
A regression tree approach to identifying subgroups with 
differential treatment effects

Wei-Yin Loh,
Department of Statistics, University of Wisconsin Madison, WI 53706, U.S.A. loh@stat.wisc.edu

Xu He, and
Academy of Mathematics and Systems Science Chinese Academy of Sciences, Beijing, China 
hexu@amss.ac.cn

Michael Man
Eli Lilly and Company Indianapolis, IN 46285, U.S.A. man_michael@lilly.com

Abstract

In the fight against hard-to-treat diseases such as cancer, it is often difficult to discover new 

treatments that benefit all subjects. For regulatory agency approval, it is more practical to identify 

subgroups of subjects for whom the treatment has an enhanced effect. Regression trees are natural 

for this task because they partition the data space. We briefly review existing regression tree 

algorithms. Then we introduce three new ones that are practically free of selection bias and are 

applicable to data from randomized trials with two or more treatments, censored response 

variables, and missing values in the predictor variables. The algorithms extend the GUIDE 

approach by using three key ideas: (i) treatment as a linear predictor, (ii) chi-squared tests to detect 

residual patterns and lack of fit, and (iii) proportional hazards modeling via Poisson regression. 

Importance scores with thresholds for identifying influential variables are obtained as by-products. 

A bootstrap technique is used to construct confidence intervals for the treatment effects in each 

node. The methods are compared using real and simulated data.
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1 Introduction

For many diseases, such as cancer, it is often difficult to find a treatment that benefits all 

patients. Current thinking in drug development is to find a subject subgroup, defined by 

individual characteristics, that shows a large treatment effect. Conversely, if a treatment is 

costly or has potential negative side effects, there is interest to look for subgroups for which 

it is ineffective. This problem of searching for subgroups with differential treatment effects 

is known as subgroup identification [1–3].

To fix ideas, suppose that the response variable Y is uncensored and the treatment variable Z 

takes values l = 1, 2, . . . , L. Let X denote a vector of covariates. Given a subgroup S defined 

in terms of X, let R(S) = maxi,j |E(Y |Z = i, S) − E(Y| Z = j, S)| denote the effect size of S. The 
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goal is to find the maximal subgroup with−the largest value of R(S), where the size of S is 

measured in terms of its probability of occurrence P(S). If Y is subject to censoring, we 

replace the mean of Y by the log-hazard rate so that R(S) is the largest absolute log-hazard 

ratio between any two treatments.

Consider, for example, data from a randomized trial of the German Breast Cancer Study 

Group [4, 5] with 686 subjects where the response is recurrence-free survival time in days. 

The trial was designed as a 2 × 2 factorial comparing 3 vs. 6 cycles of chemotherapy and 

presence vs. absence of hormone therapy, but the data contain no information on the number 

of cycles, presumably because it was previously found not significant [6]. Median follow-up 

time was nearly 5 years and 387 subjects did not experience a recurrence of the disease 

during the trial (54 percent censoring). The variables are hormone therapy (horTh: yes, no), 

age (21–80 years), tumor size (tsize: 3–120 mm), number of positive lymph nodes (pnodes: 

1–51), progesterone receptor status (progrec: 0–2380 fmol), estrogen receptor status (estrec: 

0–1144 fmol), menopausal status (menostat: pre, post), and tumor grade (tgrade: 1, 2, 3). A 

standard proportional hazards regression model finds hormone therapy to have a significant 

positive effect on survival, with and without adjusting for the covariates [7, 8]. It is 

interesting, however, to find out if a subgroup exists where the treatment has no effect.

Parametric and semi-parametric models such as the proportional hazards model do not easily 

lend themselves to this problem. Besides, if there are more variables than observations, such 

as in genetic data, these models cannot be used without prior variable selection. Regression 

tree models are good alternatives, because they are nonparametric, naturally define 

subgroups, scale with the complexity of the data, and are not limited by the number of 

predictor variables.

Following current medical literature [9, 10], we call a variable prognostic if it provides 

information about the response distribution of an untreated subject. That is, it has marginal 

effects on the response but does not interact with treatment. Examples are age, family 

history of disease, and prior therapy. A variable is predictive if it defines subgroups of 

subjects who are more likely to respond to a given treatment. That is, it has interaction 

effects with the treatment variable. Figure 1 shows two regression tree models and the 

Kaplan-Meier curves in the terminal nodes of the trees. In the Gs model on the left, variable 

pnodes is prognostic: recurrence probability is reduced if pnodes > 3, with and without 

treatment. In the Gi model on the right, variable progrec is predictive: hormone therapy has 

little effect if progrec ≤ 21 and an enhanced effect otherwise.

The main goal of this article is to introduce the algorithms that yield the models in Figure 1 

and to compare them against existing solutions, which are briefly reviewed in Sec. 2. Sec. 3 

presents the new algorithms for uncensored response variables. Sec. 4 compares the 

selection bias and accuracy of the new and old methods and Sec. 5 proposes a bootstrap 

technique for computing confidence intervals of treatment and other effects in the 

subgroups. Sec. 6 extends the algorithms to censored survival data and Sec. 7 obtains 

importance scores for ranking the variables and and thresholds for identifying the 

unimportant ones. Sec. 8 gives an application to a retrospective candidate gene study where 

there are large numbers of missing values and Sec. 9 concludes the article with some closing 
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remarks. It is assumed throughout that the data are obtained from randomized experiments 

(see, e.g., Su et al. [11] for regression tree models for observational data).

2 Previous work

Let ui and xi denote the (actual but possibly unobserved) survival time and covariate vector 

of subject i. Let si be an independent observation from some censoring distribution and let δi 

= I(ui < si) be the event indicator. The observed data vector of subject i is (yi, δi, xi), where yi 

= min(ui, si), i = 1, 2, . . . , n. Let (y, x) denote the hazard function at x = (x1, x2, . . . , xM). 

The proportional hazards model specifies that λ(y, x) = λ0(y) exp(η), where λ0(y) is a 

baseline hazard and η = β′x is a linear function of the covariates.

Assuming that the treatment has two levels (denoted by z = 0, 1), one approach [12] splits 

each node t into left and right child nodes tL and tR to maximize the Cox partial likelihood 

ratio statistic for testing H0 : λ(y, x) = 0,t(y) exp{β0zI(x ∈ t)} against H1 : λ(y, x) = λ0,t(y) 

exp{β1zI(x ∈ tL) + β2zI(x ∈ tR). A related approach, called interaction trees (IT) [13, 14], 

chooses the split that minimizes the p-value from testing H0 : β3 = 0 in the model λ(y, x) = 

λ0,t(y) exp{β1z + β2I(x ∈ tL) + β3zI(x ∈ tL)}. If there is no censoring, the model is E(y) = 

β0+β1z+β2I(x ∈ tL)+β3zI(x ∈ tL). Both methods employ the greedy search paradigm of 

evaluating all splits tL = {xj ∈ S} and tR = {xj ∉ S} on every xj and every S, where S is a half 

line if xj is ordinal and is a subset of values if xj is categorical. As a result, they are 

computationally expensive and biased toward selecting variables that allow more splits. 

Further, because λ0,t(y) is a function of t and hence of x, the tree models do not have 

proportional hazards and regression coefficients in different nodes cannot be compared.

Given a binary response variable Y = 0, 1, the virtual twins (VT) method [2] first uses a 

random forest [15] model, with Z,X1, . . . ,XM, ZX1, . . . , ZXM, (1 − Z)X1, . . . , (1 − Z)XM as 

split variables, to estimate the treatment effect τ = P(Y = 1 | Z = 1) − P(Y = 1 | Z = 0) of each 

subject. Categorical variables are converted to dummy 0-1 variables for splitting. Then 

RPART [16] is used to construct a classification or regression tree model to predict τ for 

each subject and to obtain the subgroups. If a classification tree is used, the two classes are 

defined by the estimated τ being greater or less than a pre-specified constant; if a regression 

tree is used, the subgroups are the terminal nodes with estimated τ greater than a pre-

specified constant. Although the basic idea is independent of random forest and RPART, 

their use results in VT inheriting all their weaknesses, such as variable selection bias and 

(for random forest) lack of a preferred way to deal with missing values.

The subgroup identification based on differential effect search (SIDES) method [3] finds 

multiple alternative subgroups by identifying the best five (default) splits of each node that 

yield the most improvement in a desired criterion, such as the p-values of the differential 

treatment effects between the two child nodes, the treatment effect size in at least one child 

node, or the difference in efficacy and safety between the two child nodes. For each split, the 

procedure is repeated on the child node with the larger improvement. Heuristic and 

resampling-based adjustments are applied to the p-values to control for multiplicity of splits 

and correlations among the p-values. The method appears to be most useful for generating 

candidate subgroups with large differential effects, but because only variables that have not 
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been previously chosen are considered for splitting each node, the method may not be 

effective if the real subgroups are defined in terms of interval sets of the form {aj < Xj ≤ bj}.

Most methods can control the minimum node sample size so that the subgroups have 

sufficient numbers of observations. The qualitative interaction tree (QUINT) method [17] 

deals with this directly by optimizing a weighted sum of a measure of effect size and a 

measure of subgroup size. It looks for “qualitative interactions,” where one treatment 

performs better than another in one subgroup and worse in another subgroup. Like the above 

methods, QUINT finds the subgroups by searching over all possible splits on all predictor 

variables and hence is subject to selection bias in its splits. QUINT is currently limited to 

ordinal Xi and uncensored Y variables. All the methods are limited to two-level treatment 

variables.

3 Uncensored data

It is well known that evaluating all possible splits on all variables to optimize an objective 

function leads to a bias toward selecting variables that allow more splits [18–20]. This is due 

to an ordinal variable with k unique values yielding k − 1 splits and a categorical variable 

with the same number of unique values yielding 2k−1 −1 splits. As a result, a variable that 

allows more splits has a greater chance to be selected than one with fewer splits. Besides 

increasing the chance of spurious splits, the bias can undermine the credibility of the results. 

SIDES tries to control the bias with Bonferroni-type adjustments, but this can lead to over 

correction, as in the CHAID [21] classification tree algorithm, which is biased toward 

selecting variables with few splits.

The GUIDE algorithm [19, 22] overcomes this problem by using a two-step approach to 

split selection: first find the split variable and then search for the best split on the selected 

variable. The first step yields substantial computational savings, because there is no need to 

find the best split on each of the other variables. It also eliminates selection bias, at least in 

principle, by using chi-squared tests to select the split variable. QUEST [18], CRUISE [23], 

CTREE [24], and MOB [25] are other algorithms that employ significance tests for variable 

selection. In this section we introduce three ways to extend GUIDE to subgroup 

identification for the case where Y is not censored.

3.1 Gc: classification tree approach

This method requires that Y and Z are binary, taking values, 0, and 1, say. Then a 

classification tree may be used to find subgroups by defining the class variable as V = Y +Z 

mod 2:

This is motivated by the observation that the subjects for which V = 0 respond differentially 

to treatment and those for which V = 1 do not. Thus a classification tree constructed with V 

as the response variable will likely identify subgroups with differential treatment effects. 

Loh et al. Page 4

Stat Med. Author manuscript; available in PMC 2016 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although any classification tree algorithm may be used, we use GUIDE [22] here because it 

does not have selection bias, and call it the Gc method (“c” for classification).

3.2 Gs and Gi: regression tree approach

GUIDE linear regression tree [19] offers an alternative approach that permits Y and Z to take 

more than two values each. At each node, we fit a model linear in Z (with dummy coding) 

and select a variable to split by examining the residual pattern for each level of Z. Suppose, 

for example, that data (X1, X2, . . . , Y, Z) are generated from the model

(1)

where Z = 0, 1 and ε is independent normal. The true subgroup being X1 > 0, we should split 

the data using X1. Figure 2 shows how this conclusion can be reached by looking at the data. 

The top row plots Y and the residuals from fitting the model EY = β0 + β1Z. The middle row 

plots the residuals vs. X1 for each level of Z. The opposite trends in the residual plots 

indicate that X1 has an interaction with Z. No other X variable shows such strong patterns. 

We can quantify the strength of the interaction by forming a contingency table with the 

residual signs as rows and grouped values of X1 (obtained by dividing its values at the 

sample mean) as shown in the bottom row of the figure and summing the chi-squared 

statistics over the levels of Z. By applying this procedure to each Xi, we can rank the 

variables and select the one with the largest summed chi-squared to split the data. We call 

this the Gs method (“s” for sum).

Contingency table tests are convenient because they are quick to compute, can detect a large 

variety of patterns, and are applicable to categorical X variables, where we use their values 

for the columns. Because the latter changes the degrees of freedom (df) of the chi-squared 

statistics, we need to adjust for differences in df before summing them. We do this by 

following GUIDE which uses a double application of the Wilson-Hilferty approximation 

[26] to convert each contingency table chi-squared statistic to a 1-df chi-squared quantile. 

Specifically, let x and y be chi-squared quantiles with ν df and μ, respectively, degrees of 

freedom. Then [22]

(2)

The approximation provides a ranking of the variables without the need for chi-squared p-

values that can be extremely small and hard to compute accurately. After a variable is 

selected, a search is carried out for the best split on the variable that minimizes the sum of 

squared residuals in the two child nodes and the process is applied recursively to each node. 

One distinct advantage of contingency tables is that missing values can be dealt with easily 

as detailed in the following algorithm.
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4 Bias and accuracy

4.1 Selection bias

It is obviously important that a tree model not have selection bias if it is used for subgroup 

identification. At the minimum, this requires that if all the variables are independent of Y, 

each Xi has the same probability of being selected to split each node. We carried out a 

simulation experiment to compare the methods on this property. The experiment employed 

two predictors, X1 and X2, and Bernoulli response and treatment variables Y and Z each with 

success probability 0.50. All variables are mutually independent. The distributions of X1 and 

X2 ranged from standard normal, uniform on the integers 1–4, and equi-probable categorical 

with 3 and 7 levels, as shown in Table 1.

Based on 2500 simulation iterations with a sample size of 100 in each iteration, Figure 4 

shows the frequency that each method selects X1 to split the root node. Simulation standard 

errors are less than 0.01. An unbiased method should select X1 or X2 with equal probability 

regardless of their distributions. The results show that IT, QUINT, SIDES and VT have 

substantial selection biases (QUINT is limited to ordinal Xi). IT and QUINT are biased 

towards selecting the variable that has more splits while SIDES and VT are the opposite. In 

contrast, the selection frequencies of Gc, Gs, and MOB are all within three simulation 

standard errors. The frequencies of Gi are also within three standard errors, except when X2 

is categorical with 7 levels where it has a slightly higher chance to be selected.

4.2 Accuracy

We use three simulation models to compare the methods in terms of their accuracy in 

selecting the correct variables and the correct subgroups. Each model employs a binary 

treatment variable Z with P (Z = 0) = P (Z = 1) and 100 variables X = (X1, X2, . . . , X100), all 

mutually independent. Each Xi takes categorical values 0, 1, or 2 (simulating genetic 

markers with genotypes AA, Aa, and aa), with X1 and X2 having identical marginal 

distribution P (X1 = 0) = 0.4, P (X1 = 1) = 0.465 and P (X1 = 2) = 0.135. The others have 

marginal distributions P (Xj = 0) = (1 − πj)2, P (Xj = 1) = 2πj(1 − πj) and  with 

πj (j = 3, 4, . . . , 100) independently simulated from a beta distribution with density f(x) ∝ 

x(1 − x)2. The models for Y are:

M1: P (Y = 1 | X) = 0.4 + 0.05I(Z = 1){4I(X1 6= 0) + 3I(X2 6= 0) + I(X1 6= 0, X2 6= 0)}

M2: P (Y = 1 | X) = 0.3 + 0.2[{2I(Z = 1) − 1}I(X1 6= 0, X2 6= 0) + I(X3 6= 0) + I(X4 6= 

0)]

M3: P (Y = 1 | X) = 0.5 + 0.1[2{I(Z = 1) + I(X1 6= 0) + I(X2 6= 0)} − 3].

Figure 5 shows the values of P (Y = 1 | X) for models M1 and M3. Variables X1 and X2 are 

predictive in M1 but prognostic in M3. Figure 6 shows the values for model M2 which is 

more complex; X1 and X2 are predictive and X3 and X4 are prognostic. M2 tests the ability of 

a method to distinguish between prognostic and predictive variables.

First we compare the frequencies that X1 and X2 are chosen at the first two levels of splits of 

a tree. For each of 1000 simulation iterations, 100 observations of the vector (X, Y, Z) are 
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simulated from each model and a tree is constructed using each method. The frequencies 

that X1 or X2 is selected to split the root node (1st level split) as well as one or both of its 

child nodes (2nd level split) are graphed in Figure 7. QUINT is excluded because it does not 

allow categorical variables. The AIC pruning penalty is used instead of the default BIC for 

IT because the the AIC yields trivial trees less often.

For model M1, where X1 and X2 are predictive and there is no other variable associated with 

Y , all but SIDES select X1 or X2 to split the root node with comparably high frequency. At 

the second split level, the frequencies of Gs, MOB, and VT are distinctly higher than those 

of Gc, Gi, and IT, while that of SIDES remains low. Therefore Gs, MOB, and VT are best 

and Gc, Gi and IT second best for model M1 on this criterion. The situation is different in 

M2 which has two predictive and two prognostic variables. Now Gc, Gi, and IT are 

excellent with SIDES close behind and Gs and MOB are very poor. This shows that the 

latter two do not distinguish between predictive and prognostic variables. This is confirmed 

in M3 which has no predictive variables. Here the probability that X1 or X2 is selected to 

split the nodes should not be different from that of the other 98 variables, but Gs, MOB and 

VT pick the former with high frequencies. Only Gc, Gi, IT, and SIDES perform reliably in 

this case.

Next we compare the power of the methods in identifying the correct subgroup. Let S be any 

subgroup. Recall from the Introduction that the effect size is R(S) = |P (Y = 1 | Z = 1, S) − P 

(Y = 1 | Z = 0, S)|. The “correct” subgroup S* is defined as the maximal (in probability) 

subgroup S with the largest value of R(S). For models M1 and M2, S* = {X1 ≠ 0, X2 ≠ 0}; 

for M3, S* is trivially the whole space because the effect size is constant.

To estimate accuracy, let n(t, y, z) denote the number of training samples in node t with Y = 

y and Z = z and define  and . Let St be the 

subgroup defined by t. The value of R(St) is estimated by R̂
(St) = n(t, 1, 1)/n(t, +, 1) − n(t, 1, 

0)/n(t, +, 0)|. The estimate Ŝ of S* is the subgroup St such that R̂
(St) is maximum among all 

terminal nodes. If Ŝ is not unique, we take their union. The “accuracy” ofŜ is defined to be 

P (Ŝ)/P (S*) if Ŝ ⊂ S* and 0 otherwise.

Table 2 and Figure 8 show the estimated accuracies and probabilities of nontrivial trees 

based on samples of size 100 and 1000 simulation iterations. We see that:

Model M1. MOB, VT, Gs, and Gi are best, in that order. IT and SIDES have very low 

accuracy, due to their high tendency to yield trivial trees and hence no subgroups. The 

other four methods almost always give nontrivial subgroups.

Model M2. Gi has the highest accuracy, at 0.91, followed by Gc and SIDES at 0.86 and 

0.82, respectively. Gs, MOB, IT and VT have difficulty distinguishing predictive from 

prognostic variables; all yield nontrivial trees almost all the time, except for IT which 

gives a nontrivial tree 56% of the time.

Model M3. Because S* is the whole space, the ideal tree is trivial. Gi and IT are best, 

yielding trivial trees 90% of the time. In terms of accuracy, Gi, IT, and SIDES are best, 
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having values of 0.94, 0.87, and 0.85, respectively. Gs, MOB, and VT are the worst, 

because they produce nontrivial trees all the time.

The above results suggest that Gi is the overall best method in terms of accuracy. It is best in 

models M2 and M3 and fourth best in model M1, where it loses to Gs, MOB, and VT, which 

are more accurate when there are no prognostic variables. Gc, IT, and SIDES are dominated 

by Gi in all three models.

5 Bootstrap confidence intervals

Naïve point and interval estimates of the treatment means and differences can certainly be 

calculated from the training data in each node. Let μ(t, z) denote the true mean response for 

treatment z in node t and let (yi, zi), i = 1, 2, . . . , nt, be the observations in t. Let kz denote 

the number of observations in t assigned to treatment z. Then  is the 

naïve estimate of μ(t, z). If  denotes the sample standard deviation of the yi among the 

treatment z observations in t, then  is a naïve 95% confidence 

interval for μ(t, z). If Z takes only two values, let d(t) = μ(t, 1)−μ(t, 0). Then 

 is the naïve estimate of the treatment effect and a naïve confidence 

interval for d(t) is the usual two-sample t-interval. Because the nodes in the tree are not fixed 

in advance but are typically produced by a complex search procedure, however, the validity 

of these estimates cannot be taken for granted. For example, SIDES employs adjustments to 

the naïve p-values of treatment effects in the nodes to control bias.

To see the extent of the bias for Gi and Gs, we carried out a simulation experiment using 

models M1 and M2. The experimental design is an r-replicate (r = 2, 4) of a 34 factorial in 

variables X1, X2, X3, X4, each taking values 0, 1, and 2, and Z independent Bernoulli with 

probability 0.50. The binary response Y is simulated according to models M1 or M2. In each 

simulation trial, a Gi or Gs tree T is constructed from the training data. If T is nontrivial, we 

record the average values of  and d̂
(t) − d(t) over terminal nodes t and the 

proportions of times each naïve confidence interval contains the true estimand. Columns 3–8 

of Table 3 show the estimated bias and coverage probabilities of the intervals over 2000 

simulation trials that result in nontrivial trees. The biases are remarkably small (the true 

means range from 0.30 to 0.90). We attribute this to Gi and Gs not finding splits that directly 

maximize or minimize the treatment effect, unlike SIDES and QUINT. The coverage 

probabilities, on the other hand, are all too low, although there is a perceptible improvement 

as r increases.

To obtain intervals with better coverage, we use a bootstrap method to estimate the standard 

deviations of the naïve estimates. Let  denote a given data set and let T denote the 

regression tree constructed from it. Let  be a bootstrap training sample 

from  and let  be the tree constructed from  with naïve estimates  for 

terminal nodes t* in . Let  be the number of treatment z observations from 

that belong to  and define
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The bootstrap estimate of the variance of  is the sample variance  of 

 and a 95% bootstrap confidence interval for μ(t, z) is 

. If Z takes values 0 and 1, let . Then a 95% 

confidence interval for d(t) is d̂(t) ± 2sd(t) where  is the sample variance of 

.

The rightmost three columns of Table 3 give the simulated coverage probabilities of the 

bootstrap intervals using J = 100. There is a clear improvement over the naïve intervals. In 

particular, the coverage probabilities of the bootstrap intervals for the treatment effect d(t) 

are remarkably accurate across the two models and two methods. The worst performance 

occurs in model M1 for Z = 0, where the true treatment mean is 0.40 in all nodes (see Figure 

5).

6 Censored data

Several obstacles stand in the way of direct extension of Gi and Gs to data with censored 

response variables. The obvious approach of replacing least squares fits with proportional 

hazards models in the nodes [12, 13] is problematic because Gs employs chi-squared tests 

on residuals and their signs. Although there are many definitions of such residuals [29], it is 

unclear if any will serve the purpose here. Besides, as noted earlier, fitting a separate 

proportional hazards model in each node yields different baseline cumulative hazard 

functions. As a result, the whole model no longer has proportional hazards and hence 

regression coefficients between nodes cannot be compared. To preserve this property 

requires a common estimated baseline cumulative hazard function. We solve these problems 

with the old trick of using Poisson regression to fit proportional hazards models.

Let ui and xi denote the survival time and covariate vector of subject i. Let si be an 

independent observation from some censoring distribution and let δi = I(ui < si) be the event 

indicator. The observed data vector corresponding to subject i is (yi, δi, Xi), where yi = 

min(ui, si), i = 1, 2, . . . , n. Let F (u, x) and (u, x) denote the distribution and hazard 

functions, respectively, at x. The proportional hazards model specifies that λ(u, x) = λ0(u) 

exp(η), where λ0(u) is the baseline hazard and η = β′x is a linear function of the covariates. 

Let  denote the cumulative hazard function and let Γ0(u) = Γ(u, 0) 

be the baseline cumulative hazard. Then the density function is f(u, x) = λ0(u) exp{η− Γ0(u) 

exp(η)}. Letting μi = Γ0(yi) exp(ηi), the loglikelihood can be expressed as
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The first term on the right is the kernel of the loglikelihood for n independent Poisson 

variables δi with means μi and the second term is independent of the covariates (see, e.g., 

[30, 31]). If the Γ0(yi) values are known, the vector β may be estimated by treating the event 

indicators δi as independent Poisson variables distributed with means Γ0(yi) exp(β′xi).

Thus we can construct a proportional hazards regression tree by iteratively fitting a Poisson 

regression tree [32, 33], using δi as Poisson responses, the treatment indicators as predictor 

variables, and log Γ0(yi) as offset variable. Gi employs loglinear model goodness-of-fit tests 

[34, p. 212] to the fitted values to obtain the split variables and split points. At the first 

iteration, Γ0(yi) is estimated by the Nelson-Aalen [35, 36] method. After each iteration, the 

estimated relative risks of the observations from the tree model are used to update Γ0(yi) for 

the next iteration (see, e.g., [37, p. 361]). The results reported here are obtained using five 

iterations.

The results of applying these techniques to the breast cancer data were shown earlier in 

Figure 1. Gi and Gs each splits the data once, at progrec ≤ 21 and pnodes ≤ 3, respectively. 

The corresponding Kaplan-Meier curves in the figure show that progrec is predictive and 

pnodes is prognostic. The 95% bootstrap confidence intervals of exp(β), the relative risk of 

hormone therapy versus no therapy, are shown beneath the terminal nodes of the trees. They 

are constructed as for uncensored response data, with the regression coefficient replacing the 

mean response. Specifically, let  and T denote the training sample and the tree constructed 

from it. Let  and  denote the corresponding jth bootstrap sample and tree, for j = 1, 

2, . . . , J. Let  and  denote the estimates of in nodes t ∈ T and  based on 

and , respectively, and let n(A) denote the number of cases in  that belong to any set A. 

Define . The bootstrap estimate of the variance 

of  is the sample variance  of  and a 95% bootstrap 

confidence interval for β(t) is .

7 Importance scoring and thresholding

When there are many variables, it may be useful or necessary to reduce their number by 

some form of variable selection. One way to accomplish this is to rank them in their order of 

importance and select a top-ranked subset. Lack of a proper definition of “importance” has 

led to many scoring methods being proposed, but few include thresholds for identifying the 

noise variables. For example, CART and random forest use the information from surrogate 

splits to compute scores but not thresholds.
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Following [38], we score the importance of a variable X in terms of the 1-df chi-squared 

statistics computed during variable selection. Specifically, let qt(X) be the value of q(X) (see 

Algorithms 1 and 2) at node t and nt be the number of observations in t. We define the 

importance score of X to be  and approximate its null distribution 

with a scaled chi-squared using the Satterthwaite method [39]. This procedure is similar to 

that in [38] except for two changes. First, the latter employs the weight  instead of nt in 

the definition of Imp(X). The new definition increases the probability that the variable 

selected to split the root node is top-ranked. The other change is in the choice of threshold. 

In [38], the threshold is the K−1(K − 1)-quantile of the approximating distribution of Imp(X), 

where K is the number of predictor variables, the motivation being that 1/K of the 

unimportant variable are expected to be found important. It is difficult to compute the K−1(K 

− 1)-quantile of the distribution, however, if K is large. Therefore the threshold is defined to 

be the 0.95-quantile instead. For the breast cancer data, Gi identifies only progrec as 

important whereas Gs identifies pnodes, progrec, and estrec, in descending order.

8 Application to data with missing values

Missing values pose two problems for tree construction. The first is how to deal with them 

during split selection and the second is how to send observations with missing values 

through a split. CART uses a system of surrogate splits that is biased toward choosing 

variables with few missing values [23, 40]. For variable selection, Gc, Gi, and Gs create a 

“missing” category in each contingency table. Each split has the form x ∈ S, where the set S 

may contain the missing values. There is some evidence that this technique is best among 

classification tree methods if the response variable takes two values [41].

We illustrate the method on a real data set from a retrospective candidate gene study. Owing 

to confidentiality reasons, the data and solutions are described in general terms here. A total 

of 1504 subjects were randomized to treatment or placebo and the response is survival time 

in days, with sixty-three percent censored. The explanatory variables consist of 17 

continuous-valued baseline measures (a1, a2, and b01–b15) and 288 categorical variables, of 

which 6 are baseline measures (c0–c5) and the rest are genetic variables (g001–g282), each 

having two or three levels. More than 95% (1435/1504) of the subjects have values missing 

in one or more explanatory variables; only 7 variables (a1, a2, b3, c0, c4, b15, g272) are 

completely observed.

Although the overall treatment effect is statistically significant (p-value 0.008), its 

magnitude is small. The question is whether there is a subgroup for which the treatment 

effect is larger. Owing to the large number of variables, a traditional Cox proportional 

hazards model is inapplicable without some sort of variable selection, even if restricted to 

the subset of complete observations.

The Gs model, shown in Figure 9, splits only once, on a2. If the latter is less than 0.1 or 

missing, there is little difference in survival probability between treated and untreated, as 

shown by the Kaplan-Meier curves below the node. Otherwise, the difference is statistically 

significant: a 95% bootstrap confidence interval (based on 100 bootstrap iterations) for 

relative risk (treatment vs. placebo) is (0.45, 0.81). The importance scoring method 
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identifies 27 and 28 important variables for Gi and Gs, respectively. The trees constructed 

from these variables, however, are unchanged.

9 Conclusion

Regression trees are natural for subgroup identification because they find subgroups that are 

interpretable. But interpretability is advantageous only of the algorithms that produce the 

trees do not possess selection bias. We have introduced three algorithms that are practically 

unbiased in this respect. Gc is simplest because it can be implemented with any 

classification tree algorithm (preferably one without selection bias) by appropriate definition 

of a class variable. It is limited, however, to binary-value response and treatment variables. 

Further, some modification of the classification tree algorithm is needed to disallow splits 

that yield nodes with pure classes.

Gs is a direct descendant of the GUIDE regression tree algorithm. As a result, it is more 

general than Gc, being applicable to any kind of ordinal response variables, including those 

subject to censoring, to multi-valued treatment variables, and to all types of predictors 

variables, with or without missing values. If there is no censoring, Gs borrows all the 

ingredients of GUIDE. The main differences lie in the use of the treatment variable as the 

sole predictor in a linear model fitted to each node, the construction of a separate chi-

squared test of the residuals versus each predictor for each treatment level, and the sum of 

the Wilson-Hilferty transformed chi-squared statistics to form a single criterion for split 

variable selection at each node. As the example in Figure 3 demonstrates, however, Gs can 

be negatively affected by the presence of prognostic variables.

Gi is our preferred solution if the goal is to find subgroups defined by predictive variables 

only. To avoid being distracted by prognostic variables, Gi uses a chi-squared test of 

treatment-covariate interaction to select a split variable at each node. It is therefore similar in 

spirit to the IT method. But unlike the latter, which searches for the split variable and the 

split point at the same time, Gi uses the chi-squared test for variable selection only. Besides 

avoiding selection bias, this approach allows missing predictor values and saves much 

computation time.

We extend Gi and Gs to censored time-to-event data by fitting a tree-structured proportional 

hazards model to the data using Poisson regression. Poisson residuals are easier to employ 

for our purposes than those from proportional hazards models. Further, this approach gives a 

common baseline cumulative hazard function, thereby allowing comparisons of treatment 

effects between nodes. The price is increased computing time due to the need for iterative 

updates of the estimated baseline cumulative hazard function, but the expense is not large 

relative to the other methods, as shown by the average computing times to construct one tree 

for model M1 in Table 4. (Recall that the predictor variables in M1 take three values each; 

the speeds of Gc, Gi, and Gs relative to the other methods would be greater if the variables 

take more values.)

Subgroup identification may be prone to error, especially if the number of predictor 

variables is large, because the chance of finding the correct variables can be small, as the 
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results for model M1 in Figure 8 show. If the number of variables is large, it is often helpful 

to eliminate some of the irrelevant variables with importance score thresholds and then 

construct the trees with the remaining ones. our scoring and thresholding method is 

particularly convenient for this purpose because, unlike other approaches, it does not require 

data resampling and hence is much quicker.

To our knowledge, there has not been an effective method of confidence interval 

construction for the estimates in the nodes of a regression tree. the main difficulty is the 

numerous levels of selection typically involved in tree construction. not surprisingly, naïve 

intervals that ignore the variability due to selection are overly optimistic. to solve this 

problem, we have to account for this extra variability. we do this by using a bootstrap 

method to estimate the true standard errors of the estimated treatment effects. because each 

bootstrapped tree is likely different (and different from the original), we do not obtain an 

interval for each of its nodes. instead, we average the bootstrap treatment effects within each 

node of the original tree and use the averages to estimate the standard errors of the original 

treatment effects. we do not yet have theoretical proof of the consistency of this procedure, 

but the empirical results are promising.

The methods discussed here cannot be expected to provide definitive subgroup 

identification, because the error rates can be quite high in some situations (e.g., model M1). 

Of course, it would increase confidence if there is a procedure that can indicate the 

magnitude of the error rate. Until then, the main utility of the methods is in identifying 

potential subgroups for scrutiny by domain knowledge experts and validation by 

independent trials.

Gi and Gs are implemented in the GUIDE computer program which can be obtained from 

www.stat.wisc.edu/~loh/guide.html.
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Algorithm 1 Gs split selection.

1. Fit the least squares model

(3)

to the data in the node and compute the residuals. Let Sz denote the set of 

observations with Z = z in the node.

2. For each X and z = 1, 2, . . . , L.

(a) Form a contingency table from the data in Sz using the signs (positive 

vs. non-positive) of the residuals as columns and the (grouped) X 

values as rows. If X is ordinal, divide its values into two groups at the 

mean. Otherwise, if X is categorical, let its values define the groups. If 

there are missing values, add an additional “missing value” row.

(b) Compute the chi-squared statistic Wz for testing independence, and 

let z denote its degrees of freedom. Use (2) to convert Wz to the 1-df 

chi-squared quantile

3.
Treating  as a chi-squared variable with L df, use (2) a second time 

to convert it to a 1-df chi-squared quantile

4. Let X* be the variable with the largest value of q(X).

(a) If X* is ordinal, let A denote the event that X* is missing (if any) 

andĀ its complement. Then search through the values of c for the split 

 or  that minimizes the sum of the squared 

residuals of model (3) fitted to the two child nodes produced by the 

split.

(b) If X* is categorical, let g denote its number of categories (including 

the missing category, if any). If g < 10, search over all (2g−1 −1) splits 

of the form X* ∈ S to find the one that minimizes the sum of squared 

residuals in the two child nodes. If g ≥ 10, limit the search to (g − 1) 

splits by following a technique in [27, p. 101] for piecewise constant 

least-squares regression as follows.

i. Label an observation as belonging to class 1 if it has a positive 

residual and as class 2 otherwise.
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ii. Order the X* values by their proportions of class 1 subjects in 

the node.

iii. Select the split along the ordered X* values that yields the 

greatest reduction in the sum of Gini indices.

If there are no missing X* values in the training data, missing X* in cases to be 

predicted are imputed with the node mean.

Unlike the basic GUIDE algorithm [19] which divides the values of each ordered X 

variable into three or four groups in step 2a, we use only two groups here to avoid small 

cell counts, because each contingency table is constructed from the data for one treatment 

level only.

The MOB [25] method can be employed similarly, by fitting a linear model as in step 1 

of the above algorithm and then using its own permutation-based procedures to select the 

split variables and split values. Because Gs and MOB are sensitive to both prognostic and 

predictive variables, however, they may be ineffective if we wish to find subgroups 

defined by predictive variables only. To see this, suppose now that the data (X1, X2, . . . , 

Y, Z) are generated from the true model

(4)

with ε independent normal. The simulated data plots in Figure 3 show that Gs and MOB 

will choose X1 with high probability even though it is prognostic but not predictive. IT 

overcomes this by adding the interaction I(Z = 1)I(X > c) to the fitted model and testing 

for its significance, but this approach requires searching over the values of c, which 

produces selection bias and may be impractical if Z takes more than two levels. To get 

around these problems, we instead test for lack of fit of the model

(5)

where H = X if it is categorical and is the indicator function I(X ≤ x̄) with x̄ being the 

sample mean of X at the node otherwise. Then we select the most significant X to split the 

data. Turning an ordinal X into a binary variable may lead to loss of power, but this is 

compensated by increased sensitivity to interactions of all kinds, including those that 

cannot be represented by cross-products of indicators, and by allowing missing values in 

X. We call this the Gi method (“i” for interaction). The procedure is given next.

Algorithm 2 Gi split selection.

1. For each X variable at each node:

(a) If X is ordinal, divide its values into two groups at its mean. If X is 

categorical, let its values define the groups. Add a group for missing X 

values if there are any. Let H denote the factor variable created from 

the groups.
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(b) Carry out a “pure error” lack-of-fit test (see, e.g., Weisberg [28, Sec. 

4.3]) of the model (5) on the data in the node and convert its p-value to 

a 1 df chi-squared statistic q(X).

2. Let X* be the variable with the largest value of q(X) and use the procedure in 

Algorithm 1 step 4 to find the split on X* that minimizes the sum of squared 

residuals of the model  fitted to the child nodes.

Applying the method to the data in Figures 2 and 3 yields p-values of 3 × 10−19 and 0.07, 

respectively.
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Figure 1. 
Gs (left) and Gi (right) tree models and Kaplan-Meier curves for breast cancer data. At each 

intermediate node, an observation goes to the left child node if and only if the displayed 

condition is satisfied. Sample sizes are beside terminal nodes; 95% bootstrap confidence 

intervals of relative risks for therapy versus no therapy are below nodes.
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Figure 2. 
Plots of Y and residuals vs. X1 after fitting EY = β0+ β1Z to data from model (1); vertical 

dashed lines indicate sample mean of X1
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Figure 3. 
Plots of data and residuals from the model (4) where X1 is prognostic
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Figure 4. 
Simulated probabilities that X1 is selected to split the root node; simulation standard errors 

less than 0.01. A method is unbiased if it selects X1 with probability 0.50. SI and QU refer to 

SIDES and QUINT, respectively. The latter is not applicable to categorical variables.
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Figure 5. 
Models M1 and M3. Sets S1 = {X1 = 0, X2 = 0 , S2 = {X1 = 0, X2 > 0}, S3 = {X1 > 0, X2 = 

0}, and S4 = {X1 > 0, X2 > 0}.
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Figure 6. 
Model M2, with predictive X1 and X2 and prognostic X3 and X4. Sets S1 = {X1 = 0, X2 = 0}, 

S2 = {X1 = 0, X2 > 0} and S3 = {X1 > 0, X2 = 0}, and S4 = {X1 > 0, X2 > 0}
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Figure 7. 
Probabilities that X1 or X2 are selected at first and second level splits of trees for models M1, 

M2, and M3. Long bars are better for M1 and M2, and short bars are better for M3. SI stands 

for SIDES.
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Figure 8. 
Accuracy rates of subgroup identification and frequencies of nontrivial trees for models M1, 

M2, and M3. For accuracy, long bars are better. For frequencies of nontrivial trees, long bars 

are better for M1 and M2 and short bars are better for M3. SI stands for SIDES.
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Figure 9. 
Gs model for gene data. At each node, a case goes to the left child node if and only if the 

stated condition is satisfied. Sample sizes are beside terminal nodes and 95% bootstrap 

intervals for relative risk of recurrence for treatment versus placebo are below the nodes.
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Table 1

Four types of distributions of X1 and X2.

Notation Type Distribution

Cont Continuous Standard normal

Ord4 Ordinal Discrete uniform with 4 levels

Cat3 Categorical Discrete uniform with 3 levels

Cat7 Categorical Discrete uniform with 7 levels
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Table 2

Accuracy rates of subgroup selection and frequencies of nontrivial trees. Larger values are better.

Model Type Gi Gs Gc IT SIDES VT

M1 Accuracy 0.322 0.430 0.150 0.015 0.024 0.465

M1 P(nontrivial tree) 0.953 0.983 0.990 0.105 0.232 1.000

M2 Accuracy 0.913 0.204 0.855 0.280 0.819 0.430

M2 P(nontrivial tree) 0.979 0.999 1.000 0.562 0.988 1.000

M3 Accuracy 0.939 0.285 0.519 0.886 0.848 0.279

M3 P(nontrivial tree) 0.104 1.000 0.693 0.133 0.410 1.000
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Table 4

Average times (sec.), over 500 simulation trials of model M1, to construct one tree on a 2.66GHz Intel 

processor; QUINT does not allow categorical variables

MOB Gs Gi Gc IT VT SI QU

1.4 4.3 7.0 17.5 127.8 341.1 1601.5 NA
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