

tested with an array of cell-specific, knock-in Cre driver mice [122], bred with reporter lines 

to express optogenetic tools [77]. An important strategy will be to optically silence 

interneuron subtypes with halorhodopsins to determine their role in NV coupling.

Cholinergic influences on cortical blood flow can be studied using choline acetyltransferase 

(Chat)-Cre driver lines [108], as well as lines with expression of optogenetic actuators 

driven by the Chat promoter [61]. Release of acetylcholine from projections of the nucleus 

basalis of Meynert, for example, generates global blood flow increase in cortex independent 

of local metabolism [112]. The axons of cholinergic neurons terminate near the vicinity of 

cerebral arterioles and microvessels, consistent with their strong effect on blood flow [126]. 

In addition to the basal forebrain, cholinergic interneurons of cortex, striatum and other 

brain structures also express Cre-recombinase. These Chat transgenic mice have not been 

widely used in cerebral blood flow studies.

With respect to targeting excitatory neurons, the majority of recent studies have been 

performed using Thy1-ChR2-YFP mice. These animals exhibit strong ChR2-YFP 

expression in cortical layer 5 pyramidal neurons [4], enabling one to directly stimulate 

localized cortical areas with light from implanted optical fibers or collimated lasers, and 

observe the resulting hemodynamic response by TPLSM [32,113]. Conversely, Thy1-driven 

halorhodopsin lines such as the Thy1-eNpHR 2.0 mouse may be useful for selectively 

silencing brain regions [6]. In future work, a diverse catalog of Cre lines with improved 

targeting of specific neuronal subclasses and cortical layers will be useful for dissecting the 

cellular and anatomical basis of cortical blood flow control [49].
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Limitations and opportunities

The density of cellular labeling is an important issue for in vivo imaging, as it becomes 

impossible to visually distinguish or optically activate individual cells when density of 

labeling is high. Further, the ability to resolve fine structures, such as astrocyte processes, is 

limited because the excitation volume during TPLSM is typically larger than the fine 

structures under investigation. One example of how this can lead to ambiguous results is 

during calcium imaging of densely labeled tissue with organic calcium dyes. While cell 

bodies of individual astrocytes can be easily identified in vivo, the perceived somata are 

interweaved with neuronal processes that potentially contaminate the “astrocyte-specific” 

signal. Sparse cellular labeling is therefore necessary to reduce signal contamination. An 

effective strategy to reduce labeling density is to use inducible driver lines, i.e., Cre-ERT2 

[35], which provides a “pulse” of Cre activation to induce, for example, GECI expression 

after crossing with the Ai38 reporter. Finally, since the method of tamoxifen administration 

can influence the degree of recombination and thereby the density of labeling [84], it may be 

useful to reduce the concentration and/or number of repeated injections. Inducible Cre 

animals generally confer more specific labeling of target cells, albeit at a lower efficiency of 

recombination than lines with constitutively-active Cre.

Another potential method to obtain sparse labeling is to use viruses with floxed transgenes 

[55]. Adeno-associated viruses are available as a variety of serotypes, each with a slightly 

different cell tropism, which can be diluted to transduce fewer cells [19,20]. One limitation, 

however, is that there are no reports of common viral vectors (i.e., AAVs, lentiviruses, 

adenoviruses) successfully infecting endothelial cells, pericytes, or SMCs in vivo. It is not 

clear whether these virus types lack the receptors to bind these cell types, or whether 

accessibility of the viral particle is limited by the adventitia, basement membrane, and 

astroglial endfeet. If viruses can be used to transduce a greater variety of vascular cell types 

in vivo, it would remove a significant bottleneck given the relative ease of swapping 

promoters and transgenes compared to generating new mouse lines.

Some experiments will require more complex genetic manipulations than binary 

recombination to ensure that transgenes are solely targeted to one cell type. For example, 

while endothelial cells appear to be selectively targeted by the Tie2 promoter, it is likely that 

specific expression of Cre in SMCs and pericytes will require intersectional strategies that 

place control under two promoters [56,75]. One possibility is to use the split Cre system, 

where Cre recombinase is expressed as two separate non-active proteins, each driven by a 

different promoter [16,128]. When both parts are expressed in the same cell, the proteins 

unite to form a functional recombinase. For example, more specific pericyte targeting may 

be achievable by expressing split Cre under the NG2 and PDGFRβ promoters, as was 

similarly done to target neural stem cells [9]. Another possibility is to use two recombinases, 

i.e., Cre-Flp, where both Cre (driven by promoter A) and Flp (driven by promoter B) would 

need to be active in the same cell to activate transgene expression [63,118,122]. This 

strategy requires dual reporter mice with two STOP codons preceding the coding sequence, 

one flanked by loxP and the other by frt sequences [82]. In some cases, the frt sequences 

flank the entire coding sequence to enable removal or replacement of the transgene [78]. 

This design is useful for subtraction strategies, where labeling specificity is increased by 
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using a Flp driver to eliminate transgene expression in a subset of cells targeted by the Cre 

driver [56].

Absolute cell-specific transgene expression, however, is not essential for all experiments. If 

labeling is sparse overall, the cell of interest can still be distinguished based on morphology 

and/or location, as was the case with studies on pericyte regulation of blood flow [48]. 

Calcium imaging of isolated cells along the vasculature is also possible if they are well 

separated from other cells that may contaminate their signal. Optogenetic activation of 

isolated cells using spatially-restricted two-photon excitation is becoming more efficient 

with new ChR2 variants [103].

Genetically targeting multiple NVU components for a single imaging experiment would be 

valuable in determining the structural association of multiple components in 3-D space, or to 

observe flow of information from one cell type to another. Crossing multiple transgenic 

lines would thus be rewarding, but can be time-consuming and costly when using Cre strains 

because these usually require establishing stable Cre:reporter bigenic mice that are then bred 

with other mouse lines. Viruses on the other hand provide a rapid method to label astrocytes 

or neurons in an existing transgenic line [29]. For example, astrocytes can be easily 

transduced with AAVs carrying a minimal hGFAP promoter and used to drive opsins [46] or 

genetically-encoded calcium indicators [50]. Viral transduction of mice, already expressing 

GCAMP3/6 in smooth muscle or pericytes through cross-breeding, might be a means to 

studying coupling of activity between neurons, astrocytes and vascular cells during brain 

activity

In summary, the maturation of several key technologies including in vivo TPLSM, a variety 

of reporter lines, and molecular tools to drive and observe cell activity provide 

unprecedented opportunities to dissect NVU function in the intact brain. However, the field 

would benefit with a critical re-evaluation of existing mouse lines that are potentially useful 

for such studies. We encourage researchers to i) characterize “NVU” strains with a 

particular focus on transgene expression in cortical cerebrovascular system, and ii) provide 

detailed reports on the outcome of new crosses that may be of utility to study neurovascular 

function in vivo, which includes at a minimum, information on the type of cells labeled in 

the adult mouse brain, the density of labeling, and the breeding strategy and/or induction 

protocol to achieve consistent cellular labeling.

Acknowledgements

Our work is generously supported by grants to A.Y.S. from the NINDS (NS085402, GM109040), the Dana 
Foundation, the American Heart Association (14GRNT20480366), and South Carolina Clinical and Translational 
Institute (UL1TR000062). D.A.H. is supported by an NIH training grant (2T32GM008716). We thank Narayan R. 
Bhat for the gift of NG2-DsRed mice, Zachary J. Taylor for technical assistance with histology, and Pablo Blinder, 
Matthew Holt, Manuel Levy, Celine Mateo, and Michal Slezak for critical reading of the manuscript.

Abbreviations

NVU Neurovascular unit

TPLSM Two-photon laser-scanning microscopy
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NG2 Neural/glial antigen 2

SMC Smooth muscle cell

BBB Blood-brain barrier

FRET Fluorescence resonance energy transfer
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Figure 1. Schematic of the neurovascular unit at the arteriole and capillary level
The NVU is an assembly of cells, comprised of endothelial cells (green) and pericytes (red) 

ensheathed by a basement membrane (yellow), vascular smooth muscle cells (lilac), 

surrounded by astrocytic endfeet (blue) that make contact with excitatory neurons (black). 

Inhibitory neurons (magenta) have been reported to synapse directly onto the basement 

membrane [127].
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Figure 2. NG2 mice for visualizing pericytes in vivo
Images taken from adult brains of three different mouse lines: NG2-DsRed (left column); 

NG2-Cre crossed with Ai14 tdTomato reporter mice (middle column); and NG2-CreER™ 

crossed with Ai14 and induced with tamoxifen in adulthood (right column). Tamoxifen was 

administered intraperitoneally at a dose of 100 mg/kg dissolved in corn oil:ethanol (9:1), 

every 24 hours for 5 consecutive days. Mice were sacrificed for histology within 2 weeks 

after the last injection of tamoxifen. Brain sections (50 μm thick) from all three lines were 

stained with anti-CD31 antibody to label the endothelium and imaged with wide field 

fluorescence (A, D, G), and confocal microscopy (B, B’, E, E’, H, H’). Confocal images 

(maximal projections of 20 μm thick stacks) are shown in the red channel alone to highlight 
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fluorescent protein expression (B, E and H), and with CD31 to show perivascular location of 

pericytes (B’, E’ and H’). Using confocal microscopy of histological slices, ovaloid pericyte 

cell bodies (arrowheads) are visible in all lines. Fine pericyte processes that radiate along the 

microvasculature, however, are most easily visualized with an NG2-CreER™ × Ai14 cross 

(arrow). In vivo images (maximal projections of 50 μm stacks taken 25-75 μm below the pial 

surface) were collected through a PoRTs window using TPLSM (C, F and I) [116]. The 

vascular serum (green) is labeled with intravenous FITC-dextran (2 MDa) [116]. Pericytes 

are difficult to discern in the NG2-Cre × Ai14 line due to excessive background neuronal 

labeling. In comparison, NG2-CreER™ × Ai14 and NG2-DsRed animals exhibit very sparse 

labeling of pyramidal neurons, and possible interneurons. Neurons appear distributed 

independent of cortical layer, and their number increases with time after tamoxifen 

induction. All animals label oligodendrocyte precursors and vascular smooth muscle cells.
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Table 1
Neurovascular Unit-Specific Mouse Lines Expressing Cre or Fluorescent Proteins

Promoter Confirmed
vascular cell
types

Notes Repository
and stock
number (if
commercially
available)

Tie2-GFP [85]
Tie2-Cre [64]
Tie2-CreERT2 [39]

EC Tie2-GFP is well characterized, specific and
widely used for imaging the brain
endothelium. Tie2-Cre crossed with reporter
mouse produces specific, widespread
endothelial cell labeling in brain [92]. Brain
expression with the Tie2-Cre ERT2 line is not
well characterized

GFP:
003658
Cre:
008863
CreERT2 :
EMMA:00715
Mugen:
M201002

Ephrin-B2-H2BGFP
[30]

EC Predominantly expressed in endothelium of
cerebral arterioles and capillaries with faint
expression in veins [86]. Individual endothelial
cell nuclei can be observed.

007843

hVWF-Cre [26] EC Not characterized in detail. Cross with Z/EG
reporter showed expression only in brain
endothelium.

VE-Cad-Cre [3]
VE-Cad-CreERT2 [83]

EC Not characterized in detail. Crossing of the
inducible line with a LacZ reporter mouse
reveals widespread expression in cerebral
vasculature [14].

Cre:
006137

PDGFB-iCreERT2

[25]
EC Cross with fluorescent reporter leads to

widespread labeling of cerebral microvessels
[21].

Cx40-GCaMP2 [120] EC First generation genetically-encoded calcium
sensor exhibits widespread endothelium
expression. Has not been used in brain.

Alk1-GFP-Cre [91] EC Not characterized in detail. Extensive labeling
of brain vasculature when crossed with a lacZ
reporter mouse.

NG2-DsRed [141]
NG2-mEGFP [57]
NG2-Cre [141]
NG2-CreER™ [142]
NG2+/YFP (knock-in)
[62]

PC, SMC, N NG2-DsRed most commonly used to image
individual pericytes in brain, though NG2-
CreER™ mice label a similar but less
complete profile of cells when crossed with
fluorescent reporters. Constitutive NG2-Cre
mice reveal extensive neuronal labeling when
crossed with Ai14, and may not be useful for
imaging (Fig. 2). Oligodendrocyte precursors
are also targeted by the NG2 promotor.

DsRed:
008241
mEGFP:
022735
Cre:
008533
CreER™:
008538

B-actin-GFP [98] PC, EC Brain pericyte and endothelial cells are
broadly labeled for in vivo imaging of
microvascular walls [37]. Identity of other
labeled cell types unclear.

003291

Rgs5+/GFP (knock-in)
[93]

PC Evidence of selective labeling of individual
brain pericytes [99]. Homozygous mouse
shows altered hemodynamics.

PDGFRβ-Cre [27] PC, SMC,
EC, N

Targeting of smooth muscle cells is well
established. Pericytes, endothelial cells and
some neurons are known to be targeted, but
extent of expression is not well characterized
(personal communication with V. Lindner).

α-SMA-GFP [137]
α-SMA-RFPCherry
[104]
α-SMA- Cre [133]
α-SMA- CreERT2

[130]

PC, SMC RFPCherry variant shows widespread labeling
of arterial SMCs in brain, but pericytes of
classical morphology were not reported. The
GFP variant has not been evaluated in the
brain. The inducible Cre line showed SMC
expression when crossed with reporters, but
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Promoter Confirmed
vascular cell
types

Notes Repository
and stock
number (if
commercially
available)

α-SMA-exMLCK [59] other cell types were not examined in detail.
The exMLCK line expresses a FRET-based
Ca2+-sensor, and has not been used to study
cerebral vasculature.

smMHC-Cre [106]
smMHC-Cre-GFP
[134]
smMHC-CreERT2

[132]
smMHC-GCaMP2
[60]

PC, SMC, A,
N

Crossing the Cre-GFP line with Ai14 reporters
reveals sparse labeling of individual pericytes,
astrocytes and neurons, in addition to
widespread but incomplete labeling of SMCs
(Shih and Kleinfeld, unpublished). The
GCaMP2 expressing line has been used to
visualize SMC calcium dynamics in vivo, and
appears to only label SMCs [65].

Cre-GFP:
007742
CreERT2:
019079

SM22α/ transgelin-
Cre [54, 73]
SM22α/ transgelin -
CreERT2 [69]

SMC Constitutive Cre version may not label
vasculature of the brain [40], but further
characterization warranted. Inducible Cre
version also not yet characterized or used in
brain studies.

Cre:
004746

hGFAP-Cre [145]
mGFAP-Cre [43]
hGFAP-CreER [24]
hGFAP-CreERT2

[42, 53]
hGFAP-eGFP [96,
144]

A Crossing constitutive hGFAP-cre mice with
reporters reveals neuronal expression, due to
early Cre activity in neuronal progenitors [76].
Inducible forms appear to label individual
astrocytes more specifically [12]. GFAP-eGFP
mice label a subset of astrocytes in most CNS
structures, and have been used to image
individual astrocytes and their perivascular
endfeet in vivo [58]. There is a labeling bias
towards activated astrocytes, which express
higher levels of GFAP.

hGFAP-Cre:
004600
mGFAP-Cre:
012886
hGFAP-
CreERT2:
012849
hGFAP-eGFP:
003257

GLAST- CreERT2

[84, 117, 129]
GLAST-DsRed [107]

PC, A Crossing Pfrieger lab strain [117] with YFP
reporter enabled imaging of individual
pericytes in spinal cord that serve a scar-
forming function [45]. Brain pericyte
expression not reported. Götz and Nathans
lab strains predominantly express Cre in
protoplasmic astrocytes and in a minority of
other cell types [84]. GLAST is expressed in
some GFAP-negative cells, and extent of
labeling can be varied by altering tamoxifen
dose [107]. DsRed variant only expresses well
in cerebellum [107].

CreERT2:
012586
(Nathans lab)

Glt1-eGFP [107] A Labels nearly all GFAP-positive cells in cortex.
Has been used to label individual astrocytes
and their perivascular endfeet [105].

Aldh1l1-GFP [44]
Aldh1l1-tdTomato [44]
Aldh1l1-Cre [44]

A, N Labels a greater number of astrocytes than
does GFAP lines [8]. Aldh1l1-GFP line labels
occasional oligodendrocytes and is more
specific but less bright than Glt1-GFP animals
[135]. Aldh1l1-Cre animals occasionally label
some oligodendrocytes, neurons, and neural
stem cells [38]. TdTomato variant has not
been characterized.

GFP:
MMRRC:
011015-UCD
tdTomato:
MMRRC:
036700-UCD
Cre:
023748

Cx30-CreERT2 [117] A Crossing with a reporter enabled visualization
of individual astrocytes in all brain regions.
Appears specific to astrocytes.

FGFR3-iCreERT2

[138]
A, N Highly efficient, widespread labeling of

astrocytes with occasional neurons and
oligodendrocytes also labeled. The ability to
image individual cells depends in part upon
the reporter mouse used.
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Promoter Confirmed
vascular cell
types

Notes Repository
and stock
number (if
commercially
available)

PV-Cre [52]
PV-ChR2-eYFP [140]

N Nearly all neurons expressing Cre were
GABAergic but some glutamatergic were
noted [125]. Optogenetically stimulating PV
interneurons elicits vasoconstriction in vitro. A
ChR2-eYFP line may be useful to translate
these findings in vivo.

Cre:
008069
ChR2-eYFP:
012355

5-HT3A-GFP [44] N Highly specific to 5-HT3a-expressing subtype
of GABAergic neurons [72]. Individual cells
were imaged in superficial cortex. These
neurons release vasoconstrictive and
vasodilatory molecules [100].

MMRRC:
000273-UNC

SST-ires-Cre [122]
SST-CreER [122]

N Targets somatostatin-expressing
interneurons. The CreER version exhibits low
recombination efficiency compared to the
constitutive driver.

Cre:
013044
CreERT2:
010708

VIP-ires-Cre [122] N Targets a small subset of vasoactive intestinal
peptide-expressing interneurons.

010908

nNOS-CreERT2 [122] N Labels both Type I and II neuronal nitric oxide
synthase-expressing interneurons when
crossed with Ai9 reporters.

014541

Chat-ires-Cre [108]
Chat-CreER [109]
Chat-eGFP [121]
Chat-mhChR2-YFP
[140]

N Targets cholinergic neurons of basal
forebrain, cortex, striatum and other brain
structures. The cortices of mhChR2-YFP and
eGFP mice are densely packed with
transgene expressing fibers projecting from
the basal forebrain. The inducible CreER mice
exhibit sparse recombination enabling
visualization of full axon and dendritic arbors
of cholinergic neurons. These complementary
tools have not yet been used to study
cholinergic modulation of cerebral blood flow
in vivo.

Cre:
006410
CreER:
008364
eGFP:
007902
mhChR2-YFP:
014546

Thy1-YFP-H [36]
Thy1-GFP-M [36]
Thy1-GCaMP3 [22]
Thy1-ChR2-YFP [4]
Thy1-NpHR 2.0-YFP
[123]

N Specific for projection neurons in CNS.
Labeling in cortex for Thy1-YFP-H and
primarily restricted to layer 5 neurons, and
sparse layer 2/3 neurons. Thy1-GFP-M
exhibits very sparse labeling that permits
individual neurons and processes to be
observed. Thy1-GCaMP3 mice are useful for
calcium imaging. Thy1-ChR2-YFP mice have
been used to optically evoke hemodynamic
responses.

YFP-H:
003782
GFP-M:
007788
GCaMP3:
017893
ChR2-YFP:
007612
NpHR 2.0-
YFP:-
012334

Reporter Lines

Fluorescent
reporters
Ai 3/6/9/14 [78]
Z/EG [97]
mT/mG [87]
RCE:dual [118]

Cre-dependent expression of fluorescent proteins is possible
by placing a floxed transcriptional STOP sequence upstream
of a fluorescent protein coding sequence and downstream
from a strong, universal promoter such as that of chicken β
actin (CAG) or Rosa26. This is the genetic basis for nearly all
mouse reporter lines. Some reporter lines such as Z/EG and
mT/mG have the additional feature that cells will switch from
the expression of one transgene to another when Cre
recombinase is active. There are many generations of
fluorescent reporter mouse lines (reviewed in [1]), the most
recent of which come from the Allen Institute, which offer the
brightest and most universal labeling to date [78]. The Ai9/Ai14
reporters are bright, high sensitivity reporters expressing
tdTomato, while Ai6 expresses eGFP and Ai3 expresses YFP.
RCE:dual mice carry two STOP codons which can be removed
independently by Cre of Flp recombinases, leading to eGFP
expression.

Ai3: 007903
Ai6: 007906
Ai9: 007909
Ai14: 007914
Z/EG: 003920
mT/mG:
007576
RCE:dual:
MMRRC
032036-JAX

Cell activator or These lines are useful to target optogenetic actuators to NVU Ai27: 012567
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Promoter Confirmed
vascular cell
types

Notes Repository
and stock
number (if
commercially
available)

inhibitor
Ai27/Ai32 [77]
Ai35/Ai39 [77]

cells. A27 (ChR2-tdTomato) and Ai32 (ChR2-YFP) drive the
expression of light-gated ion channel Channelrhodopsin-2, to
depolarize target cells. Ai35 (Arch3-GFP) and Ai39 (NpHR3.0-
EYFP) expression a light-gated proton pump and chloride
pump, respectively, for hyperpolarizing target cells.

Ai32: 012569
Ai35: 012735
Ai39: 014539

Cell activity sensors
Ai38 [139]
Ai95/Ai96
Ai78D

The Ai38 line enables expression of the genetically-encoded
calcium sensor GCaMP3 in target cells. A new variant,
GCaMP6, exhibits superior sensitivity to older versions and a
reporter mouse line was being developed at the time of writing.
Lines optimized for fast (GCaMP6f, Ai95) and slow calcium
transients (GCaMP6s, Ai96) will be available. The Ai78D line
enables expression of the FRET-based voltage-sensitive
fluorescent protein Butterfly 1.2 that has been used for single
cell resolution of voltage fluctuations in vivo and was being
developed at the time of writing [2].

Ai38: 014538
Ai95: 024105
Ai78D: 023528

A- astrocyte, EC- endothelial cell, N- neuron, PC- pericyte, SMC- smooth muscle cell. Repository stock numbers are from The Jackson 
Laboratory, unless otherwise noted. Other repositories include 1) Integrated Functional Genomics in Mutant Mouse Models as Tools to Investigate 
the Complexity of Human Immunological Disease (Mugen), 2) European Mutant Mouse Archive (EMMA), and 3) Mutant Mouse Regional 
Resource Centers (MMRRC). If a mouse line is not commercially available, the principal investigator whose lab developed the mouse may offer 
assistance.
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