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Despite the availability of major histocompatibility complex (MHC)-
binding peptide prediction algorithms, the development of T-cell
vaccines against pathogen and tumor antigens remains challenged
by inefficient identification of immunogenic epitopes. CD8+ T cells
must distinguish immunogenic epitopes from nonimmunogenic self
peptides to respond effectively against an antigen without endan-
gering the viability of the host. Because this discrimination is fun-
damental to our understanding of immune recognition and critical
for rational vaccine design, we interrogated the biochemical prop-
erties of 9,888 MHC class I peptides. We identified a strong bias
toward hydrophobic amino acids at T-cell receptor contact residues
within immunogenic epitopes of MHC allomorphs, which permitted
us to develop and train a hydrophobicity-based artificial neural net-
work (ANN-Hydro) to predict immunogenic epitopes. The immunoge-
nicity model was validated in a blinded in vivo overlapping epitope
discovery study of 364 peptides from three HIV-1 Gag protein var-
iants. Applying the ANN-Hydro model on existing peptide-MHC algo-
rithms consistently reduced the number of candidate peptides across
multiple antigens and may provide a correlate with immunodomi-
nance. Hydrophobicity of TCR contact residues is a hallmark of immu-
nogenic epitopes and marks a step toward eliminating the need for
empirical epitope testing for vaccine development.
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The interaction of CD8+ T cells with peptide-major histo-
compatibility complex (MHC) complexes (pMHCs) is a key

event in the development of cell-mediated immunity (1). MHC
class I (MHC-I) molecules typically present 8- to 11-aa peptides
derived predominantly from proteasomal degradation of in-
tracellular proteins, either self peptides or infection-derived
antigens (2). T-cell receptors (TCRs) from CD8+ T cells bind
antigenic pMHC molecules, triggering a downstream signaling
cascade that leads to T-cell activation, T-cell differentiation, and
ultimately cytolysis of target cells presenting the same epitope
(3). Vaccines and immunotherapies for the treatment of in-
fection and cancer seek to incorporate cytotoxic T-cell (CTL)
epitopes, but defining such epitopes remains a costly and ardu-
ous process (4). Understanding the molecular basis of TCR-
pMHC recognition will aid the discovery of immunogenic epi-
topes in infectious and autoimmune diseases.
During thymic development, CD8+ T cells undergo both positive

and negative selection to acquire the ability to discriminate anti-
genic peptides from self peptides (5). Costimulatory signals can
enhance this discrimination (6), but a primary event that triggers
CD8+ T-cell activation is the noncovalent pMHC–TCR interaction.
Proteasomal cleavage patterns and binding affinities of peptides to
different MHCs have been studied extensively (7–9). In contrast,
the biochemical bases of immunogenic epitopes are less well de-
fined (10). T-cell epitope discovery is complicated by the codomi-
nance and polymorphism of MHC alleles, diversity of antigens
(both infectious and self antigens), limited mass spectrometry-based

confirmation of MHC-bound peptides, and scarcity of experimen-
tally confirmed immunogenic epitopes within the infectious and self
proteome (4). As a result, T-cell epitope prediction algorithms have
focused on amino acid binding affinity for specific MHC motifs
and the protein’s proteasomal cleavage pattern to identify candi-
date T-cell epitopes (11–14).
Although computational tools have improved over the past

decade, they have not been trained to predict immunogenicity.
The major limitation when using such prediction algorithms is the
presence of a significant number of binders from a given antigen
that will never lead to an immune response (15). Thus, immuno-
genic CTL epitopes fulfill additional criteria that go beyond an-
tigen processing and MHC binding.
Here we sought to identify the biochemical criteria that define

immunogenicity within the subset of MHC-I–binding peptides.
Using a curated repository of MHC-I epitopes from the Immune
Epitope Database (IEDB) (16), we evaluated the biochemical
properties of amino acids that discriminate between immuno-
genic epitopes and nonimmunogenic self peptides. We found
a strong bias toward hydrophobicity in amino acid residues of
immunogenic CTL epitopes that is highly selective for exposed
TCR contact residues. Using these criteria, we trained an arti-
ficial neural network (ANN) model to identify immunogenic
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CTL epitopes from a dataset, and empirically assessed our pre-
diction model for three HIV-1 Gag protein variants in a murine
model of immunogenicity. We demonstrate the utility of this
ANN model, which has the potential to significantly enhance the
efficiency of T-cell epitope discovery.

Results
Amino Acid Use Differs Between Immunogenic and Nonimmunogenic
Peptides. CTLs recognize immunogenic epitopes from a back-
ground of poorly immunogenic self peptides. To understand
the biochemical basis of differences between these two classes
of peptides, we retrieved all known MHC-I–binding peptides
reported as T-cell reactive (“immunogenic” hereinafter) and self
peptides from MHC ligand elution experiments with no known
immunogenicity (“nonimmunogenic” hereinafter) from the IEDB.
Any eluted peptide that was immunogenic (either pathogen-
derived or self antigen-derived) was excluded, to generate two
mutually exclusive datasets that avoid any potential bias. Out
of the 34,586 total retrieved peptides from the IEDB, 5,035 8-
to 11-mer nonredundant peptides were reported to be immuno-
genic, and 4,853 were nonredundant nonimmunogenic and were
used in further analysis (SI Appendix, Table S1). The frequency
distributions of amino acids in 8- to 11-mer immunogenic and
nonimmunogenic peptides showed significant variability in amino
acid composition (SI Appendix, Fig. S1A).
To identify overrepresentation of certain amino acids in im-

munogenic epitopes, we computed a probability ratio for each
amino acid. We then performed a correlation analysis between
the probability ratio of each amino acid and three major bio-
chemical properties—hydrophobicity (Kyte–Doolittle) (17), po-
larity (Grantham) (18), and side chain bulkiness (Zimmerman)
(19)—using independent numeric scales (SI Appendix, Table S2).
We found a strong, statistically significant correlation between
probability ratios and hydrophobicity values (Spearman ρ = 0.71,
P = 4.24 × 10−4; Fig. 1A). Similarly, we also found a negative
correlation between probability ratios and polarity of amino acids
(Spearman ρ = −0.77, P = 6.97 × 10−5; Fig. 1B), with highly polar
amino acids underrepresented in immunogenic epitopes. No sig-
nificant correlation was observed with amino acid side chain
bulkiness (Fig. 1C). Most of the overrepresented and strongly
bulky amino acids were strongly hydrophobic as well. Cysteine,
a nonpolar hydrophobic amino acid, was an outlier in the immu-
nogenic dataset. Excluding cysteine did not change our results
significantly (SI Appendix, Fig. S1D).
Two potential sources of bias in our analyses were the varia-

tion in peptide length of MHC-I peptides and the dominance of

HLA-A2 epitopes within existing databases; therefore, we per-
formed the analyses on the 9-mer epitopes (SI Appendix, Fig.
S1B) and on HLA class I-restricted peptides excluding HLA-A2
peptides (SI Appendix, Fig. S1C). Within these subsets, the over-
representation of nonpolar, hydrophobic amino acids in immu-
nogenic epitopes was maintained.

Hydrophobicity Bias in Selective TCR Contact Residues. We first
compared the mean hydrophobicity of each residue between
immunogenic and nonimmunogenic peptides using the Kyte–
Doolittle numeric hydrophobicity scale. Immunogenic 9-mer
epitopes were significantly more hydrophobic than nonimmunogenic
9-mer peptides at each residue (P < 1.6 × 10−5; Fig. 2A and SI
Appendix, Table S3). We observed similar results in 10-mer
peptides (P < 2 × 10−7 at each residue; SI Appendix, Fig. S2A),
and within HLA-A2 excluded 9-mer and 10-mer subsets (SI
Appendix, Fig. S2 B and C and Table S3).
Because the immunogenic dataset is biased to pathogen-derived

immunogenic epitopes, we performed similar analyses between
immunogenic self epitopes and nonimmunogenic self peptides
(P < 1 × 10−4 at all residues except P5 and P6; SI Appendix, Fig.
S2D). We further compared immunogenic HLA-A2–restricted
9-mer epitopes derived from pathogens with those derived from
self antigens and observed no significant difference in hydropho-
bicity (P > 0.05 at each amino acid residue except P6, P = 0.04; SI
Appendix, Fig. S2G), revealing that T cells that escape thymic
deletion recognize self peptides with a hydrophobicity profile that
is virtually the same as that of pathogen-derived epitopes.
Finally, to evaluate whether potential bias is created by using

peptide immunization experiments, we performed the same
analysis using immunogenic epitopes identified using whole
“organism” as the immunogen (P < 0.01 at all residues except P1
and P5; SI Appendix, Fig. S2E). Thus, our results demonstrate
a preference for hydrophobicity in immunogenic epitopes across
antigenic sources (self and pathogen) and MHC molecules
(HLA-A2 and non–HLA-A2).
The locations of anchor residues and TCR contacts have been

mapped for many MHC peptides (20). If the observed bias toward
nonpolar hydrophobic amino acids within immunogenic epitopes
affects TCR affinity, then we predicted that it would be selective
for TCR contact residues. We analyzed the mean hydrophobicity
along the peptide for the most well-represented MHC epitopes
within the database: HLA-A2 (Fig. 2B), and murine MHC H-2Db

and H-2Kb (Fig. 2 C and D). HLA-A2–restricted 9-mer peptides
are anchored at residues P2 and P9, with P6 as an auxiliary anchor
(7). We observed no statistical difference in hydrophobicity be-

Fig. 1. Probability ratio [P(× I immunogenic)/P(× I nonimmunogenic)] of each amino acid as a function of its corresponding biochemical property. Each
probability of each amino acid was computed from the frequency distribution of immunogenic epitopes and nonimmunogenic peptides. Biochemical
properties analyzed were (A) hydrophobicity (17), (B) polarity (18), and (C) side-chain bulkiness (19). A probability ratio >1 indicates overrepresentation of the
amino acid in the immunogenic dataset. The overrepresented outlier cysteine (C) was omitted for scale. Spearman correlations coefficients (ρ) are shown.
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tween the anchor residues of immunogenic and nonimmunogenic
peptides (P2, P = 0.9; P9, P = 0.08; Fig. 2B). The observed dif-
ference in hydrophobicity was at specific TCR contact residues
P4, P7, and P8 (P4, P = 6.3 × 10−12; P7, P = 5 × 10−13; P8, P <
2.2 × 10−16). In contrast, the auxiliary anchor P6 was more hy-
drophobic in nonimmunogenic peptides (P = 3.1 × 10−7). We
found similar results for HLA-A2–restricted 10-mer peptides (SI
Appendix, Fig. S2F).
To determine whether the difference in hydrophobicity is

species-specific, we evaluated the subset of known mouse MHC
H-2Kb

–restricted 8-mer peptides. Again, we observed a marked
increase in relative hydrophobicity for the TCR contact residues
P6 and P7 of immunogenic epitopes (P6, P = 7 × 10−5; P7, P =
1.1 × 10−6), but no difference in anchor residues (P5, P = 0.67;
P8, P = 0.15) (Fig. 2C). As observed with HLA-A2, the auxiliary
anchor residue P3 was more hydrophobic in nonimmunogenic
peptides (P = 0.005).
Finally, we analyzed mouse MHC H-2Db

–restricted 9-mer pep-
tides and observed that P7 and P8 TCR contact residues were more
hydrophobic in immunogenic epitopes (P7, P = 1.1 × 10−4; P8, P =
0.001), with no difference in anchor residue P9 (P = 0.127) (Fig.
2D). One exception was the anchor residue P5, which was more
hydrophobic in immunogenic epitopes (P = 4.9 × 10−10). This
discrepancy might be related to the presence of other potential
anchors at P5 (apart from Asn) within the immunogenic dataset.
Thus, we demonstrate that the observed bias toward relative hy-
drophobic amino acids in immunogenic epitopes is selective for
TCR contact residues.

Differential Hydrophobicity Can Predict Immunogenic CTL Epitopes.
Although MHC binding is necessary for antigen presentation, it
is not sufficient to stimulate an immune response. We predicted
that hydrophobicity could be incorporated into existing binding
algorithms to improve the prediction of CTL epitopes. To test
this hypothesis, we used the IEDB consensus binding prediction
tool to generate peptide predictions for HLA-A2–restricted
peptides (9 and 10 mer) for two viral proteins: polyprotein from
dengue virus type 1 (DENV1) and tegument protein pp65 from
cytomegalovirus (CMV). Using mean hydrophobicity of amino
acids in TCR contact residues (all residues except anchors: P2,
P6, and P9 or P10), we reranked each predicted peptide with
decreasing TCR contact hydrophobicity values (Fig. 3). The rate
at which experimentally defined HLA-A2–restricted CTL
epitopes (SI Appendix, Table S4) were identified was increased
using hydrophobicity-based predictions compared with the IEDB
consensus binding predictions (Fig. 3 A and B). As a negative
control, we performed reranking of top predictions from the two
proteins using the mean hydrophobicity of just anchor residues
(Fig. 3 C and D). The rate of prediction of HLA-A2–restricted
CTL epitopes was similar to the IEDB consensus binding pre-
dictions, confirming that relative hydrophobicity impacts immu-
nogenicity and not HLA binding. These results suggest that using
TCR contact hydrophobicity could improve the prediction of
immunogenic epitopes.

Hydrophobicity-Based ANN Prediction Model. The relative contri-
bution of each amino acid residue to immunogenicity varies among
MHC allomorphs and is motif-dependent (Fig. 2 and SI Appendix,

Fig. 2. Hydrophobicity comparison at each residue position between immunogenic and nonimmunogenic MHC-I peptides. Each peptide sequence in the
dataset was transformed into a numeric sequence based on amino acid hydrophobicity, and the mean hydrophobicity at each position was calculated. (A) All
immunogenic and nonimmunogenic MHC-I 9-mers; every residue had P < 1.6 × 10−5. (B) HLA-A2–restricted immunogenic and nonimmunogenic 9-mers.
(C) Murine MHC H-2Db

–restricted immunogenic and nonimmunogenic 9-mers. (D) Murine MHC H-2Kb
–restricted immunogenic and nonimmunogenic 8-mers.

Down-arrows in B–D indicate anchor residues based on specific MHC motifs. *P < 0.008 in that residue position. P values are listed in SI Appendix, Table S3.
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Table S3). Furthermore, the immunogenicity of a peptide might
result from nonlinear interactions between different TCR contact
residues. ANNs are designed to handle such nonlinearity (11, 21);
therefore, we developed and trained an ANN-based prediction
model of immunogenicity using amino acid hydrophobicity (ANN-
Hydro), with the goal of improving existing CTL epitope prediction
algorithms for H-2Db and HLA-A2. Each peptide sequence in the
H-2Db and HLA-A2 datasets was transformed into a correspond-
ing numeric sequence based on the hydrophobicity value of amino
acids, and these served as the training sets for the two ANN-Hydro
models (SI Appendix, Fig. S3). An initial assessment of the trained
ANN-Hydro model for HLA-A2 assigned a good probability of
immunogenicity to 54 of 64 (>80%) experimentally defined HLA-
A2–restricted epitopes from three recent studies (15, 22, 23) (P <
0.001, compared with the distribution of probabilities of immuno-
genicity of 64 randomly generated 9-mer peptides) (SI Appendix,
Table S5).
We then developed an epitope discovery strategy incorporating

the ANN-Hydro model to predict a previous set of experimentally
validated H-2Db and HLA-A2 epitopes from five pathogen anti-
gens and five tumor antigens (SI Appendix, Table S6). We used the
IEDB consensus MHC-binding prediction algorithm to obtain
a list of predicted peptides for each antigen, each of which was
assigned a normalized binding score, SB. Because T-cell epitopes
are a subset of predicted peptides that bind to MHC molecules,

a normalized score, SI, based on the probability of immunogenicity
obtained by ANN-Hydro, was assigned to each peptide (SI Appendix,
Fig. S3). We then defined a total score, S, as S = SB·SI for the rate of
identifying CTL epitopes from the list of predicted H-2Db and
HLA-A2 peptides from each antigen; thus, the total score is de-
pendent on the contribution of both scores, reflecting two critical
aspects: binding and immunogenicity (SI Appendix, Fig. S3).
Our strategy of reranking by prioritization of high-binding and

high-immunogenic peptides over other predicted peptides (SI
Appendix, Fig. S3, SI Materials and Methods) scored 42 of the 43
H-2Db and HLA-A2 9-mer epitopes within the top-20 ranked
peptides (SI Appendix, Table S6). In contrast, individual pre-
diction algorithms ranked the same epitopes up to rank 133 (SI
Appendix, Table S6). Therefore, the ANN-Hydro model can be
used in conjunction with IEDB consensus to improve the effi-
ciency of prediction of CTL epitopes.

Prediction Validation by in Vivo Discovery of HIV-1 Gag Epitopes. To
comprehensively evaluate the predictive capacity of our approach
for CTL epitope discovery and to correlate immunodominance,
we interrogated three HIV-1 Gag variant proteins: Consensus
B (ConsB), 96ZM651.8 (ZM96), and 97/CN54 (CN54) (Fig. 4).
With no previous knowledge of Gag-specific CTL epitopes, we
used our model to generate a list of ranked H-2Db

–restricted
peptides, of which the top-20 predictions for each interrogated

Fig. 3. Efficiency of predicting experimentally defined HLA-A0201–restricted immunogenic epitopes using mean hydrophobicity of TCR contact residues
(straight lines) compared with IEDB consensus binding tool (IEDB-Bind; dashed lines). Tegument protein pp65 from cytomegalovirus (CMV) and polyprotein
from dengue virus type 1 were used for predictions. (A and B) Predicted peptides from the IEDB-Bind were reranked using the mean hydrophobicity of TCR
contact residues. (C and D) Predicted peptides from the IEDB-Bind were reranked using the mean hydrophobicity of anchor residues.
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Gag sequence are shown (SI Appendix, Table S7). To validate our
predicted epitopes in vivo, we immunized B6 mice independently
against each of the three different Gag variants and analyzed the
peptide specificity of effector CD8+ T-cell responses using over-
lapping peptide pools (SI Appendix, Fig. S4). Deconvolution and
truncation experiments allowed us to define a unique dominant
H-2Db

–restricted epitope within each Gag protein (SI9 for ConsB,
QL11 for CN54, and RT9 for ZM96), as well as shared sub-
dominant epitopes: Db-restricted RT9, AI9, and YI9 and Kb-
restricted VL8 (Fig. 4 F–H and SI Appendix, Fig. S5).
A comparison of empirically defined epitopes with predictions

made using ANN-Hydro revealed that H-2Db
–restricted 9-mer

CTL epitopes for HIV-1 CN54 Gag and ZM96 Gag correlated
with ANN-Hydro model epitope sequences predicted within the
top-15 ranked peptides and for ConsB Gag within the top-11
ranked peptides (SI Appendix, Table S6). In striking contrast,
prediction of the identified Gag epitopes by individual prediction
algorithms was more varied, with predictions up to rank number
46, depending on the binding or processing algorithm used. Al-
though the IEDB consensus binding and NetMHCpan algorithms
predicted the identified Gag epitopes within the top-six ranked
peptides, the performance of these algorithms (unlike the ANN-
Hydro model) was highly variable depending on the antigen se-
lected (variance range of 66.72–220.27; SI Appendix, Table S6).
In sum, the ANN-Hydro model predicted 52 out of 53 experi-

mentally validated H-2Db and HLA-A2 9-mer epitopes from
13 different antigens within the top-20 ranked peptides (Fig. 5A),
corresponding to a 98% success rate in identifying immunogenic

epitopes. Moreover, this predictive improvement was reflected in
lower variability of epitope identification, a variance of 37.72 using
ANN-Hydro as opposed to 66.72 by IEDB alone (P < 0.05, F-test).

Prediction of Immunodominant Epitopes. The probabilities of im-
munogenicity assigned by ANN-Hydro were interrogated with
respect to epitope immunodominance using three antigens with
a clear vertical epitope hierarchy, as identified by ex vivo experi-
mental data (24, 25). The epitope hierarchy defined experimen-
tally in LCMV-GP, Flu-NP, and ZM96 Gag showed robust
correlation with the probabilities of immunogenicity assigned by
ANN-Hydro (r > 0.94, P < 0.05; Fig. 5 B–D). In contrast, pre-
dicted MHC binding assigned by IEDB consensus showed no
correlation with epitope immunodominance in LCMV-GP and
ZM96-Gag (Fig. 5 E and G). Epitope immunodominance in Flu-
NP correlated with both ANN-Hydro’s predicted probability and
predicted MHC binding (Fig. 5 C and F). As a further correlate,
7 of 13 epitopes predicted in lower rankings by ANN-Hydro along
with the IEDB consensus were modest immunogens derived from
LCMV-GP, LCMV-NP, ZM96, CN54, and consensus Gag (SI
Appendix, Table S6). Therefore, efficient pMHC-TCR affinity may
contribute toward epitope immunodominance. Epitope pre-
dictions from ANN-Hydro were consistently less variable, and
improved the prediction of immunodominant CTL epitopes.

Discussion
At present, there is no consensus regarding the molecular mech-
anisms by which CD8+ T cells discriminate immunogenic antigens
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Fig. 4. ANN-Hydro model prediction validation by in vivo discovery of HIV-1 Gag epitopes. Predictions for H-2Db epitopes were made for three HIV-1 Gag
proteins using the ANN-Hydro model, and then a blinded epitope discovery study was performed in vivo. The top-20 predicted peptides for each protein using
the model are listed in SI Appendix, Table S7. (A–C) B6 mice were immunized with AdHu5 vaccines expressing the ConsB, CN54, or ZM96 Gag, and CD8+ T-cell
responses determined by intracellular IFN-γ or IFN-γ ELISPOT after ex vivo stimulation with peptide pools of 15-mer peptides (overlapping by 11 mer) spanning
the entire Gag sequence (ConsB or CN54, A and B) or with a complete set of overlapping 20-mer peptides spanning ZM96 (C). (D–H) Positive responses to pools
were deconvoluted by stimulation with individual 15-mer peptides from the positive pools (ConsB or CN54, D and E). Minimal epitopes were identified by
stimulation with truncated peptides and are shown (F–H).
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Fig. 5. Incorporating ANN-Hydro in the IEDB-consensus binding tool improves epitope prediction. (A) Ranked epitopes are shown by scatterplots for
26 H-2Db CTL epitopes from eight well-described antigens (LCMV-GP, LCMV-NP, AdV.E1B, Flu-NP, Flu-NA, and HIV-1 Gag variants ConsB, ZM96, and CN54) and
for 27 HLA-A2 CTL epitopes from five tumor antigens (Melan-A, Wt-1, gp100, TRAG-3, and p53). The following prediction algorithms were used: IEDB-Bind,
IEDB consensus binding tool; NetMHC-Bind, NetMHCpan binding tool; SYFPEITHI, SYFPEITHI epitope prediction tool; IEDB-Prot, IEDB-recommended pro-
cessing prediction; and ANN-Prot, IEDB processing predictions using ANN. Epitopes and their corresponding predicted ranks by prediction algorithms are
shown in SI Appendix, Table S6. (B–D) Epitope immunodominance as a function of probability of immunogenicity for LCMV-GP, Flu-NP, and Gag-ZM96. (E–G)
Epitope immunodominance as a function of predicted MHC binding (IEDB consensus) for LCMV-GP, Flu-NP, and Gag-ZM96. Immunodominance was de-
termined from percentage-specific lysis of target cells ex vivo. (B and E) 9-mer versions of SGV11 and CSA10 were used (25). (C and F) Percent survival of
peptide-primed mice on lethal challenge of virus (24). (D and G) IFN-γ spots per million cells on ex vivo peptide stimulation postvaccination with antigen
(this study).
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within the background of poorly immunogenic self peptides. Un-
derstanding this discrimination has implications for rational vac-
cine design and the identification of antigenic targets of malignant
and autoimmune diseases. Although several theories have been
proposed to explain the concept of self/nonself discrimination (26),
to our knowledge the present study is the first attempt to provide
a biochemical explanation for this fundamental phenomenon. We
show that relative amino acid hydrophobicity within immunogenic
epitopes reveals an antigenic pattern that can be recognized by
TCRs. We leveraged these findings to design an immunogenicity
model, which was trained and validated using experimentally de-
fined epitopes. ANN-Hydro consistently reduced variable standard
prediction outputs across multiple antigens, demonstrating an im-
portant step forward in reducing the empirical element of T-cell
epitope testing.
The majority of antigens within the immunogenic dataset used

in this study are derived from intracellular pathogens, such as
viruses, which have been shown to favor a lower G+C genomic
content, as reflected in their amino acid use (27). Strongly hy-
drophobic amino acids (e.g., L, I, V, F, M) are characterized by
low G+C codons, whereas hydrophilic amino acids are not (28).
This suggests the possibility that pathogens generally have a
greater use of hydrophobic amino acids that could be exploited
for TCR recognition. A second possibility is that antigen pre-
sentation inherently favors hydrophobic regions within a protein.
A recent study demonstrated that exposing hydrophobic domains
significantly enhances the rate of proteasomal degradation and
MHC presentation (29). Moreover, immunogenic CTL epitopes
are also positionally biased toward the center of their source
antigens (30), consistent with the fact that cytosolic proteins
with a central hydrophobic core are the major substrates of
proteasomal degradation. Thus, protein hydrophobicity can en-
hance both antigen presentation and immunogenicity, perhaps
an evolutionary adaptation of hydrophobicity driven by damage-
associated molecular patterns (31).
TCRs are estimated to recognize on average approximately five

nonanchor residues of a presented peptide because of the angle
of peptide contact (3, 32). For three pMHC allomorphs analyzed
by hydrophobicity in this study, only four or five positions on
the peptide were significantly different between immunogenic and
nonimmunogenic peptides (Fig. 2), similar to published pMHC-
TCR structures (20). This hydrophobicity difference is relative, not
absolute. Certain amino acid positions in the peptide may be hy-
drophilic (e.g., P4 in HLA-A2 9-mers; Fig. 2B); however, even in
such inherently hydrophilic residues in the peptide, immunogenic
epitopes are less hydrophilic (more hydrophobic). Covering ex-
posed hydrophobic residues on the peptide by a TCR may be
a thermodynamically favorable process, facilitating the pMHC–
TCR interaction, as noted in retrospect by a recent study (33).
TCR engagement of pMHC complexes may be enhanced by water
exclusion from the immunologic synapse or by increased Kon rates
of the TCR-pMHC complex by relatively hydrophobic amino acids.
In the absence of a good understanding of the biochemical

composition of peptide ligands that result in T-cell activation,
current strategies for epitope discovery either rely on the unbiased
synthesis of a large number of overlapping peptides or use MHC-
binding/antigen-processing algorithms to select candidate pep-
tides. Whereas the former is an expensive and laborious process,
the latter results in a large number of false-positive peptides that
are not immunogenic. Advances in the development of combi-
natorial technologies have allowed the rapid identification and
characterization of antigen-specific T cells (34); however, even
such novel technologies rely on binding predictions to create lists
of candidate peptides that require extensive empirical validation.
For instance, 77 candidate good binders for HLA-A2 from the
rotavirus proteome were chosen for recombinant pMHC tetramer
production based on their MHC-binding capability, but only six
(four being 9-mer epitopes) were confirmed to be immunogenic

epitopes (15). Therefore, T-cell antigen discovery studies need
strategies to improve the efficiency of epitope prediction.
ANN-Hydro assigned high probabilities of immunogenicity

to 80% of the HLA-A2 9-mer epitopes described in the three
proteome-wide studies. Of note, three of the four rotavirus
9-mer epitopes from the dataset scored a probability of immu-
nogenicity >0.8 (SI Appendix, Table S5). In the HIV-1 Gag study,
more than 364 overlapping peptides were tested in vivo from the
Gag variants (length, 500 aa) for epitope discovery. Using the
ANN-Hydro model combined with SB scores narrowed the val-
idation discovery process down to 11–15 peptides per Gag pro-
tein to be tested. Similarly, applying ANN-Hydro also improved
predictions of immunogenic H-2Db and HLA-A2 epitopes from
10 independent antigens compared with individual prediction
algorithms. Thus, models such as ANN-Hydro add an extra di-
mension (immunogenicity) to MHC-binding for CTL epitope
prediction and could be used to significantly reduce the vari-
ability associated with standard prediction algorithms, as well
as the time and cost of experimental validation (Fig. 5 and SI
Appendix, Table S6). With the advent of tumor exome sequencing
in immune therapy settings, we anticipate that immunogenicity
models such as ANN-Hydro will be critical in identifying immu-
nogenic neoantigens for tumor immune therapies (35, 36).
The ANN-Hydro model differs from existing MHC-binding/

antigen-processing prediction algorithms in two respects. First,
ANN-Hydro was trained on a relative hydrophobicity scale,
which helps the model discover complex numerical relationships
between different amino acid residues. Second, the dataset used
for training was immunogenic epitopes and nonimmunogenic
self peptides, which do not differ in binding motifs but differ only
in immunogenicity. Whereas some high-binding epitopes (e.g.,
SI9 from ConsB) are readily predicted by all algorithms, other
epitopes (e.g., the immunodominant dominant RT9 from ZM96,
LL9 from LCMV-GP) are predicted at variable rankings by
different algorithms (SI Appendix, Table S6). In comparison,
ANN-Hydro rescued these epitopes by virtue of their probability
of immunogenicity.
Although ANN-Hydro marks a step forward in efficiently pre-

dicting 9-mer epitopes, it is currently limited in terms of predicting
longer or shorter epitopes, as exemplified by the 11-mer epitope
(QL11) deduced by epitope mapping from the CN54 Gag protein.
To improve longer or shorter epitope predictions, larger repre-
sentative datasets are needed for training. Nonetheless, the model
predicted a 9-mer version of this epitope ranked at 35 and 44,
which is consistent with the presentation of nested-length peptides
(37). A second limitation of the current model is its applicability to
predict epitopes for other HLA class I alleles. In theory, the ANN-
Hydro model could be applied to predict CTL epitopes for any
MHC class I allele, but large representative datasets are needed to
train the model for representative MHC allomorphs. We antici-
pate that advances in mass spectrometry-based MHC peptide
discovery will result in more extensive training databases for
predicting longer and shorter epitopes from a broader selection of
HLA class I molecules (37, 38).
Although immunogenicity models have been developed by others

for predicting CTL epitopes (39, 40), they considered only the im-
pact of pMHC stability and positional significance along the peptide
for immunogenicity. In contrast, a crucial feature of our approach
is the use of ligand-eluted nonimmunogenic self peptides as the
comparator set. Because binding and antigen processing are re-
quired for all epitopes, we built on existing algorithms for immu-
nogenic pMHC predictions. “Layering” the immunogenicity model
on top of existing prediction algorithms enabled us to predict
epitopes with increased effectiveness over stand-alone predictions.
Importantly, the empirical evaluation of our immunogenicity model
and epitope prediction approach without a priori knowledge of the
immunodominant HIV-1 Gag epitopes in vivo provides strong
support for these results. In summary, integrating amino acid hy-
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drophobicity into pMHC prediction algorithms should significantly
enhance the success of epitope discovery. The biological mechanism
underlying TCR preferences for nonpolar hydrophobic residues
remains to be evaluated.

Materials and Methods
Full details onmethods and construction of datasets are provided in SI Appendix,
SI Materials and Methods.

Construction of Datasets. All MHC-I peptides used in this study and design of the
ANN-Hydro prediction model were retrieved from IEDB (16) (www.iedb.org).
Epitopes with a positive T-cell response represent the immunogenic epitope
group. The nonimmunogenic self-peptide group represents cell surface ligand-
eluted MHC-I self peptides that have been antigenically processed and MHC-
bound. Additional curation and exclusion criteria resulted in a final dataset
with 5,035 8- to 11-mer immunogenic epitopes and 4,853 8- to 11-mer non-
immunogenic peptides (SI Appendix, Table S1). Further details are provided in
SI Appendix, SI Materials and Methods.

Amino Acid Scales. Thesewere derived from Expasy’s ProtScale (web.expasy.org/
protscale/) (41), specifically the Hydrophobicity (Kyte and Doolittle) (17), Polarity
(Grantham) (18), and Bulkiness (Zimmerman) (19) scales. The scales are relative;
that is, negative to positive values in the hydrophobicity scale correspond to
a relative hydrophobicity increase between amino acids (SI Appendix, Table S2).

Position-Based Hydrophobicity Analysis. Our datasets of immunogenic and
nonimmunogenic peptides were transformed into numeric arrays using R
statistical software (42). Separate numeric arrays were generated for immu-
nogenic and nonimmunogenic 8, 9, and 10 mers. Mean hydrophobicity of
immunogenic and nonimmunogenic peptides at each position was calculated
and compared residue-by-residue through Wilcoxon rank-sum tests to quan-
tify statistical significance.

Hydrophobicity-Based ANN Prediction Model (ANN-Hydro). The R neuralnet
package was used to design and train the two ANN-Hydro models on H-2Db

–

and HLA-A2–restricted 9-mer peptides known to be immunogenic (n = 204
and n = 374, respectively) or nonimmunogenic (n = 232 and n = 201, re-
spectively). Each peptide sequence in the respective H-2Db and HLA-A2 data-
sets was transformed into a corresponding numeric sequence based on amino
acid hydrophobicity using R statistical software. A three-layer, fully connected,
feed-forward ANN was composed of nine input neurons, one hidden layer
with three neurons, and one output variable (SI Appendix, Fig. S3).

Application of ANN-Hydro. For each H-2Db
– and HLA-A2–restricted epitope

prediction, we used IEDB consensus to generate a list of epitope predictions.
Each peptide was assigned a normalized binding score, SB, and a subset of

these predicted peptides was then selected by defining an SB threshold of
0.1 for antigen length > 100 amino acids and an SB threshold of 0.2 for antigen
length ≤ 100 amino acids. Independently, probabilities of immunogenicity
were obtained by applying ANN-Hydro to this subset of binding predictions.
Normalized scores, SI, were then assigned based on the probabilities of im-
munogenicity (SI Appendix, Fig. S3). The list of predicted peptides was ranked
based on a total score, S = SB·SI, ranging from lowest to highest score. The
lower the total score of a predicted peptide, the higher its probability of being
an immunogenic epitope. Details are provided in SI Appendix, SI Materials
and Methods.

Vaccines. Recombinant adenovirus type 5 (rAdHu5) vectors encoding codon
optimized HIV-1 Gag from ConsB, strain 96ZM651.8 (ZM96) and strain
97CN54 (CN54) (43), are described in SI Appendix, SI Materials and Methods.

Immunization of Mice. C57BL/6 mice were immunized with 109 virus particles.
All animal studies were conducted in accordance with UK Home Office
regulations and the King’s College London Ethics Committee.

Peptides. The 15-mer peptides spanning HIV-1 CN54 Gag and a 20-mer set of
peptides spanning HIV-1 ZM96 were provided by the UK Centre for AIDS
Reagents. The 15-mer peptides spanning HIV-1 ConsB Gag were provided by
the National Institutes of Health’s AIDS Reagent Reference Program. Trun-
cated HIV-1 Gag peptides were purchased from Proimmune.

T-Cell Epitope Mapping. Spleen cells were restimulated either with media
alone or with peptides, either in pools or individually (each at 1 μM final
concentration), and IFN-γ production was detected by intracellular cytokine
staining or by ELISPOT assay as described previously (43). ConsB and CN54
Gag epitopes were deconvoluted to individual 15 mers from peptide pools,
and truncated versions of the 15-mer peptides were synthesized and tested.
For ZM96 Gag, 49 individual 20-mer peptides were tested. Reactive peptide
sequences were confirmed against the corresponding 15-mer peptide to the
reactive sequence, and 9-mer peptides were synthesized and tested.
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