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Abstract

Introduction—The ongoing surge of resistance of bacterial pathogens to antibiotic therapies and 

the consistently aging median member of the human race signal an impending increase in the 

incidence of chronic bone infection. Nanotechnological platforms for local and sustained delivery 

of therapeutics hold the greatest potential for providing minimally invasive and maximally 

regenerative therapies for this rare but persistent condition.

Areas covered—Shortcomings of the clinically available treatment options, including 

poly(methyl methacrylate) beads and calcium sulfate cements, are discussed and their 

transcending using calcium-phosphate/polymeric nanoparticulate composites is foreseen. Bone is 

a composite wherein the weakness of each component alone is compensated for by the strength of 

its complement and an ideal bone substitute should be fundamentally the same.

Expert opinion—Discrepancy between in vitro and in vivo bioactivity assessments is 

highlighted, alongside the inherent imperfectness of the former. Challenges entailing the cross-

disciplinary nature of engineering a new generation of drug delivery vehicles are delineated and it 

is concluded that the future for the nanoparticulate therapeutic carriers belongs to multifunctional, 

synergistic and theranostic composites capable of simultaneously targeting, monitoring and 

treating internal organismic disturbances in a smart, feedback fashion and in direct response to the 

demands of the local environment.
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1. Introduction

Since the advent of the antibiotic era, infectious diseases have lost a place at the forefront of 

interest of biomedical research in the developed world. For many decades now, with the 

exception of HIV, the concern for contracting a major infection among individuals with 

uncompromised immune responses has been confined to the Third World countries. Not 

only does the overall National Institutes of Health funding for infectious diseases and their 

clinical corollaries currently comprise mere 10% of its overall amount, but the funding for 

rural health in 2014 has, for example, outstripped that for malaria by > 50% [1]. However, 

with the evolution of bacterial resistance to the current generation of antibiotics and the 

corresponding proneness to latent viral outbreaks, this state of affairs is expected to change 

in the near future. Finding the treatment for the hyperaggressive forms of bacterial infections 

before the humanity witnesses an impending pandemic of devastating proportions proves as 

necessary and might, moreover, require a fundamentally different therapeutic approach 

compared to the one that has been embraced in the past.

Bone is an organ shielded well from the external pathogens, which is a double-edged sword 

from the clinical standpoint. For, to the same extent that it resists infection, it resists 

therapies against the occurring infections. Despite the extensive research, osteomyelitis 

proves difficult to treat and its chronic forms usually entail poor prognosis for the patient 

[2]. The difficulty of its treatment is further increased due to the fact that a wide variety of 

pathogens can cause it, including fungus, pox viruses as well as not so common bacteria, 

such as Haemophilus influenzae, Brucella suis, Mycobacterium tuberculosis, 

Mycobacterium ulcerans, Fusobacterium nucleatum and others, aside from the pyogenic 

bacteria from the healthy oral flora, which remain its main causative agents. Staphylococcus 

aureus and Staphylococcus epidermis are held responsible for the great majority of bone 

infections, ~ 90%, whereby the increasing incidence of their methicillin-resistant forms 

explains the unusual severity of the recent clinical manifestations of this disease 

characterized by a high recurrence rate despite the extensive surgical interventions and long-

term antibiotic therapies [3].

Historically, given that osteomyelitis is one of the oldest documented diseases, whose first 

reports date back to Hippo-crates’ scripts from the 5th century BC [4] and whose oldest 

known evidence lies in the fossilized spine of a 270 million-year-old Permian reptile [5], 

significant advances in its treatment have been made in the past [6]. Before the introduction 

of penicillin in the 1940s, chronic osteomyelitis was treated first by amputation, then by 

trepanning and less-invasive surgeries [7] with or without the application of various natural 

medicines, including such ointments as bovine feces or larva of the blow fly [8]. Mainstay of 

therapy for the last 50 years has, however, been a concoction of oral and parenteral 

antibiotic therapy, lasting up to 2 –12 weeks, depending on the severity of the infection, and 

surgical debridement of necrotic bone. The room for the improvement of this traditional, yet 

rather deficient, approach to the treatment of osteomyelitis is, however, obvious to those 

familiar with the sophisticated drug delivery technologies currently existing in the 

embryonic or translational stages (Figure 1). Its elaboration from a bionanotechnological 

perspective presents the subject of this opinion piece.
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2. Shortcomings of the traditional therapies and the available local release 

alternatives

Two of the major downsides of the traditional therapy for osteomyelitis are fairly obvious. 

First, the surgical removal of diseased bone entails weakening of the musculoskeletal 

support and causes unaesthetic disfigurements, frequently demanding the implantation of 

permanent braces besides bone grafting. Second, antibiotics administered systemically have 

a hard time crossing the sequestra (and the relatively avascular sclerotic bone surrounding it) 

and reaching the infection site, which does not only diminish their effectiveness, but also 

increases the chances for the induction of resistance of the pathogen to the actual antibiotic 

therapy. Logically, these two central shortcomings could be ameliorated with the use of 

platforms capable of locally and sustainably delivering antimicrobial agents while 

stimulating tissue regeneration and substitution of necrotic foci with the newly formed, 

healthy bone.

At the clinical level, these innovative strategies remain only partially implemented and that 

mainly in the form of poly (methyl methacrylate) (PMMA) beads. After they had been first 

clinically applied in the early 1970s [9], they gradually established themselves as a standard 

option for the local delivery of antibiotics to bone cavities and this trend continues to this 

very day. Although PMMA beads loaded with hydrophilic antibiotics were successfully 

applied in the past [10–12], numerous clinical limitations are associated with their use. 

These include: i) their nonbiodegradable nature and the need for a secondary surgical 

procedure to ensure their removal from the body after the release process is over [13]; ii) an 

often insubstantial amount of the released antibiotic following the initial, burst release phase 

[14], which has led to the promotion of pathogenic resistance to such therapies in the past 

[15]; iii) proneness to biofilm formation, which hinders the antimicrobial action [16]; and iv) 

moderate toxicity resulting from the absorption of MMA monomers and the 

carboxylesterase-mediated conversion of MMA to methacrylic acid [17]. On top of this, a 

comprehensive clinical study has yet to prove that PMMA beads are more effective than the 

systemic antibiotic delivery in treating orthopedic infections [18]. The major clinically 

available alternative capable of sustained release are calcium sulfate cements, which suffer 

from other weaknesses, mainly their rapid degradation time scale, in the order of weeks, 

which is faster than the bone ingrowth rate and can lead to the mechanical implant failure 

[19], alongside other clinical issues, such as drainage at the wound site [20], severe 

inflammation secondary to overabundance of calcium ions [21], and the occurrence of 

fibrous gaps in the zones undergoing the replacement of the rapidly resorbing cement with 

the slowly growing bone [22]. However, with the current knowledge of sophisticated drug 

delivery vehicles, devising a new generation of locally targeted and minimally invasive 

therapies for osteomyelitis could be readily foreseen.

3. Biodegradable poly(α-hydroxy esters): pros outweighed by cons

Biodegradable polymeric carriers, for example, pose themselves as a natural alternative to 

the use of PMMA. To this end, the favorite choice has fallen on poly(α-hydroxy esters), 

including poly(L-lactic acid) (PLLA), poly(glycolide) (PGA) and poly-(D,L-lactide-co-

glycolide) (PLGA), all of which have been experimentally applied as antibiotic carriers for 
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the treatment of osteomyelitis [23–25]. An immediate upside of their application comes 

from their ability to encapsulate comparatively large amounts of both hydrophobic and 

hydrophilic drugs [26] and exhibit extended drug release profiles [27]. The latter can be 

furthermore made tunable via control over composition and processing conditions [28]. In 

the case of PLGA, for example, the lactide-to-co-glycolide ratio could be used as a control 

parameter in setting the degradation and release time scales under physiological conditions 

to range from a year or more for PLLA to around 6 months for PLGA with the lactide-to-co-

glycolide ratio of 1:1 to about a month for pure PGA. A detrimental effect that entails the 

use of poly (α-hydroxy esters) and that was observed in the past is that their acidic 

degradation products may favor the bacterial growth and promote hard tissue resorption and 

bone mass loss [29,30]. Chronic inflammation is, in fact, known to often result as a response 

to implantation of PLLA-based polymers in bone tissue engineering [31–33]. Since the 

antimicrobial effectiveness of antibiotics is found only within a relatively narrow window of 

pH values and could decrease by as much as 16-fold following a pH drop from 7.4 to 5.5 

[34], this acidification entailing partial or complete degradation of poly (α-hydroxy esters) 

can negatively interfere with the antimicrobial action. Despite their superior release 

properties, this has suggested the necessity of combining poly(α-hydroxy esters) with 

alkaline inorganics, such as calcium phosphates [35].

4. Calcium phosphates

Calcium phosphates have been traditionally considered as a favorite choice for the synthetic 

substitute of hard tissues due to their structural and compositional versatility, outstanding 

biocompatibility and bioactivity, and the ability of being conducive to new bone growth. 

The major weakness of this material springs from the fact that it resists encapsulation of 

drugs via intercalation. Calcium phosphates are, on the other hand, excellent adsorbents of 

an array of organics, the reason for which their least-soluble phase, hydroxyapatite, has been 

used as a chromatographic adsorbent of proteins and nucleic acids [36,37]. This property of 

theirs, however, comes at a cost because it predisposes them in turn to exhibit burst release 

and puts definite limits on their capacity to release substantial amounts of drugs over 

prolonged periods of time. Although some level of burst release is desired to some extent in 

the treatment of infectious diseases, lest the targeted bacterial populations become 

potentially resistant to the administered antibiotic, the release from calcium phosphates is 

typically such that 80 –90% of the drug becomes desorbed in the first minutes of contact 

with the physiological solution or body fluids [38]. The simplest way to overcome this issue 

has involved intraporous loading of nanoparticulate aggregates with a drug either using high 

pressure [39,40] or spontaneous powder compaction and drug capture upon desiccation [41]. 

These strategies, however, interfere with the attempts to produce injectable colloidal calcium 

phosphate gels and question the veracity of their nanoparticulate nature if they come to be 

applicable as solely implantable microscopic aggregates of nanoparticles.

Calcium phosphates belong to structurally complex ceramics wherein the stoichiometric 

composition could be used to tailor the properties of interest. Figure 2A illustrates the use of 

another ceramic compound, lanthanum-strontium manganite, in producing tunable and self-

regulating superparamagnetic materials for the treatment of cancer via hyperthermia. 

Namely, by varying the ratio between lanthanum and strontium, that is, parameter x in 

Uskoković and Desai Page 4

Expert Opin Drug Deliv. Author manuscript; available in PMC 2015 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nanosized La1-xSrxMnO3 + δ, the Neel point of the material changes in the range of T = 25 –

100°C for x = 0.16 –0.5, enabling the use of the material for hyperthermic, thermoblastic or 

even more intense thermal tissue healing applications [42]. Similarly, calcium phosphates 

can be synthesized in a variety of stoichiometries, covering the range of solubility values 

from 18 g/dm3 for anhydrous and monohydrous monocalcium phosphates (triclinic 

Ca(H2PO4)2) to 88 mg/dm3 for brushite (monoclinic CaHPO4·2H2O) to 48 mg/dm3 for 

monetite (triclinic CaHPO4) to 17 mg/dm3 for calcium pyrophosphate (tetragonal Ca2P2O7) 

to 2.5 mg/dm3 for α-tricalcium phosphate (monoclinic Ca3(PO4)2) to ~ 1 mg/dm3 for 

amorphous calcium phosphate to 0.3 mg/dm3 for hydroxy-apatite (pseudo-hexagonal 

Ca10(PO4)6(OH)2). In such a manner, the composition could be a control parameter for the 

solubility, that is, the degradation rate, which could be, in turn, used as a control parameter 

for the drug release. Figure 2B correspondingly demonstrates the use of different calcium 

phosphate phases for achieving different rates of release of bovine serum albumin [43].

Another ceramic material offering similar tailoring of the degradation rate to a desired 

kinetic profile via control of its stoichiometry is bioactive glass, which has also been 

researched extensively as a carrier for the sustained release of antibiotics in the treatment of 

orthopedic infections [44]. Such adjustments of the degradation rate could be achieved, for 

example, by controlling silicate-to-borate ratio [45] or the amount of a less-abundant 

constitutive ion, such as sodium [46] or strontium [47]. Still, given the fact that silicon, the 

main cationic component of all types of bioactive glasses, is but a trace element in the 

human body, present in the amount of only 1 –2 g [48], as well as that their amorphous 

network of silica tetrahedra partially, yet usually incompletely [49], transforms to 

hydroxyapatite in the body raises fundamental issues regarding their usability as bone 

substitutes, especially when compared with a more natural compound of choice: calcium 

phosphate.

Being the sole component of the mineral phase of hard tissues, calcium phosphates are 

natural candidates for bone-filling drug carriers. With bone acting as a natural reservoir for 

calcium and phosphate ions [50], any excessive amounts thereof could be regulated in favor 

of new bone growth. Calcium and phosphate ions released upon degradation stimulate 

osteoblastic differentiation [51,52] and proliferation [53] and could be used as ionic 

ingredients for the new bone formation. Another advantage of calcium phosphates is that 

they could be readily made into self-setting pastes, injectable upon mixing, yet setting into 

firm solids after the injection [54]. Unlike polymers, calcium phosphates tolerate well the 

exposition to γ-irradiation, gas plasma discharge and supercritical CO2 and could be 

sterilized using any of those without any concerns that their structural properties would be 

damaged thereby. Calcium phosphate particles could be also fabricated in a variety of 

morphologies and nanosize presents their natural, most easily obtainable state by 

precipitation from aqueous solutions [55].

5. The biomimetic argument

Biomimetics, it is worth noticing, is one of the most prospective principles that guide tissue 

engineers in designing a new generation of biomaterials [56,57]. In this case, it can be 

summed as similia similibus curantur, necessitating the substitution of like with like. First, 

Uskoković and Desai Page 5

Expert Opin Drug Deliv. Author manuscript; available in PMC 2015 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



because bone is an organic/inorganic composite, it could be argued that a composite of a 

similar nature is to be used as its ideal substitute. Second, bone is a nanostructured 

composite, given that at the molecular level it comprises ~ 30 × 20 × 2 nm-sized calcium 

phosphate crystals interspersed within the collagen matrix [58]. Third, we have seen that 

calcium phosphate as the key inorganic ingredient of bone suggests the ideality of its usage 

as a core nanostructured component of composites for bone regeneration. Finally, bone is a 

multifunctional biological material involved in biomechanical support and protection of the 

body, production of blood cells and mineral ion storage. Therefore, it is natural to expect 

that the ideal material for its replacement should also be multifunctional. This is where we 

arrive once again at the simultaneously antimicrobial and regenerative role for the new 

generation of drug delivery platforms for the prophylactic and/or restorative treatments of 

bone affected by osteomyelitis. This idea is logical in view of the dual purpose that an ideal 

therapeutic agent is to serve in general: i) to eradicate the internal manifestation of illness; 

and ii) to revitalize the organism.

Biological techniques applicable in the assessment of the regenerative capacities of these 

platforms can be divided to morphological, genetic, proteomic and metabolic ones and are 

illustrated in Figure 3. Immunohistochemistry presents a valuable tool in understanding the 

osteoconductivity of materials by measuring the affinity of the cell to the surface of the 

carrier, as shown in Figure 3A. Expression of osteogenic markers at the mRNA level, 

including, most notably and least ambiguously, osteocalcin, Runx2 and osterix, could give 

an insight into the bone-building activity of osteoblasts in contact with the material (Figure 

3B). The expression of proteins implicated in bone mineralization can be quantified to 

conclude about the osteogenic potency of the material (Figure 3C), while smaller cytokines 

and metabolites involved in signaling between osteoblasts and osteoclasts, the two types of 

cells that in a mutually antagonistic manner orchestrate the bone regeneration process, could 

be equally reliable indicators of the osteogenic response of the cells to a given material. 

Such molecules include members of the osteoprotegerin/receptor for activation of NF-kB 

ligand (RANKL)/RANK pathway, where RANKL is a tumor necrosis factor family member 

secreted by osteoblasts with a role to trigger the differentiation of mesenchymal stromal 

cells to osteoclasts and speed up the complementary bone degradation processes. Finally, the 

measurements of calcitriol, the active form of vitamin D, or retinoic acid (RA), both of 

which are crucial for the proper skeletal development, could be indicative of the osteogenic 

process, owing to the fact that their concentration increase corresponds to the upregulation 

of protein species in the osteogenic pathway, directly in the case of calcitriol [59] and 

inversely in the case of RA [60,61]. Figure 3D and E shows chromatograms of vitamin D 

metabolites extracted from a human sample using an antibody binding specifically to 1,25-

dihydroxycholecalciferol [62] and a direct proportionality between its concentration at the 

cellular level and the osteogenic activity of the cells [63].

6. Targeting the intracellular colonies

The antibiotic treatments of osteomyelitis are greatly hampered due to the ability of S. 

aureus, its main causative agent, to penetrate osteoblastic and other cells and form a 

temporary symbiosis with them [64,65], before inducing their apoptosis and continuing to 

spread across the organism [66]. Though far more difficult to achieve, targeting these 
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intracellular colonies by the antibiotic therapy is thus expected to be more important for 

preventing the recurrence of infection than eradicating only the pathogens that colonize the 

bone matrix [67]. Calcium phosphate nanoparticles are the major nonviral agents for the 

intracellular delivery of plasmids [68,69], which explains the fact that, loaded with 

clindamycin phosphate, they diminished the presence of S. aureus colonies located within 

osteoblastic cells in vitro to a greater degree than it was achieved by the application of the 

pure antibiotic [70]. Figure 4A shows a schematic description of the nanoparticle uptake by 

the cell, while Figure 4B demonstrates the intracellular localization of calcium phosphate 

nanoparticles observed during an immunofluorescent analysis of their interface with 

osteoblastic cells.

7. The prospect of composites

The aforementioned arguments speak in favor of composite nanoparticles as the most 

prospective ones in ensuring simultaneously therapeutic and regenerative performance. 

Although increased bioactivity usually comes at the cost of increased proneness to biofilm 

formation, an optimal balance between the antibacterial (therapeutic) and the osteogenic 

(regenerative) performance of biomaterials designed to cope with bone infection must be 

found. And the fact that multiple functionalities are to be achieved by these materials points 

in the direction of composites as the forthcoming generation of materials for bone 

engineering. In addition, bone itself is a composite wherein the weakness of each component 

alone is compensated for by the strength of its complement and it could be argued that an 

ideal bone substitute should be fundamentally similar in nature. Polymeric coatings are 

capable of stabilizing the drug adsorbed on the surface of calcium phosphate nanoparticles 

and serving as an additional reservoir for drug encapsulation and its more sustained release 

[71], alongside offering a more stable surface for conjugation with targeting, optically active 

or other therapeutic ligands [72]. An alternative concept employs a nanoparticulate, 

microporous calcium phosphate shell formed around the polymeric core [73]. This reverse 

method aims to harness the osteoconductive nature of the ceramic phase to a greater extent, 

while still enabling the drug to be released sustainably from the core polymeric reservoir 

through the surface pores.

From the mechanical standpoint, it is generally assumed that the microstructure of calcium 

phosphates alone cannot be modified in such a manner as to make the material mechanically 

compatible with the grafted bone and eliminate the risk of filler fracture after its surgical 

placement [74]. Only in combination with a soft component could calcium phosphates 

overcome these fundamental problems associated with their clinical application. For 

example, the combination of visco-elastic polymers and osteoconductive calcium 

phosphates has yielded composites that surpassed the resistance to fracture, the structural 

integrity and the stiffness of individual components [75], making up for the low compressive 

strength of the former and brittleness and the lack of malleability of the latter [76]. Finally, 

the resorption time and the corresponding bone ingrowth rate significantly increased when 

hydroxyapatite was implanted as a bone substitute in vivo in a composite form, in 

combination with PLGA [77,78], a polymer known to be able to accelerate the resorption of 

calcium phosphates by the release of its acidic degradation products [79].
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Of course, sky is the limit when it comes to conceiving additional components of such basic 

soft/hard organic/inorganic matrices that crudely mimic bone. Combinations of calcium 

phosphate, PLGA and semiconductor quantum dots at the nanoparticle scale have, for 

instance, enabled monitoring of the particle routes in the body [80,81]. Many of the readily 

imaginable options are, however, yet to be explored. Conjugation of the carrier particles to 

moieties that have an affinity for various bone components [82], such as bisphosphonates 

[83] or estrogen [84], acting as either targeting agents or metabologens, is one and the 

enrichment of antibiotic carriers with pluripotent cells, such as mesenchymal stem cells able 

to differentiate into osteoblasts [85], is another. Supplementation of particles with elements 

or surfaces with pronounced antimicrobial activities as alternatives to traditional antibiotics, 

always prone to induce the globally spreading resistance of pathogens to them, presents 

another prosperous direction of research. Shown in Figure 5 is an example of monodisperse, 

composite and antibiotic-free nanoparticles with simultaneously antioxidative, antibacterial 

and osteoinductive properties. The particles were able to: i) reduce the concentration of 

superoxide in human umbilical vein endothelial cells; ii) suppress the growth of E. coli and 

methicillin-resistant S. aureus; and iii) upregulate the expression of two osteogenic markers: 

osteocalcin and protocollagen type I.

8. Expert opinion

So far we have described the discrepancy between the therapeutic state of the art in coping 

with the cases of osteomyelitis in the clinic and the existing drug delivery technologies. In 

broader terms, a new set of regulations may be needed to facilitate the translational path 

between the bench and the clinic, lest this gap continues to widen. Also, enabling a greater 

flux of ideas from materials science centers of thought to the world of biology and medicine 

will be of benefit for the process of discovery of advanced nanoscale drug delivery 

platforms. One way to achieve this is to stimulate the opening of materials science centers in 

the core of medical school environments and convert physical proximity to fruitful 

collaboration around specific clinical priorities. Engineering a new generation of drug 

delivery vehicles is, after all, a discipline at a crossroads, requiring an input from the 

materials scientists, physical chemists, mechanical engineers, pharmacologists, molecular 

and cell biologists and, crucially, clinicians. How to balance the congregation of such a 

multitude of outlooks that often sound foreign to each other with maintaining an in-depth 

perspective toward a given therapeutic goal is a challenge for the new generation of 

principal investigators. In the end, with the subjects of research reflecting their qualities 

back to researchers, it comes as natural that a new generation of materials will raise a new 

generation of materials scientists developing them.

More specifically, an ideal material for bone infection therapies would be an injectable 

colloid capable of adhering to the defected bone mass, possibly through a self-setting 

mechanism. It would then proceed to release the antimicrobial pay-load to the areas of 

infection in a sustained and targeted manner, thwarting its progress while also being able to 

foster the resorption of the necrotic bone and its replacement with the newly grown one. The 

abovementioned similia similibus curantur maxim has guided us in the direction of calcium 

phosphates as ideal core components of complex composite materials that are to be 

developed for this application. Biological techniques have been set in place to facilitate the 
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assaying of favorability of the cell response to the given materials in vitro, prior to their use 

in animal or clinical studies, yet a lot of work to conquer significant challenges lies ahead. 

For example, the rapid reorganization of the surface layers of ionic compounds in aqueous 

media disables their functionalization with therapeutic ligands that would be of a 

comparable level of stability as that achievable using silanol, thiol and phos-phonic acid 

moieties on the surfaces of silica, gold and quantum dot nanoparticles, respectively. To 

overcome this issue, however, exciting composites with versatile surface compositions, 

structures and functional synergies have been created, proving that problems are indeed the 

mothers of invention.

An essential issue that needs to be mentioned pertains to the fundamental unreliability of in 

vitro studies per se. For example, the same vitamin D derivative produced thoroughly 

different effects on differentiation and mineralization in two different osteoblast-like 

cultures: catabolic in one and anabolic in another [86]. Or, whereas mild cytotoxicity can 

wipe out cells cultured in dishes, it can provide conditions for an optimal inflammatory 

response that stimulates a cascade of regenerative processes in tissues [87–89]. Then, as 

elaborated earlier [90], drug release profiles observed in vitro and often mistakenly used as 

data to accompany in vivo observations are subject to change depending on the release 

conditions (ionic strength and pH of the medium, its volume, temperature, replenishment 

frequency, etc.), while any attempts to standardize their measurements would be 

meaningless in view of the fact that any two given points in the body will have different 

release environments. Next, there is a question of the commonly observed discrepancy 

between the performance of a drug delivery technology in vitro and in vivo. A higher 

concentration of enzymes, free radicals, antibodies and other protein species adsorbed on the 

surface of the carriers could all significantly accelerate its degradation and increase the 

kinetic order of the release profiles. These factors, in addition to phagocytosis and increased 

wetting, are responsible for the fact that PLGA scaffolds, for instance, degrade faster in vivo 

than in vitro [91]. We know now that although size, shape, surface charge, chemistry and 

mechanical properties of nanoparticles influence their biodistribution profiles, the route of 

uptake and the mechanism of interaction with the cell are mainly determined by their protein 

corona [92], and similar effects are to be expected with respect to the cell and tissue 

response to any material in a biological milieu. And whether the degradation and release will 

be hindered or augmented greatly depends not only on the environment, but on the type of 

the material too: thus, while the degradation of aliphatic polyesters is slowed down under 

intense fluid flows due to dissipation of acidic byproducts that would have sped up the 

degradation process, the fluid flow prevents local supersaturation/reprecipitation and 

accelerates the degradation of alkaline calcium phosphates. On the other hand, although in 

vivo analyses may yield more relevant insights as to how large or low the applicative 

potential of given therapeutic platforms at the clinical level would be, the failure of drug 

delivery devices and other implants for non-load-bearing applications begins from the tissue/

device interface and in vitro studies present expedient models for probing this interaction at 

the basic levels, including cellular, biomolecular and quantum chemistry ones. Still, how to 

devise in vitro drug release testing procedures that would be able to replicate in vivo 

conditions better, typically characterized by: i) a more dynamic flow of fluids; ii) specific 

local pH profiles that are often disease-dependent; and iii) much more complex and selective 
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media, currently stands forth as a grand challenge before the drug delivery field. Complex 

bioreactors for mimicking biological processes in need of better understanding [93] or 

stimulating differentiation and assembly of stem cells [94] have been designed under the 

conditions of continuous flow and using the same approach to create microenvironments for 

more biologically relevant testing of release properties in vitro proves as a necessity from 

the perspective of ensuring smoother transitions from the proof-of-concept stage to 

commercial and clinically applicable drug delivery vehicles.

There are, of course, many other systemic challenges that define the future of the field. For 

example, as reports on synergetic effects between the components of drug delivery vehicles 

multiply [95,96], it is time to reconsider the separation of drug discoverers from drug 

deliverers, who have traditionally worked in virtual isolation from each other. With the 

requirements to think fast and find reliable alternatives to antibiotics, which currently have a 

hard time navigating between Scylla of the long regulatory path and Charybdis of the rising 

microbial resistance, the need for the intercrossing of knowledge of materials scientists, drug 

delivery experts and pharmacologists can hardly be overstated. In the end, with the rising 

demands for therapeutic, regenerative and controlled delivery aspects of medical devices to 

be crafted in synchrony, such broadening of views and tying specific experimental 

approaches within ample multidisciplinary networks could be seen as all but evitable.

This is all to say that the search for a perfect drug delivery carrier for the treatment of bone 

dysfunction continues. Meanwhile, the room for design appears limitless and the future for 

the field of nanoparticulate drug delivery carriers is certain in one sense only: it belongs to 

multifunctional, synergistic and theranostic composite carriers capable of simultaneously 

targeting, monitoring and treating internal organismic disturbances in a smart, feedback 

fashion and in direct response to the demands of the local microenvironment and beyond.
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with a layer of poly(lactide-co-glycolide) (PLGA) loaded with ascorbic acid, combining 
osteogenic, antimicrobial and antioxidative properties in one. 
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Article highlights

• A great demand exists for the development of antimicrobial bone grafts.

• Similia similibus curantur principle dictates that calcium phosphate should be 

the key inorganic ingredient of composites for bone regeneration.

• Biodegradable poly(α-hydroxy esters) are common compounds of choice for the 

organic ingredient of composites for bone regeneration, but their shortcomings 

are many and are discussed herein.

• Staphylococcus aureus, the main causative agent of osteomyelitis, is able to 

penetrate bone cells and form intracellular colonies, so that design of antibiotic 

therapies that target them may be more relevant for treating chronic bone 

infection than eliminating only the pathogens colonizing the bone matrix.

• The problem of disparity between in vitro drug release testing procedures and in 

vivo conditions that they mimic is discussed.

• It is concluded that ideal implants or injects for orthopedic infection therapies 

would be multifunctional composites capable of simultaneously targeting and 

treating the disease from two angles: antimicrobial and osteogenic.

This box summarizes key points contained in the article.
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Figure 1. There is an increasing demand for contemporary drug delivery platforms to be 
multifunctional, that is, to simultaneously: i) deliver the drug smartly, at the optimal rate and 
amount over prolonged periods of time and in feedback with the characteristics of the local 
microenvironment; ii) preserve the drug’s bioactivity in the biological milieu; iii) contribute to 
tissue regeneration; iv) promote targeting of the right location at the cellular or subcellular level; 
and v) act as traceable sensors to serve a diagnostic purpose in real time
Some of the sophisticated material structures intensely researched for such applications 

include soft, hard and composite nano- and microparticles, thin films and surface coatings, 

organic meshes, micelles and vesicles, and microfabricated patterns.
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Figure 2. 
(A) The derivative of specific magnetization over time as a function of temperature for 

powders comprising nanosized La1-xSrxMnO3 + δ particles with different values of 

parameter x [x = 0.16 (□), 0.24 (○), 0.33 (△) and 0.5 (▼)], with the local minima 

corresponding to the Neel point of the material, the temperature at which the magnetic 

moments become randomized due to thermal fluctuations. (B) Different kinetic profiles for 

the release of albumin (FITC-BSA) from compacted nanostructured calcium phosphate 

powders of different phase compositions: MCPM, DCPA, ACP and HAP.

Reprinted with permission from [42,43].

ACP: Amorphous calcium phosphate; DCPA: Dicalcium phosphate anhydrous; HAP: 

Hydroxyapatite; MCPM: Monocalcium phosphate monohydrate.
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Figure 3. 
Morphological (A), genetic (B), proteomic (C) and metabolic (D) assessment of the 

osteogenic effectiveness of nanoparticles delivering a therapeutic payload. (A) 
Immunofluorescently counterstained osteoblasts (nuclei – blue; f-actin –red) are shown 

adhering onto a microscopic conglomerate of calcium phosphate nanoparticles (green) 

capable of delivering an antibiotic payload to the segments of infected bone; (B) mRNA 

expression of three different osteogenic markers – osteocalcin (BGLAP), protocollagen type 

I (Col I) and the transcription factor Runx2 – in osteoblasts seeded in the presence of 

hydroxyapatite/PLGA core-shell composite particles is greater than in osteoblasts seeded in 

the presence of pure hydroxyapatite, which is itself greater than in control osteoblasts; (C) 
Western blot analysis of the expression of different proteins of the osteogenic pathway in the 

presence of mineralized (M-PCL) and regular (PCL) poly(ε-caprolactone) at different time 

points; (D) High-performance liquid chromatograms showing peaks of cholecalciferol 

metabolites capable of increasing the concentration of osteocalcin secreted by osteoblasts 

(E).
Reprinted with permissions from [71] and [97].

PLGA: Poly-(D,L-lactide-co-glycolide).
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Figure 4. 
(A) A schematic description of the major pathways for the intracellular uptake of 

nanoparticles. (B) A single-plane confocal optical image showing the localization of 

aggregates of clindamycin-containing calcium phosphate nanoparticles (green) inside an 

osteoblastic cell (nucleus – blue; cytoskeletal f-actin – red).

Reprinted with permission from [98].
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Figure 5. Composite monodisperse nanoparticles with simultaneous antioxidative, antibacterial 
and osteoinductive properties made by coating PLGA around silver-PGA core-shell Np and 
dispersing ascorbic acid inside them
Adapted and reprinted with permission from [99,100].

Np: Nanoparticles; PGA: Poly(glycolide); PLGA: Poly-(D,L-lactide-co-glycolide).
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