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Hydrogen atom transfer reactions between the aldose and ketose
are key mechanistic features in formose chemistry by which
formaldehyde is converted to higher sugars under credible prebiotic
conditions. For one of these transformations, we have investigated
whether hydrogen tunneling makes a significant contribution to the
mechanism by examining the deuterium kinetic isotope effect
associated with the hydrogen transfer during the isomerization of
glyceraldehyde to the corresponding dihydroxyacetone. To do this,
we developed a quantitative HPLC assay that allowed us to measure
the apparent large intrinsic kinetic isotope effect. From the Arrhenius
plot of the kinetic isotope effect, the ratio of the preexponential
factors AH/AD was 0.28 and the difference in activation energies
Ea(D) − Ea(H) was 9.1 kJ·mol−1. All these results imply a significant
quantum-mechanical tunneling component in the isomerization
mechanism. This is supported by multidimensional tunneling cal-
culations using POLYRATE with small curvature tunneling.
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We have described a new mechanism for the formose re-
action (Fig. 1) (1), essentially the same as we had pro-

posed earlier (2) except that the isomerizations of aldose to
ketose and the reversal involve a hydride shift rather than
an enolization (3–7). Our evidence came from the finding that
2-deuteroglyceraldehyde was converted to 1-deuterodihydroxy-
acetone under conditions of the formose reaction, with catalysis
by Ca2+ at pH 12. In 2001 Nagorski and Richard had reported
an extensive study of the interconversion of glyceraldehyde and
dihydroxyacetone by either enolization or hydride shift and had
seen that with Zn2+ the hydride shift mechanism was the ex-
clusive process, by a mechanism closely related to our more re-
cent one (8). We also showed that the isomerization of the
ketose erythrulose to the aldose aldotetrose in D2O did not
lead to deuterium incorporation, as it would have in an enoli-
zation process, so it also uses the hydride shift mechanism (1).
The first study of the formose reaction in D2O was performed by
Benner, who saw that no deuterium was incorporated in the
intermediates; for some reason he did not invoke hydride shift
mechanisms (6).
It should be mentioned that we saw that the presence of

formaldehyde in the formose reaction in D2O led to trapping of
any enols formed; without formaldehyde, as in our previous study,
there is subsequent deuterium incorporation in dihydroxyacetone,
but not significant in glyceraldehyde. We saw that the glyceral-
dehyde was present almost entirely as its hydrate, a gem diol, but
dihydroxyacetone was present mainly as the ketone. This reverses
the normally accepted enolization relative rates.

Materials and Methods
In a hydride shift the distance traveled by the proton is small, comparable to
the range of its wave character, so we have investigated the possibility that
there is a quantum-mechanical tunneling process involved (9). We find that
there is indeed tunneling accompanying thermal excitation on the way to
the TS (Fig. 1). Useful criteria for tunneling have been proposed by Kim and
Kreevoy (10, 11) and have been widely used by Klinman et al. in several

different enzyme systems (12, 13). The important criteria are: (i) an activa-
tion energy difference Ea(D)−Ea(H) > 5.0 kJ·mol−1, and (ii) a ratio of Arrhenius
pre-exponential factors AH/AD < 0.7. Borden and Singleton and coworkers
have recently emphasized the importance of A factor ratios and isotopic
differences in Ea as experimental criteria for tunneling (14–16), although the
numerical criteria depend on the type of reaction. The Kreevoy criteria are
based on a collinear model of H-transfer. For application to a 1,2-H shift, the
Ea(D)−Ea(H) criterion should be reduced to reflect the smaller loss of C-H/C-D
zero point energy (ZPE) in the bent transition state (TS) (14). Nevertheless,
the results reported here greatly exceed the Kreevoy criteria.

We studied the rates of conversion of 2-protioglyceraldehyde and
2-deuteroglyceraldehyde to dihydroxyacetone at three temperatures, 0 °C,
40 °C and 80 °C ± 1 °C by converting the products and starting materials to
their 2,4-dinitrophenylhydrazones (2,4-DNPH) and using a quantitative HPLC
assay with acetone 2,4-dinitrophenylhydrazone (Ac-2,4-DNPH) as an internal
standard. We carried the reactions to only 5–10%, where the data (Table 1)
fit straight lines (Fig. 2). Each point for a rate constant represents the
average of at least three independent experiments. The reaction was per-
formed with 1.0 mM glyceraldehyde, 0.6 mM Ca(OH)2 at pH 10. The
recovered 2-deuteroglyceraldehyde after 40% conversion, as its 2,4-DNPH
derivative, showed 95% of one deuterium, close to that in the starting
material (98%), so almost no deuterium was lost during the isomerization or
the 2,4-DNPH formation.

The kinetic isotope effects (KIEs) in Table 1 are substantial, and may in-
dicate tunneling. Ea values were obtained from the slopes in the plots of lnk
vs. 1/T in Fig. 2 using the Arrhenius equation k = A exp(−Ea/RT) (9). Ea(H) was
35.4 kJ·mol−1 while Ea(D) was 44.5 kJ·mol−1, so the difference of 9.1 kJ·mol−1

is well in excess of 5.0 kJ·mol−1, consistent with a tunneling process. For the
second criterion, the ratio AH/AD was 0.28 (AH = 97.9, AD = 344.2), much less
than 0.7, which implies tunneling.

This suggestion is supported by ample precedent for tunneling in 1,2-H
shifts, particularly in carbenes (17–27), and also in cyclopentadienes
(14). The barriers in these reactions vary from ca. 20–130 kJ·mol−1. The
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number of examples suggests that tunneling in the formose reaction is
not unreasonable.

Experimental and computational details, and full publication information
for refs. 28, 29, can be found in SI Appendix, Material and Methods.

Computational Results and Discussion
For a quantitative assessment of tunneling in the H-transfer
step 1 → 2 in Fig. 1, we carried out calculations with POLYRATE
(28), with the GAUSSRATE (30) interface to Gaussian 09 (29).
Of the 27 density functionals tested, all overestimated Ea. The
best compromise description of KIEs and Ea was given by the
B3LYP density functional and 6–31++G** basis set (29) with po-
larized continuum model water solvation (31), with CCSD(T)/
6–31++G** energy corrections (coupled cluster with single, double,
and noniterative triple excitations) according to the interpolated
single-point energies procedure in POLYRATE. The forward
barrier is ΔH‡ = 79.5 kJ·mol−1 at 298 K, and ΔrH° = −2.7 kJ·mol−1.
The rate constant without tunneling, kCVT, is computed by canon-
ical variational transition state theory (CVT). Multidimensional
tunneling was computed by small curvature tunneling (SCT). (We
examined both SCT and large curvature tunneling. SCT gives the
greater amount of tunneling.) The rate constant including SCT
tunneling is given by kCVT+SCT = κSCT kCVT, where κSCT is the
SCT transmission coefficient.
The Arrhenius Ea(H) and Ea(D) for 1 → 2 computed over

0–80 °C are, respectively, 74.4 and 80.8 kJ·mol−1. The difference
is 6.4 kJ·mol−1, in moderate agreement with experiment. The
computed AH/AD is 0.43, and the A factors of ∼1012.7 are in the
typical unimolecular range. The observed A values of ∼102 are
consistent with a large loss of entropy in forming 1 from glyc-
eraldehyde hydrate, which was not pursued.
Fig. 3 shows Arrhenius plots of ln(KIE) vs. 1,000/T for ex-

periment (red), and KIEs computed in the absence of tunneling
(black) and inclusion of SCT tunneling (blue). [KIEs computed
by CVT and CVT+SCT include a small contribution from the
equilibrium isotope effect for conversion of glyceraldehyde hy-
drate to 1. For this equilibrium, ΔrG°(D) – ΔrG°(H) is nearly
constant at 0.4 kJ/mol and is due almost entirely to enthalpy. The
additive contribution to ln(KIE) in Fig. 3 ranges from 0.25 at
200 K to 0.14 at 353 K.] Whereas neither calculation agrees
quantitatively with experiment, CVT+SCT is much closer than

CVT. The CVT+SCT line curves upward at lower temperature
where tunneling makes a greater contribution to the rate. This
has been reported in other reactions in which tunneling is im-
portant (16, 32). The current calculations provide computational
evidence in Fig. 3 and Table 2, amplified in SI Appendix, that
tunneling dominates the reaction.
Table 2 shows some important features of the reaction. The

KIE predicted by CVT is only 2.9–3.9 over 0–80 °C, because in
this bent TS the difference between H and D ZPE loss at the TS
is only 3.1 kJ·mol−1, less than the 5 kJ·mol−1 expected for a linear
TS (10, 11). The contribution of SCT tunneling to the rate can be
estimated as (κSCT – 1)/κSCT. (More precisely, this is the fraction
of the rate contributed by the quantum correction to motion
along the reaction path, including transmission and reflection.)
In the third column (% tunneling), these contributions range
from 56% at 80 °C to 99% at −73 °C. These are similar to the
contributions of CVT+SCT tunneling reported by Borden and
coworkers for 1,5 sigmatropic H shifts in cyclopentadienes
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Fig. 1. Hydride shift mechanism for the isomerization of glyceraldehyde to
dihydroxyacetone.

Fig. 2. Arrhenius plots of 2-protioglyceraldehyde (Left, filled black squares),
2-deuteroglyceraldehyde (Left, open blue squares), and intrinsic KIEs (Right,
filled red circles) on the hydride transfers. The intrinsic KIEs were fitted to
the Arrhenius equation (SI Appendix, Eq. S3) to obtain an isotope effect
on the energy of activation [Ea(H), Ea(D)] and on the preexponential factors
(AH, AD). Each point represents the average of at least three independent
experiments. See SI Appendix for experimental details.
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Fig. 3. Arrhenius plots of ln(KIE) vs. 1,000/T for the H-transfer step in Fig. 1,
computed by POLYRATE with the GAUSSRATE interface to Gaussian, using
B3LYP/6–31++G** with PCMwater solvation. Red: experimental points ± 1 SD;
black: computed by canonical variational transition state theory (CVT); blue:
computed by CVT+SCT.

Table 1. Kinetic rate constants and KIEs for the isomerization of
glyceraldehydes to dihydroxyacetone

Temp, °C kH (h−1)* kD (h−1)* KIE (kH/kD)
†

0 0.07 ± 0.02 0.005 ± 0.001 14.9 ± 4.0
40 0.30 ± 0.02 0.03 ± 0.01 9.3 ± 2.6
80 2.52 ± 0.44 0.49 ± 0.23 5.1 ± 1.8

Conditions: glyceraldehyde 1 mM, Ca(OH)2 0.6 mM, pH 10.
*Results ± SEM are the average of at least three independent experiments.
†KIE values were calculated based on unrounded rate constants.
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(14). Because the current calculation underestimates the KIEs,
this column is effectively a lower bound on the contribution of
tunneling.
With a large computed tunneling contribution, should Arrhe-

nius curvature be expected at 0–80 °C? Curvature would require
that the energy region over which tunneling contributes to the
transmission coefficient change substantially over the experimen-
tal temperature range. The last two columns of Table 2 give the
energies EH

max and EH
max (relative to 1H and 1D as the zero of en-

ergy) at which tunneling makes its maximum contribution to κSCT.
These energies are nearly constant over 0–80 °C, consistent with
a lack of obvious curvature in this temperature range, even though
the tunneling contribution is large. Table 2 suggests that curvature

would begin to appear around −40 °C, as EH
max decreases by more

than 7 kJ·mol−1 below EH
max at 0 °C. SI Appendix, Fig. S8 makes this

clearer by showing that the entire H-tunneling region shifts dra-
matically to include a much larger fraction of the barrier at −40 °C
than at 0 °C.

Conclusion
Our conclusion is that there is a large tunneling contribution to the
hydride shift for 1 → 2 (Fig. 3). The calculations imply that at least
56–80% of the reaction occurs by tunneling over 0–80 °C. This
description applies to high pH where the coordination of a calcium
ion to the carbonyl group and the alkoxide ion make the hydride
migration the only chemical step. It is likely that this is also true in
the proposed isomerization of a ketose to an aldose in the later step
of the formose reaction under those conditions. However, at neutral
pH with no metal ion such a migration would need to accompany
the motion of a proton in a hydrogen bond between the hydroxyl
and the carbonyl, as perhaps in the triose phosphate isomerization
in biochemistry. Such situations require their own investigations.
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Table 2. CVT+SCT hydride transfer characteristics

Temp, °C KIE* % tun† EH
max‡ ED

max‡

−73 87 (6.3) 99 43.1 72.7
−40 19 (4.9) 93 65.7 77.4
0 8.7 (3.9) 80 73.0 78.9
40 5.8 (3.3) 67 74.7 79.6
80 4.4 (2.9) 56 75.4 79.6

*kH/kD computed by CVT+SCT (CVT KIEs in parentheses).
†% tunneling = (κSCT – 1)/κSCT (shown for H only).
‡Energy (kJ·mol−1) at which H and D tunneling makes the maximum contribu-
tion to κSCT, relative to the ZPE-corrected energy of 1H and 1D as the zero of
energy. H and D ZPE-corrected barriers are, respectively, 80.0 and 83.1 kJ·mol−1.
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