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Abstract

The search for compounds active against Mycobacterium tuberculosis is reliant upon high 

throughput screening (HTS) in whole cells. We have used Bayesian machine learning models 

which can predict anti-tubercular activity to filter an internal library of over 150,000 compounds 

prior to in vitro testing. We used this to select and test 48 compounds in vitro; 11 were active with 

MIC values ranging from 0.4 µM to 10.2 µM, giving a high hit rate of 22.9%. Among the hits, we 

identified several compounds belonging to the same series including five quinolones (including 

ciprofloxacin), three molecules with long aliphatic linkers and three singletons. This approach 

represents a rapid method to prioritize compounds for testing that can be used alongside medicinal 

chemistry insight and other filters to identify active molecules. Such models can significantly 

increase the hit rate of HTS, above the usual 1% or lower rates seen. In addition, the potential 

targets for the 11 molecules were predicted using TB Mobile and clustering alongside a set of over 

740 molecules with known M. tuberculosis target annotations. These predictions may serve as a 

mechanism for prioritizing compounds for further optimization.
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Introduction

The search for drugs to prevent or treat infectious diseases is an urgent research focus both 

in academia and across the pharmaceutical industry. In recent years there has been an 

increase in the efforts around high throughput screening (HTS) for Mycobacterium 

tuberculosis, in order to find compounds as therapeutics against tuberculosis (TB) 1–6, A 

recent review of the state of TB research has summarized the limited pipeline of molecules 

in various drug discovery/development stages 7. Collaborative efforts that coordinate 

fragmented TB research efforts by individual groups will be critical to improve the chances 

of success in both identifying new targets and finding new molecules that could target them. 

Such efforts include the initiatives funded by NIAID, the Bill and Melinda Gates Foundation 

(BMGF) and the FP7 funded More Medicines For Tuberculosis (MM4TB) project.

The pipeline for TB therapeutics had not produced a new approved drug in over 40 years 

until the recently FDA-approved Bedaquiline 8–10, although there are several candidates in 

the clinic 9, 11. Only a tiny fraction of TB targets have been addressed with approved drugs 

or early leads 12 and recent testing has targeted additional proteins (e.g. MmpL3 13). The 

relative lack of success with target-based screening compared with whole cell phenotypic 

screening is a pattern observed for other antibacterial targets, reflecting the difficulty of 

target-based high-throughput screening for novel antibiotics 14. In pharmaceutical 

companies, computational approaches are widely used to aid in drug discovery, but these 

have not been as exhaustively applied or validated for TB research. For example, virtual 

screening of compound libraries is used as a complement to high-throughput screening in 

vitro for many diseases 15–21. Computational approaches applied to TB have been generally 

used by specialists focused on a single target or series of compounds and rarely in 

combination with other computational tools 22, 23. We recently exhaustively reviewed this 

topic 22, 24, as computational methods are used in workflows by many pharmaceutical 

company project teams 18. We found several gaps when we look at how computational 

methods could be used in TB drug discovery including limited use of filtering for drug-

likeness or lead-likeness 25, target deconvolution 26, lack of sequential virtual and 

biochemical screening and lack of in silico ADME/Tox model use22. A clear disconnect was 

noted between the generation, utilization, dissemination, sharing and reuse of computational 

models and the entire drug discovery process 22.

We have proposed using recently retrospectively validated Bayesian machine learning 

models for M. tuberculosis 25, 27, 28 for prospective compound evaluation. Three recent 

studies have also explored the optimization of these models by combining bioactivity and 

cytotoxicity data 29–31 and delivered hit rates in excess of 20%. In the current study we have 

validated the use of three Bayesian machine learning models by prospectively selecting a 

small percentage of an in house library for testing. We have identified 11 compounds with in 

vitro activity and predicted their potential targets using ligand-based computational 

approaches.

Ekins et al. Page 2

Tuberculosis (Edinb). Author manuscript; available in PMC 2015 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Experimental Methods

Chemicals

Compounds were purchased from ChemBridge (San Diego, CA), ChemDiv (San Diego, 

CA), Maybridge/Thermo Fisher Scientific Inc. (Waltham, MA) and Sigma - Aldrich (St. 

Louis, Mo).

CDD Database and SRI datasets

The development of the CDD TB database (Collaborative Drug Discovery Inc. Burlingame, 

CA) has been previously described 25. The Tuberculosis Antimicrobial Acquisition and 

Coordinating Facility (TAACF) and Molecular Libraries Small Molecule Repository 

(MLSMR) screening datasets 2–4 were collected and uploaded in CDD TB from sdf files and 

mapped to custom protocols 32. All of the public M. tuberculosis datasets are available for 

free public read-only access and mining upon registration, making them a valuable molecule 

resource for researchers along with available contextual data on these samples from other 

non M. tuberculosis assays. These datasets are also publically available in PubChem 33. The 

IDRI database and screening data used in modeling is proprietary.

Machine learning models for M. tuberculosis

We have previously described the generation and validation of Laplacian-corrected 

Bayesian classifier models 25, 27, 28 developed with single point screening and dose response 

data. In this study we have generated Laplacian-corrected Bayesian classifier models using 

Discovery Studio 2.5.5 34–38 Molecular function class fingerprints of maximum diameter 6 

(FCFP_6) 39, AlogP, molecular weight, number of rotatable bonds, number of rings, number 

of aromatic rings, number of hydrogen bond acceptors, number of hydrogen bond donors, 

and molecular fractional polar surface area were calculated from input sdf files using the 

“calculate molecular properties” protocol to distinguish between compounds that are active 

against M. tuberculosis and those that are inactive in this study. A Bayesian classifier model 

with the molecular descriptors described above was built using the “create Bayesian model” 

protocol and IDRI % inhibition at 20 µM for 1106 samples (308 active with >90% 

inhibition) 40. Each model was validated using leave-one-out cross-validation. Each sample 

was left out one at a time, and a model built using the results of the samples, and that model 

used to predict the left-out sample. Once all the samples had predictions, a receiver operator 

curve (ROC) plot was generated, and the cross validated (XV) ROC area under the curve 

(AUC) calculated (Table 1). All models generated were additionally evaluated by leaving 

out 50% of the data and rebuilding the model 100 times using a custom protocol for 

validation, in order to generate the XV ROC and AUC (Table 1). These models were also 

used for screening the “Infectious Disease Research Institute (IDRI) library” of 156,719 

compounds with M. tuberculosis activity.

M. tuberculosis assays for biological activity

Molecules were screened at a single concentration of 20 µM in Middlebrook 7H9 medium 

plus 10% v/v OADC (oleic acid, albumen, dextrose, catalase) and 0.05 % w/v Tween 80; 

actives were classified as having ≥90% inhibition of growth of M. tuberculosis H37Rv after 

Ekins et al. Page 3

Tuberculosis (Edinb). Author manuscript; available in PMC 2015 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5 d 40. MICs were determined in liquid medium 41; briefly a 10 point serial dilution of 

compounds was run and % growth of M. tuberculosis determined after 5 days incubation 41. 

Curves were generated using the Gompertz fit and MICs determined as minimal 

concentration required to inhibit growth completely.

Target prediction for IDRI compounds

Over 700 compounds with known M. tuberculosis targets were collated from the literature 42 

and made available in the mobile application TB Mobile (Collaborative Drug Discovery Inc. 

Burlingame, CA) which is freely available for iOS and Android platforms 12, 43. This dataset 

was recently updated to 745 compounds and covers over 70 targets. Molecules representing 

hits from screening in this study were input as queries in TB Mobile and the similarity of all 

molecules calculated in the application. The top most structurally similar compounds were 

used to infer M. tuberculosis targets. In most cases multiple targets are shown were the top 

2–3 molecules had different targets. The 745 compounds with known M. tuberculosis targets 

and the hit compounds from this study were used to generate a Principal Component 

Analysis (PCA) using the interpretable descriptors used for machine learning model building 

previously in Discovery Studio (AlogP, molecular weight, number of rotatable bonds, 

number of rings, number of aromatic rings, number of hydrogen bond acceptors, number of 

hydrogen bond donors, and molecular fractional polar surface area). 1200 M. tuberculosis 

screening hits (actives and non-toxic only from the SRI screens 29–31) were used to show 

how they covered the target-chemistry PCA space alongside the 745 compounds.

The 745 compounds with known M. tuberculosis targets and the hit compounds from this 

study were also clustered (100 clusters) using MDL fingerprints in Discovery Studio, and 

the position of the screening hits in specific clusters identified along with the targets of the 

other molecules in these clusters. In cases when a hit was a singleton, the identity of targets 

for clusters around a hit was noted. This clustering approach can also be used to infer targets 

alongside TB Mobile.

Results

IDRI – Bayesian model

A Bayesian model was generated with whole cell M. tuberculosis data for 1106 previously 

described TAACF and MLSMR actives and inactives [34]. The leave one out ROC was 0.82 

and this decreased slightly (0.77) with internal validation with leave out 50% × 100 (Table 

2). The concordance (73.4%), specificity (77.3%) and selectivity (63.4%) were in line with 

the other models described previously (Table 1) 25, 27, 29, 30. Using the FCFP-6 descriptors 

we can identify those substructure descriptors that contribute to the M. tuberculosis activity 

in the training set including imidazole, benzothiazole and quinolone, (Figure 1) and those 

that are not present in active compounds including acetamide, thioether, pyrrole, phenylether 

and piperazine (Figure 2).

IDRI - Prospective testing of the Bayesian Models

The previously published MLSMR dose response model 25, MLSMR dose response and 

cytotoxicity model 29 and the IDRI Bayesian model were used to rank the “IDRI library” of 
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156,719 compounds for M. tuberculosis activity. This library can be considered leadlike 

based on the mean Molecular weight (344.5), log P (3.3), hydrogen bond donors (1.0), 

hydrogen bond acceptors (3.6) and other properties (Supplemental Figure 1). After ranking 

the library with the Bayesian score derived from each Bayesian model, the top 1000 

compounds were selected and analyzed. There was minimal overlap between all three 

models and compounds in the top scoring 1000 (Figure 3). The MLSMR models overlapped 

to the greatest degree (over 20% of the top 1000). Forty eight compounds were selected 

from these ranked lists and tested in vitro; 11 of these were classed as hits (22.9% hit rate) as 

they possessed anti-tubercular activity with MIC <10 µM (Table 2). To illustrate the 

diversity of hits (Table 2), this included five quinolones including ciprofloxacin, three azole 

containing molecules with long aliphatic linkers and three singletons. Six compounds were 

found with the MLSMR dose response model, four were found with the IDRI model and one 

with the MLSMR dose response and cytotoxicity model. The Tanimoto similarity of the 11 

compounds were compared to all the publically accessible TB related datasets and these 

ranged from 64–100%.

Target prediction for IDRI compounds

The PCA model of compounds with annotated M. tuberculosis targets represents the target-

chemistry space and 88.7% of the variance is explained by the 3 principal components. The 

11 hit compounds from this study were also added to this set and show they are clustered in 

a relatively narrow region (Figure 4A). Similarly, the hits from previous SRI screens only 

partially cover the target space (Figure 4B). Clustering the 11 hits with the 745 compounds 

with annotated target information enabled complementary target predictions with those 

based on molecular similarity performed with TB mobile (Table 2, Supplemental Figure 2). 

The known gyrase inhibitor class, fluoroquinolones were well predicted by both target 

inference methods. The remaining compounds had divergent predictions apart from the 

azoles, which were predicted to be InhA inhibitors.

Discussion

Drug discovery is time consuming and very costly 44, 45 such that any tools that can point 

out liabilities earlier will have considerable value 21, 46, 47. The need for new anti-tubercular 

therapies is unquestioned in the face of drug resistance that has progressed to the point of the 

identification of totally drug resistant strains in India 48 and a call for re-opening the TB 

sanatoria that were closed more than 60 years ago 49. To address the challenge of drug 

resistance in TB infection, many groups have turned to HTS campaigns with chemically 

diverse libraries of small molecules to identify novel starting points for drug discovery 1, 50. 

The TB community must now ask how to mine efficiently and leverage this growing 

database to provide new drug candidates, in the face of well known complications such as 

latency and persistence 51 and the numerous issues associated with typical HTS data 52. To 

help answer this question, we have identified a significant opportunity for the tuberculosis 

drug discovery community to harness pharmaceutical industry-tested computational 

methodologies 22. Subsequently, we turned in part to the cheminformatics methods which 

occupy an important place in the industrial drug discovery workflow. Ligand- and protein-

based methods, for example, have been used as a complement to high-throughput screening 
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in vitro 15. In order to validate the predictions from such methods we are required to test 

molecules for their whole cell TB activity.

We have developed and utilized machine learning models for M. tuberculosis 25, 27, 28 using 

large publically accessible HTS data sets 3, 4. During retrospective validation of these 

models we observed at least 4–10 fold enrichment in identifying TB actives in the top 

scoring molecules 28. These results indicated that using whole cell screening data from one 

laboratory for computational models can be used to benefit other laboratories via predictions 

of their compounds of interest and narrowing down the number of compounds to be tested in 

vitro 28. We have recently updated our approach to incorporate cytotoxicity data into the 

models 29–31. These previously published Bayesian models had considerably higher hit rates 

than random HTS screening 29, 30. One study virtually screened over 82,000 molecules, 550 

were tested in vitro and 124 actives were identified in total (22.5% hit rate) 30. A second 

study virtually screened over 38,000 molecules, tested 106 in vitro and identified 17 actives 

(22.5% hit rate) 29. In the current study we utilized several previously published models as 

well as a newly constructed model generated with new data from >1000 previously 

published active compounds. Three Bayesian models were ultimately used to screen the in 

house library of 156,719 molecules and 48 (0.03%) of the compounds were tested in vitro 

resulting in 11 hits. Again this confirmed the hit rates previously observed with a value of 

22.9%. In our experience and as a point of contrast, the whole cell HTS hit rate for the IDRI 

group has varied from 0.6 – 2% depending on the assay (unpublished).

Using several Bayesian models for M. tuberculosis activity to prioritize compounds from a 

screening library of this size is by far the largest such analysis we have performed to date to 

our knowledge 29–31. The results obtained further validate the hypothesis that Bayesian 

models 25, 27–31, 42 identify subsets of compound libraries enriched with active compounds, 

therefore requiring the testing of far fewer compounds. Future research will involve 

investigating open source descriptors and algorithms that can enable deploying such models 

more widely 53, 54. This Bayesian modeling and virtual screening approach is also applicable 

to other neglected diseases.

This study also further utilized a recently developed mobile application for inferring 

potential M. tuberculosis targets for the 11 hits (Table 2, Supplemental Figure 2). This 

application draws together known small molecules and their annotated targets as well as 

other information relevant to the pathway targeted, essentiality, human ortholog etc. 12, 42. 

Generating predictions with this application was also complemented by using clustering of 

the known compounds with targets and assessing which clusters the 11 compounds were in. 

The fluoroquinolone compounds are not surprisingly predicted as gyrase inhibitors using 

both target inference methods, apart from IDR-0173634 which is also predicted as a 

potential inhibitor of InhA. Although azoles are well known cytochrome P450 

inhibitors 55, 56 they are predominantly predicted as targeting InhA. These and the remaining 

3 singleton compounds with different predicted targets with no concordance with the target 

inference methods would be worthy of testing in vitro. Our analysis of the 11 hits suggest, as 

one would expect, that they are covering a very narrow section of chemistry and target 

space. In particular we have multiple fluoroquinolones and azoles (Table 2) so these may 

essentially count as a single data point in each case. Our approach (using known compounds 
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with Mtb targets) to infer potential targets for similar compounds is more conservative than 

methods which would use similarity to compounds known to be active against targets in 

other organisms. Such target prediction efforts would help us to prioritize targets to test.

In conclusion we have presented an approach using multiple Bayesian models to prioritize 

compounds for testing which identified active compounds. These in turn were used with TB 

Mobile 12 and clustering as mechanisms for predicting potential targets for compounds in M. 

tuberculosis, thereby serving as an approach for further identifying the best compounds for 

optimization. Such computational workflows leveraging prior knowledge further our aim of 

optimally using and integrating the data and resources available to us in order to accelerate 

drug discovery for M. tuberculosis 22.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Good features identified in the IDRI Bayesian Model
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Figure 2. 
Bad features identified in the IDRI Bayesian Model
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Figure 3. 
Venn diagram showing the overlap of IDRI library compounds selected with the MLSMR 

dose response model, the MLSMR dose response and cytotoxicity model and the IDRI 

model for M. tuberculosis whole cell activity.
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Figure 4. 
Principal Component Analysis of 745 compounds with A. known M. tuberculosis targets 

(Blue) from TB Mobile and 11 screening hits (yellow) and B. 1200 active and non toxic 

compounds from SRI screens (yellow)
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