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Abstract

Remembering a past experience can, surprisingly, cause forgetting. Forgetting arises when other 

competing traces interfere with retrieval, and inhibitory control mechanisms are engaged to 

suppress the distraction they cause. This form of forgetting is considered adaptive because it 

reduces future interference. The impact of this proposed inhibition process on competing 

memories has, however, never been observed both because behavioural methods are “blind” to 

retrieval dynamics and because neuroimaging methods have not isolated retrieval of individual 

memories. Here we introduce a canonical template tracking method to quantify the activation state 

of individual target memories and competitors during retrieval. This method revealed that 

repeatedly retrieving target memories suppressed cortical patterns unique to competitors. Pattern 

suppression was related to engagement of prefrontal regions implicated in resolving retrieval 

competition, and, critically, predicted later forgetting. We thus demonstrate a cortical pattern 

suppression mechanism through which remembering adaptively shapes which aspects of our past 

remain accessible.

Introduction

Remembering, it seems, is a double-edged sword. Research in humans and animals points to 

the pivotal role that retrieval plays in shaping and stabilizing memories1,2. However, the 

remembering process also induces forgetting of other memories that hinder the retrieval of 

the memory we seek1,3,4. It has been hypothesized that this surprising “dark side” of 

remembering is caused by an inhibitory control mechanism that suppresses competing 

memories and causes forgetting; this putative process is adaptive because it limits current 

and future distraction from competitors5,6. Yet, no study has ever directly observed 

memories as they are suppressed by the hypothesized inhibitory control mechanism. 
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Behavioral methods are, by their nature, blind to the internal processes unfolding during 

retrieval; and neuroscience has lacked methods capable of isolating neural activity 

associated with individual memories. In the current fMRI experiment, we tested for the 

existence of the hypothesized adaptive forgetting process by developing a template-based 

pattern tracking approach that quantifies the neural activation state of single memory traces. 

In so doing, we tracked the fate of behaviorally invisible traces, providing a window into the 

suppression process thought to underlie adaptive forgetting in the human brain.

Our effort to observe the dynamics of adaptive forgetting builds on work examining the 

neural processes associated with retrieval competition. One approach has used multi-voxel 

pattern analysis to measure visual cortical activity when a retrieval cue concurrently elicits 

multiple visual memories. These studies revealed that pattern classifiers have difficulty 

discriminating whether a retrieval cue is eliciting a memory of a face or an object when both 

types of content are associated to it, even when only one type of content is to be retrieved7,8. 

It cannot be discerned, however, whether this finding reflects the co-activation of individual 

memories or of the broad categories to which the memories belong (e.g. faces, objects). A 

second approach has focused on control mechanisms that resolve retrieval competition by 

selecting between competing memories. Competition during episodic retrieval engages 

prefrontal cortical areas associated with selection during semantic retrieval9. Specifically, 

during selective recall of a target memory, ventrolateral prefrontal cortex activity predicts 

later forgetting of competing memories5-6,10-11, consistent with the possibility that this area 

contributes to resolving competition. Together, these two lines of work suggest that lateral 

prefrontal cortex contributes to adaptive forgetting by exerting a top-down modulatory 

influence on competing memories in posterior representational areas.

In the present study, we sought to isolate neural indices of individual memory traces, so that 

we might observe retrieval competition and its resolution as it unfolds in the brain, and to 

link these dynamics to adaptive forgetting. To achieve this, we trained participants to 

associate two images (e.g., Marilyn Monroe and a hat) to each of a set of cue words and then 

recorded brain activity during a selective retrieval phase in which one of those visual 

memories (e.g., Marilyn Monroe) was repeatedly retrieved (Fig.1a-b). On each retrieval 

trial, participants covertly retrieved the first picture they had associated with the cue 

(henceforth, the target) in as much detail as possible. Across the selective retrieval session, 

participants retrieved each target four times. Importantly, one quarter of the cue words were 

set aside, and did not appear in the selective retrieval task. As such, the associations for 

these cues served as a baseline for assessing the behavioural and neural changes induced by 

repeated target retrieval.

Our main concern was how retrieving the target affected the competing memory associated 

with the same cue (henceforth, the competitor). We assumed that the reminder initially 

would co-activate the target and the competitor, and that resolving this competition in favour 

of the target would engage inhibitory control to degrade the competitor’s neural 

representation in visual and memory processing regions. We further hypothesized that this 

degradation would hinder later retrieval of the affected representation, so that on a final 

visual recognition test, participants should be worse at discriminating inhibited pictures from 

similar lures, compared to their discrimination accuracy for baseline pictures (Fig.1a).
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Our primary goal was to track the suppression of individual memories in visual and memory 

processing regions. Tracking competitor suppression required a way to discern evidence, 

during selective retrieval, that the neural pattern associated with a target or its competitor 

was reactivated. To achieve this, we had participants perform a perceptual localizer task (not 

shown in Fig.1a), in which they viewed a subset (50%) of the target, competitor and baseline 

pictures, multiple times. For each picture, we derived a canonical multivariate activity 

pattern, representing the perceptual trace that it typically evoked. We assumed that this 

canonical signature pattern might resemble the visual memory formed during encoding, and 

provide a template for assessing objectively how much, during each retrieval trial, the visual 

memory was reactivated. Indeed, previous findings12–14 indicate that episodic retrieval 

reinstates perceptual traces established during encoding in late visual processing areas. 

Memory-unique representations also have been observed in the hippocampus during 

retrieval15. Together, these findings suggest that it may be possible to isolate individual 

memory patterns in visual and memory processing areas during retrieval, and use them to 

track the dynamics of selective retrieval.

We therefore hypothesized that across repeated recall trials, as retrieval became more 

successful and complete, the reactivated pattern in visual and memory processing regions 

would become increasingly similar to the canonical template of the target being retrieved. 

Memory-unique target reactivation during each retrieval trial would be present when the 

pattern measured on that trial resembled the target template (e.g. Marilyn Monroe) more 

than it resembled baseline templates from the same category (e.g. Albert Einstein). 

Critically, if inhibitory control degrades competing memories, the neural pattern during 

target recall should grow progressively less similar to the canonical template of that target’s 

competitor. Memory-unique competitor suppression during each retrieval trial would be 

present if similarity of the measured pattern to the specific competitor (e.g. hat) template is 

driven below its similarity with baseline templates from the same category (e.g. goggles).

Results

Performance during initial training

Training of the first and second associates to each cue occurred in learning-test cycles 

outside the scanner (Online Methods). During training, first associates were recalled at 

77.1% (SEM=2.9%) in the first retrieval cycle, and at 86.4% (SEM=2.6%) in the second. 

The second associates were recalled at 70.7% (SEM=3.0) in their first and only retrieval 

cycle.

Performance during selective retrieval

Selective retrieval was performed in the scanner. Because on each trial, participants 

classified which category of memory they retrieved, we could determine whether they had 

recalled the correct target category. Participants selected the correct category for the target 

on 74.7% (SEM=2.9%) of the trials (Fig.1c). When they made errors, they selected the 

competing picture’s category significantly more often (mean=9.2%, SEM=1.1%) than the 

third, unrelated category (mean=2.3%, SEM=0.3%; t23=6.53, p<0.001). These competitor 

intrusion errors varied across the four repetitions (F3,69=21.8, p<0.001; Fig.1c), showing a 
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linear decline (F1,23=55.4, p<0.001). This pattern is consistent with the possibility that 

inhibitory control rendered competitors less interfering over repetitions.

Selective retrieval induces forgetting of competitors

As a first step, we tested whether presenting an item’s cue during retrieval had different 

effects on recognition performance depending on whether an item was a first or second 

associate. A 2-by-2 repeated-measures ANOVA with the factors ITEM TYPE (cued vs. 

baseline) and ASSOCIATE (first vs. second) revealed a significant interaction (F1,23=4.70, 

p=0.041). Posthoc t-tests confirmed that selective retrieval reduced later recognition of 

competitors (mean=75.2%, SEM=17.6%), compared to recognition of corresponding 

baseline items from the second training set (mean=82.1%, SEM=17.1%; t23=4.91, p<0.001; 

Fig.1d). Thus, remembering the targets induced forgetting of competing memories 

(irrespective of their category, see Supplementary Fig.1), in line with past work1,4. 

Interestingly, below-baseline forgetting correlated, across individuals, with the number of 

intrusions observed during selective retrieval (R=0.39, p=0.030), consistent with the idea 

that retrieval-induced forgetting arises from a control process that reduces interference.

In contrast, recognition of targets (mean=78.6%, SEM=16.7%) did not differ reliably from 

recognition of corresponding first-studied baseline items (mean=79.7%, SEM=23.9%; 

t23=0.57, p=0.713), providing little evidence for retrieval-based enhancement. Recognition 

of the two types of baseline items (first and second associates) did not differ reliably 

(t23=0.93; p=0.362). Overall, results from the visual recognition test confirmed that 

selectively recalling target memories disrupts later memory for competitors, supporting the 

possibility that inhibitory control disrupted competitors’ visual-episodic representations.

Imaging Results

Measuring the reactivation of unique memories

In a new canonical pattern tracking approach, we quantified changes in activation of each 

unique target and competitor across repeated retrievals (see Fig.2 for rationale). We 

hypothesized that ventral visual cortex and the hippocampus would carry item-specific 

information about retrieved content12–15, and that ventral visual regions would also show 

strong categorical reactivation7,8,12. At the end of scanning, we presented half of the trained 

pictures six times each in a one-back task (see Online Methods for rationale). From this, we 

constructed canonical multivariate templates based on the average voxel-wise activity 

pattern elicited by each picture (e.g. Marilyn Monroe). These templates gave us a neural 

standard against which to assess how much a visual memory was reactivated during 

selective retrieval.

To quantify item-specific reactivation, we correlated (using Pearson coefficients) the 

observed neural pattern elicited on each retrieval (e.g. cuing participants with the word 

“sand” in the examples in Figs.1 and 2) with the current target template (e.g. Marilyn 

Monroe), and with the current competitor template (e.g. the hat). Importantly, we also 

computed templates for baseline pictures (e.g. Albert Einstein, and goggles). These baseline 

templates allowed us to quantify how much the specific neural patterns representing the 
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target (e.g. Marilyn Monroe) and the competitor (e.g. hat) were reinstated during a retrieval 

trial, above and beyond categorically matched baseline items. All selective retrieval trials for 

which item-specific templates were available were analysed (Supplementary. Fig.2 reports 

the same results excluding incorrect retrievals; exact statistics available on request).

Emergence of item-unique target patterns

Both ventral visual cortex and the hippocampus showed evidence for target-unique memory 

reinstatement (Fig.3). Specifically, similarity of the observed pattern with the target 

template, relative to same-category baseline templates, showed a significant (positive) linear 

trend across repetitions in both regions of interest (ventral visual cortex: F1,23=12.97, 

p=0.002; hippocampus: F1,23=11.91, p=0.002; Fig.3), as tested in a repeated-measures 

ANOVA with the factors ITEM TYPE (target vs. baseline) and REPETITION (one to four). 

There was a significant ITEM TYPE-by-REPETITION interaction in ventral visual cortex 

(F3,69=4.15, p=0.009) and hippocampus (F3,69=4.72, p=0.007). Post-hoc tests showed that 

on the final (fourth) recall attempt, target reactivation exceeded baseline in the hippocampus 

(t23=2.50, p=0.010), whereas ventral visual cortex showed significant target reactivation on 

the third (t23=2.01, p=0.028) but not on the fourth repetition (t23=1.44, p=0.082; Fig.3). 

Neural patterns during retrieval therefore suggest that the unique memory was reinstated 

increasingly over repetitions, one of the few demonstrations that a memory-specific cortical 

trace can be elicited by an associatively linked cue (see14,16 for related findings).

Suppression of unique neural patterns representing competing memories

Next, we correlated the observed pattern during each selective retrieval trial to the 

competitor’s template. Strikingly, across the four repetitions, memory-specific competitor 

activation showed a significant (negative) linear trend in ventral visual cortex (F1,23=10.52, 

p=0.004) but not in hippocampus (F1,23=1.07, p=0.312; note that the hippocampus showed a 

trend towards suppression when including correct trials only, see Supplementary Fig.2). The 

ITEM TYPE-by-REPETITION ANOVA revealed a significant interaction in ventral visual 

cortex (F3,69=3.71, p=0.016) but not the hippocampus (F3,69=0.52, p=0.670). Thus, unlike 

target reactivation, competitor activation in ventral visual areas declined significantly across 

repeated retrievals.

We considered the possibility that this negative trend simply reflects target reactivation 

becoming more successful and complete, such that the cue would grow more likely over 

repetitions to selectively elicit the target. If so, competitor reactivation would decline across 

trials, but cease at a baseline level where the probability of the cue eliciting the competitor 

would match its probability of eliciting baseline memories. Conversely, if inhibition 

suppresses interfering memories during retrieval, similarity between the selective retrieval 

pattern and the competitor template should decrease significantly below the level of non-

cued baseline memories. Supporting the latter, the difference between competitor and 

baseline similarity (Fig.3, middle) showed a trend towards competitor reactivation during 

the first retrieval in ventral visual cortex (t23=1.70, p=0.050), but not in the hippocampus 

(t23=0.13, p=0.449), irrespective of whether we excluded incorrect trials (Supplementary 

Fig.2). By the final (fourth) repetition, however, similarity with the competitor’s template 

was driven below similarity with same-category baseline templates in both regions (ventral 
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visual cortex: t23=2.14, p=0.022; hippocampus: t23=1.97, p=0.030). These findings indicate 

that reminders initially tend to activate competitors, but competitors are progressively 

suppressed below baseline, consistent with the hypothesized inhibition process.

Competitor suppression predicts adaptive forgetting

If inhibition disrupts competing traces during retrieval, our index of cortical competitor 

suppression should predict adaptive forgetting. Confirming our hypothesis, the extent to 

which participants down-regulated the competing neural patterns in ventral visual cortex 

across repetitions predicted below-baseline forgetting of competing memories on our 

recognition test (R=−.35, p=0.047; Fig.4). No significant correlation was observed in the 

hippocampus (R=0.17, p=0.217).

We also tested whether pattern suppression predicted which individual memories would be 

forgotten. To do this, we derived, for each participant, a measure of pattern suppression for 

every individual competitor by fitting a linear regression to the decrease in its similarity to 

its template across the four retrieval trials, relative to baseline similarity (Fig.3, dotted lines). 

These fits yielded maximum-likelihood (ML) estimates of the slope of the best fitting 

regression line for each competitor that quantifies its pattern suppression. Consistent with 

the linear trend analysis, below zero estimates were found in ventral visual cortex (t23=3.33, 

p=0.001) but no the hippocampus (t23=1.03, p=0.157). We then tested if these memory-

specific estimates predicted whether items were forgotten, using logistic regression. In 

ventral visual cortex, items showing more pattern suppression were indeed more likely to be 

forgotten (β=5.38, p=0.037). Together, these findings support the hypothesis that cortical 

pattern suppression underlies adaptive forgetting.

The role of prefrontal cortex in cortical pattern suppression

The prefrontal cortex is a key candidate region for the source of the top-down control signal 

that induces pattern suppression5,10,11. To test this possibility, we defined prefrontal regions 

of interest based on a functional comparison between early and late selective retrieval trials5. 

The rationale behind this contrast is that demands on the control mechanism should decrease 

across repetitions as interference is reduced. Replicating past work on retrieval-induced 

forgetting5,10,11, this contrast revealed clusters in left and right mid-ventrolateral prefrontal 

cortex and the inferior frontal junction (including middle and inferior frontal gyri, Fig.5a; 

left BA6/8: xyz = -48 5 43, k = 635 voxels, tpeak=5.73; right BA9: xyz = 48 11 31, k = 332 

voxels, tpeak=5.42).

To test for a role of prefrontal cortex in pattern suppression, we first correlated participants’ 

prefrontal activity during selective retrieval with their slope of competitor suppression 

(average ML estimate). Critically, average beta estimates in both prefrontal regions-of-

interest strongly predicted the slope of competitor suppression in visual cortex (left IFG: R=

−0.65, p<0.001; right IFG: R=−0.48, p=0.009; Fig.5b). No relationship was found between 

prefrontal activity and the slope of target up-regulation (left IFG: R=0.25, p=0.124; right 

IFG: R=−0.10, p=0.324). The correlation of prefrontal activity with competitor suppression 

was more negative than its correlation with target enhancement in left IFG (Hotelling’s 

t21=4.58, p<0.001), and marginally so in right IFG (Hotelling’s t21=1.52, p=0.072). 
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Critically, we also tested whether the prefrontal activity during the selective retrieval of 

individual memories predicted pattern suppression (ML estimate) for that memory’s 

competitor, within participants. Higher prefrontal cortex activity was indeed related to 

greater pattern suppression (left IFG: R=−0.123; p=0.008; right IFG: R=−0.104; p=0.021).

To further illustrate the link between prefrontal activation and pattern suppression, we 

median split our sample based on prefrontal recruitment (Fig.5d). Participants with high 

right PFC engagement showed steeper suppression slopes (t22=1.77, p=0.045), and more 

competitor suppression on the fourth retrieval (t22=2.31, p=0.015). This split revealed no 

difference in the slope of target enhancement (t22=0.29, p=0.387), nor target reactivation on 

the fourth retrieval (t22=1.41, p=0.086). Similar patterns were observed when splitting the 

sample by left PFC. These analyses support a specific functional relationship between PFC 

recruitment and competitor suppression in visual cortex.

Finally, a whole brain analysis identified several clusters that predicted pattern suppression 

(Fig.5c, red), mostly in left and right prefrontal cortices (Supplementary Table1). Only one 

small cluster in the left middle frontal gyrus predicted target enhancement (Fig.5c, black). 

Together, our results support the possibility that the mid-VLPFC is a source of top-down 

inhibitory modulation that suppresses the cortical patterns of competing memories.

Voxels diagnostic of competitor activation are suppressed

The evidence for cortical pattern suppression thus far could arise because of at least two 

factors: because competitor patterns become noisier, or because inhibition truly suppresses 

diagnostic features of the competitor (i.e., the “hat” voxels). We hypothesized that the latter 

would be the case17, and sought to isolate voxels diagnostic of a given target or competitor. 

We first used item-specific linear pattern classifiers to isolate voxels that most reliably 

distinguished individual targets or competitors from their respective control items during the 

sensory pattern localizer. In a second step, we computed changes in average signal strength 

of only the 10% of voxels in our ventral visual cortex mask that were most diagnostic for 

each target and competitor, as determined by linear weights of the trained classifiers (Online 

Methods; Supplementary Fig.3 to see how the findings change with voxel diagnosticity).

Having identified diagnostic voxels for each target and competitor, we extracted average 

activation (t-values) and tested whether activity in those voxels was enhanced for targets, 

and importantly, suppressed for competitors (Fig.6). Unexpectedly, target voxel activity 

showed no positive linear trend across repetitions (F1,23=0.47, p=0.500), and no significant 

above-baseline activation on the final repetition (t23=0.80, p=0.216). However, consistent 

with our inhibition hypothesis, voxels diagnostic of the competitor showed a significant 

linear decrease across repetitions (F1,23=5.48, p=0.028) and significant below-baseline 

suppression (t23=2.10, p=0.023). A significantly negative competitor slope was only 

obtained in the 10% most diagnostic voxels (Supplementary Fig.3). These findings suggest 

that cortical pattern suppression is at least partly driven by reduced activity in voxels that 

contribute strongly to representing competing memories.
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Categorical target reactivation without competitor suppression

To underscore the advantages of our item-unique analyses, we conducted two categorical 

analyses that assessed whether patterns during selective retrieval showed reactivation of the 

target or competitor categories. For the similarity analysis (Fig.7), we calculated a template 

for each category (e.g. a face template) based on baseline pictures from the localizer. 

Categorical similarity was assessed by computing the correlation between the pattern 

observed during each retrieval trial and the template of that trial’s target category, its 

competing category, and its non-involved (categorical baseline) category.

Ventral visual cortex but not hippocampus showed strong evidence for categorical target 

activation (main effect target vs. baseline in ventral visual cortex: F1,23=29.79, p<0.001; 

hippocampus: F1,23=0.96, p=0.338) that did not reliably change with repetition (interaction 

with REPETITION in ventral visual cortex: F3,69=1.60, p=0.196; hippocampus: F3,69=0.43, 

p=0.732; Fig.7). We observed similar results with a categorical analysis based on linear 

machine learning algorithms (Fig.7, bottom; Online Methods): Classification of the target 

category across recall trials was above chance in ventral visual cortex (t23=4.88, p<0.001) 

and the hippocampus (t23=2.38, p=0.013), and showed stable categorical reactivation across 

repetitions, with no linear trend (ventral visual cortex: F1,23=0.11, p=0.750; hippocampus: 

F1,23=0.65, p=0.428). This high above-chance categorical similarity/classification mirrors 

classification responses collected during the selective retrieval phase, which were accurate 

from the first repetition (Supplementary Fig.4 illustrates how classifier performance varies 

depending on the response given). Importantly, participants’ classification responses during 

selective retrieval, like the classifier output itself, are only diagnostic as to the accuracy of 

the category retrieved, not the specific item.

Critically, despite strong target activation, categorical patterns did not detect competitor 

suppression. Activation of competitor categories did not significantly differ from baseline in 

either region of interest (main effect of competitor vs. baseline in ventral visual cortex: 

F1,23=0.63, p=0.437; hippocampus: F1,23=3.80, p=0.064), and showed no interaction with 

repetition (ventral visual cortex: F3,69=1.43, p=0.240; hippocampus: F3,69=2.50, p=0.067). 

The linear classifier analysis confirmed this pattern, showing a trend toward above-chance 

classification of the competitor category when averaged across repetitions in ventral visual 

cortex (t23=2.00, ptwo-tailed=0.057) but not in the hippocampus (t23=0.59, ptwo-tailed=0.561). 

Classification performance showed no linear decrease across repetitions (ventral visual 

cortex: F1,23=0.21, p=0.651; hippocampus: F1,23=1.00, p=0.328). Finally no relationships 

were found between activation of competitor categories (overall, or slope over repetitions, 

between- or within participants) and forgetting (all p>0.15, exact statistics available on 

request). These results suggest that the inhibitory mechanism underlying adaptive forgetting 

suppresses features of individual competing memories, not global categorical patterns.

Discussion

Remembering does not merely reawaken memories of the past; it has a “darker side” that 

induces forgetting of other experiences that interfere with retrieval, dynamically altering 

which aspects of our past remain accessible. Remembering, quite simply, causes forgetting. 

It has been hypothesized that this adaptive forgetting process is caused by an inhibitory 
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control mechanism that suppresses distraction from competing memories1,3–5. Five key 

findings indicate that we have, for the first time, isolated the hypothesized adaptive 

forgetting mechanism and shown it to be implemented by the suppression of distributed 

neocortical patterns that represent competing memories.

First, selective retrieval caused forgetting of competing memories. When we repeatedly cued 

participants to retrieve target items, competing memories were recognized less well later on, 

compared to baseline items (Fig.1d). This effect occurred for images of faces, objects, or 

scenes, indicating a domain-general process. Forgetting was observed on a forced-choice 

recognition test that displayed the putatively inhibited visual item, reducing memory search 

demands. Observing below-baseline forgetting even though our test provided potent, vivid, 

item-unique cues indicates that retrieval disrupts the sensory features of competing 

memories17,18—a possibility compatible with an adaptive forgetting process that suppresses 

visual cortical patterns underlying those memories. Critically, forgetting was predicted by 

the tendency of competitors to interfere, as reflected by how often participants mistakenly 

selected the competitor’s category during selective retrieval trials. This tendency of 

competitors to intrude reduced gradually over retrieval trials (Fig.1c), consistent with an 

active suppression process. Taken together, these findings exhibit the hallmarks indicating a 

role of inhibitory control in retrieval-induced forgetting, supporting the possibility that we 

succeeded in eliciting the putative adaptive forgetting process.

Second, during the four selective retrievals, cortical pattern indices revealed that competing 

memories were measurably reactivated and then progressively suppressed (Fig.3). Our 

reactivation index measures how much the activation pattern elicited by the cue resembled 

the perceptual template for the associated target or competitor memories, and provides an 

objective neural standard for quantifying the retrieval of individual memories. Gradual 

suppression of competing patterns is expected based on the hypothesized inhibitory control 

mechanism thought to underlie adaptive forgetting.

It was essential to consider whether the decline in competitor activation over target retrievals 

might reflect processes other than cortical pattern suppression. For example, participants 

may grow efficient at reinstating the target over repeated retrievals, reducing the chances of 

reactivating competitors. Alternatively, an associative unlearning mechanism, in which 

target retrievals punish competing associations, may make the cue less likely to reactivate 

competitors1. Both alternatives predict, however, that the competitor’s activation should 

simply approach the level observed for baseline memories, and never decline below baseline 

because, even if cue-competitor associations were unlearned entirely (or, alternatively, if the 

cue became perfectly efficient at eliciting the target) the cue should merely fail to reactivate 

the competitor; it should be as if the competitor is unassociated to the cue, like baseline 

items. Inhibition, by contrast, predicts that competitors are actively inhibited, and that their 

cortical traces will be suppressed below the activity observed for baseline items. This 

prediction was confirmed. This third key finding—below baseline pattern suppression— 

provides encouraging and distinctive support for the hypothesized inhibition mechanism.

Even if inhibition caused pattern suppression, this finding does not establish the relevance of 

these reductions to adaptive forgetting. Two final findings support an active forgetting 
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interpretation, and establish important characteristics of cortical pattern suppression. First, if 

inhibitory control reduced mnemonic activation by acting on cortical sites representing 

competitors, this putative footprint of inhibition should be predicted by activation in 

prefrontal regions implicated in inhibitory control. Such a finding would distinguish an 

adaptive mechanism that acts during goal-directed retrieval from other, incidental 

mechanisms that may weaken memories. For example, reactivating memories briefly during 

tasks unrelated to retrieval16,19,20 may strengthen or weaken the “reawakened” memories 

depending on how active they become. This forgetting is predicted by a computational 

model of inhibition21, and is proposed to not require control by the prefrontal cortex. In 

contrast, we found that the engagement of mid-ventrolateral prefrontal regions previously 

linked to adaptive forgetting5,10,11 predicted pattern suppression in ventral visual cortex 

both across and within participants, with more robust VLPFC engagement predicting greater 

pattern suppression (Fig. 5b-d). These findings support a contribution of mid-VLPFC to a 

top-down control signal that suppresses competition in visual cortex.

Fifth, if reduced competitor activation in ventral visual cortex is relevant to adaptive 

forgetting, it should predict forgetting. This relationship was observed: participants showing 

the steepest decline in competitor activation showed the most forgetting (Fig.4); and even 

within participants, those individual memories showing the steepest suppression slope were 

most likely to be forgotten. These relationships support the possibility that cortical pattern 

suppression plays an instrumental role in adaptive forgetting.

Taken together, these five key findings provide strong and specific support for the 

hypothesized cortical pattern suppression process, and for its role in producing adaptive 

forgetting in the human brain. Our findings suggest further properties of pattern suppression 

that may prove important if corroborated. For instance, our canonical pattern tracking 

approach allowed us to investigate how inhibition modulates cortical traces. Does inhibition 

target the unique cortical pattern causing interference (i.e., the “hat pattern”), or the global 

representation of the competing category (i.e., an “object pattern”)? Several findings favour 

an item-specific suppression mechanism. First, pattern suppression for individual items was 

driven, in part, by down-regulated activity in voxels distinguishing a competitor from other 

members of its category and from the target (Fig.6). These findings are expected based on 

models of memory inhibition17, according to which inhibition targets features representing a 

competitor that do not overlap with those representing the target. Second, despite robust 

categorical reactivation of targets, the competitor’s category showed no evidence of 

suppression. In line with previous studies7,8, categorical patterns even showed a trend in the 

opposite direction, with early retrievals showing co-activation of the competitor’s and the 

target’s categories. Thus, although categorical activations can reveal competition, our results 

indicate that the brain’s adaptive response to resolving competition– inhibition–suppresses a 

competitor’s diagnostic features distinguishing it from other exemplars of its category, and 

from the memory being retrieved.

A second interesting observation is that hippocampal patterns exhibited weaker evidence for 

pattern suppression, despite robust target reactivation. Weaker competitor suppression may 

be relevant to computational models of hippocampal-neocortical processing, assuming that 

the hippocampus, in contrast to neocortex, uses sparse coding and efficiently separates 
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overlapping patterns22,23. If the neocortical components of a distributed memory are more 

disrupted by competition23,24, it may be functional for inhibitory control to target 

neocortical areas to suppress interference. These speculations about the selectivity of pattern 

suppression to neocortex must remain tentative, awaiting further confirmation.

The proposed top-down mechanism that supports selective retrieval by suppressing 

competing memories parallels mechanisms believed to support visual selective attention and 

visual working memory25–30. Selective attention enhances targets and suppresses distracting 

information, a pattern demonstrated from single neurons up to EEG and BOLD 

activity31–34, and such adaptive modulations of sensory regions are believed to be driven by 

lateral prefrontal cortex34,35. Recent studies indicated a causal role of the inferior frontal 

junction in exerting this top-down influence34. This frontal area overlaps with regions 

implicated in resolving mnemonic competition in previous work5,10,11 and, critically, in the 

present study. By showing a relationship between prefrontal activity and competitor 

suppression, our findings reinforce theoretical parallels between the mechanisms the brain 

uses to resolve mnemonic competition on the one hand, and sensory competition on the 

other hand28, building a theoretical bridge spanning attention and long-term memory.

Studying the neural basis of forgetting has proven challenging because the substrate of 

episodic memories (the “engram”) has been difficult to pinpoint in brain activity. By 

capitalizing on the relation between perception and memory, the present study detected 

neural activity sensitive to the activation of individual memories. This canonical pattern 

tracking approach provided a unique window into the invisible neurocognitive processes 

triggered when a reminder recapitulates several competing memories in neocortex. 

Strikingly, we could track dynamic changes in the activity of individual memories during 

selective retrieval, as competition was resolved. In doing so, we established clear evidence 

for cortical pattern suppression as a key mechanism of adaptive forgetting in the human 

brain. More broadly, this work converges with a growing literature showing that forgetting 

often serves an adaptive function2,36; it establishes how, by simply using our memory 

system via selective retrieval, we adapt the landscape of memory to the demands of mental 

life.

Online Methods

Participants

Twenty-four healthy participants (20 female) aged 20 – 32 years (mean 24.2 years) were 

recruited from the MRC CBU volunteer panel. They all had normal or corrected-to-normal 

vision, and reported no history of neurological or psychiatric disease. The experimental 

procedure was conducted in accordance with the local ethics review board, including the 

requirement of written informed consent from each participant before the beginning of the 

experiment.

Materials

The word material used as verbal cues consisted of 72 English words drawn from the MRC 

linguistic database (http://www.psych.rl.ac.uk/). Words were selected on the basis of having 
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relatively low imageabilty (mean = 571.3, SD = 37.3) and concreteness (mean = 545.1, SD = 

54.6) ratings such that they would not elicit concrete mental images by themselves when 

presented to participants in the scanner. Pictures were 144 photographs of well-known faces, 

well-known scenes, and everyday objects (48 pictures per category) from a range of in-

house databases as well as the internet. All images were converted to black-and-white and 

scaled to cover the same visual angle. Note, however, that faces and objects were 

background stripped and thus contained extensive areas of white background, while scenes 

always covered the full angle of the picture. In addition to the materials used in the main 

experimental runs, three additional words and six additional pictures were used for 

demonstration purposes during practice runs outside the scanner. The 144 pictures were split 

into two sets of 72 pictures each (24 per category). One set was trained together with a cue 

word as first associates, and the other set was trained together with the same cue words as 

second associates. The two associates linked to the same cue word always came from 

different categories (e.g. a face and an object, see Fig.1). Fifty-four pictures out of the 72 

first associates (18 per category) later became the to-be-retrieved targets, and 54 pictures out 

of the 72 second associates later became competitors. The remaining 36 pictures (18 first 

associates, 18 second associates) were linked to cue words that never appeared during the 

scanned selective retrieval task and thus served as baselines for the targets and competitors, 

respectively. Assignment of pictures to conditions was counterbalanced such that across 

participants, each picture equally often served as a target, competitor and baseline item.

Experimental procedure

Familiarization with the pictures, and the training on word-picture associations was carried 

out in a separate testing room outside the scanner. The first task was a familiarization phase, 

during which participants were presented with all 144 pictures used in the experiment as 

well as their corresponding similar lures (used in the visual recognition test, see below), and 

thus saw a set of 288 pictures in random order. Each picture appeared alone first; followed 

by its verbal label (e.g. “Charlie Chaplin”) after 1 s, the label remaining on the screen for 

another 1.5 s. Participants indicated with a button press whether they recognized (i.e., were 

familiar with) the face, object or scene shown on the photograph. In cases in which they 

indicated that they were unfamiliar with an item, the same picture was presented to them for 

a second time at the end of the familiarization phase.

After familiarization, participants were trained on the first set of 72 word-picture 

associations. To facilitate learning, the training was separated into 3 blocks, each consisting 

of an initial learning, a test, and a re-test cycle for 24 out of the 72 word-picture pairs. At the 

beginning of each block, participants were presented with the 24 word-picture pairs for 4.5 s 

each (4 s + 0.5 s inter-stimulus interval). The word was shown above the picture, and it was 

emphasized to participants that they should make an effort to memorize the picture in as 

much detail as possible in order to be able to bring back a vivid mental image of the picture 

when cued with the word, later in the scanner. In order to build strong links between the 

words and the pictures, we instructed participants to use a mental imagery strategy, that is, 

to use the word and picture in an interactive way (e.g., use the cue word to make the picture 

move, change colour etc.). This initial learning was followed by two cycles of test-feedback 

practice. On each trial, participants first saw a word (e.g. “sand”) on a blank screen, and 
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were asked to orally provide the label (or a short description) of the picture they had learned 

to associate with this word. Two similar versions of the correct picture associate (the same 

versions also used in the later visual recognition test) appeared 3 s later, and participants had 

to indicate which of the two pictures they had previously linked with the word. This 

procedure was again aimed at emphasizing the encoding of as many visual details as 

possible.

After finishing training on the first set of pictures (which would become the targets during 

later selective retrieval), participants were instructed that they would now be trained on a 

second set of associates for each word (which would become the competitors during 

selective retrieval), and that later in the scanner they might need either of the two associates. 

It was emphasized to participants that they would be required to retrieve the two associates 

separately, and should thus not inter-relate the two pictures associated with the same cue 

word (i.e. they should not form an integrated mental image). We did so because integration 

between competing memories has been shown to be a main factor limiting retrieval-induced 

forgetting1. In terms of the procedure, training of the second set of associates (which would 

later become the competitors) was performed exactly as for the first set, with the exception 

that the test-feedback practice involved only one instead of two cycles. After training of the 

second set, participants were given a short practice on the tasks they would perform in the 

scanner.

During the recall task in the MRI scanner, participants were prompted with a cue word for 4 

s each, followed by a response prompt (“F – O – S - ?”) asking them to indicate the category 

of the picture they were currently recalling (fingers 2-5 of the right hand corresponding to 

“face”, “object”, “scene”, and “don’t know”, respectively). The response prompt was 

presented for 1.5 s (ISI = 1 s). Feedback was given as soon as participants pressed a button, 

with the correct response option lightening up in green colour. We instructed participants to 

always press a button while the response prompt was still present on the screen, because 

they would miss the feedback when responding too late. However, responses given during 

the following inter-stimulus interval were still included in the data analysis. The selective 

recall task was followed by a short (~ 2min) period of rest, followed by the final recognition 

test. In this task, each trial presented participants with two similar pictures, both of which 

had been presented before in the familiarization phase, but only one of which they had 

initially been linked with a cue word. Importantly, the cue words were not shown during the 

final test. The two pictures were presented simultaneously, to the left and right of the 

fixation cross, for 3.5 s (ISI = 1 s). Participants used their right index and middle finger to 

select the picture they had linked with a word during training.

The final task conducted in the scanner was a pattern localizer for individual pictures, 

conducted to obtain the item-unique sensory templates. During the localizer, the BOLD 

activity pattern in response to a subset of 72 of the initially trained 144 pictures was sampled 

(only half of the items were sampled due to time constraints). The subsample of pictures was 

chosen randomly for each participant, with the constraint that it had to include 18 target 

pictures, the 18 corresponding alternative associates from the same word-picture triples, 18 

baseline pictures that had been trained as first associates, but were not recalled during the 

selective recall task, and the 18 corresponding alternative associates from the same word-
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pictures triples. The latter two picture types were used to obtain baseline templates to 

compare the targets and competitors, respectively, against. Each of the sampled pictures was 

presented 6 times overall. Picture presentation occurred in the context of a one-back task, 

where each picture was shown for 1.5 s (ISI = 1 s) and participants were instructed to 

respond with their index finger as fast as possible whenever two consecutive items in the 

picture sequence were the same.

The sensory templates were sampled at the end of the scanning phase for several reasons. 

First, the localizer overall lasted for ~25 min, and we did not want to introduce a delay of 

this length between study of the word-picture pairs and the selective retrieval task. Second, 

and more importantly, one might expect a priori that the similarity between the recall 

patterns and the sensory templates would become higher with increasing temporal proximity 

between the localizer and the time at which the templates are sampled. Such an increase 

could occur simply because any neural pattern sampled at a given time during scanning 

would show a drift towards or away from the localizer patterns depending on how far in 

time from the localizer it is sampled. Based on such pattern drifts, recall patterns should 

overall become less similar to the sensory templates if the localizer is conducted before the 

selective recall phase; and more similar to the templates if the localizer is conducted at the 

end of the experiment, after selective recall. Because our main effect of interest in this study 

was an effect of decreasing similarity across retrieval repetitions (for the competitors), it 

was a more conservative approach to conduct the localizer at the end of the experiment, such 

as to not risk the effect to be confounded with spurious similarity decreases caused by 

pattern drifts. Note that such spurious similarity changes might, according to this reasoning, 

have affected the increasing similarity we found with the sensory templates for target 

representations. Having said this, we believe that it is unlikely for all our effects to be 

caused by spurious correlation through pattern drifts, because of the use of very well 

controlled baseline measures. In particular, pattern drifts towards the “template state” should 

have affected the similarity with all templates, including the sensory templates of control 

items.

However, one might still argue that differences inherent in the localizer templates may affect 

the overall correlation between the neural patterns during selective retrieval and the different 

types of templates. We took several measures to minimize this concern, the results of which 

are shown in Supplementary Table 2 and Supplementary Fig. 5. These analyses showed that 

the templates did not significantly differ in signal-to-noise ratio (SNR; computed as mean t-

value across all voxels in the template divided by the standard deviation); in informational 

content as measured by Shannon entropy; or in the degree to which they correlated with 

other templates from the same condition (“correlationability”). Importantly, because the aim 

of these analyses was to show no difference between conditions (i.e. between target 

templates and their respective baseline templates, and between competitor templates and 

their respective baseline templates), Supplementary Table 1 also reports Bayes factors37 

together with the p-values, giving an indication of the strength of evidence in favour of the 

null hypothesis.

For all tasks conducted in the scanner, event sequences were optimized for rapid event-

related designs using self-programmed MATLAB code, based on the genetic algorithm 

Wimber et al. Page 14

Nat Neurosci. Author manuscript; available in PMC 2015 October 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



suggested by Wager and Nichols38. For the multivoxel pattern localizer, the output of the 

algorithm was modified to obtain a reasonably high number of picture repetitions (11-15% 

of the trials), as to keep participants engaged in the one-back task. In each of the scanned 

tasks (selective retrieval, visual recognition, and the pattern localizer), events were 

interspersed with null-trials (fixation periods covering the same period as actual events) 

corresponding to one-third of the overall trial number.

fMRI data acquisition and pre-processing

Imaging data were acquired on a 3 tesla Siemens Trio scanner using a 32-channel head coil. 

High-resolution (1 mm3 isotropic voxels), T1-weighted anatomical scans were acquired at 

the beginning of each session using a magnetization-prepared rapid acquisition gradient 

echo (MP-RAGE) sequence resulting in 192 sagittal slices. Functional volumes were 

obtained in three separate sessions corresponding to the recall phase (772 volumes), the final 

picture discrimination test (274 volumes), and the picture localizer (727 volumes). 

Functional volumes consisted of 32 axial slices (3.75 mm slice thickness, 3 × 3 mm in-plane 

resolution) covering the full brain, and were acquired using a descending T2*-weighted 

echo-planar imaging (EPI) pulse sequence (repetition time = 2.0 s; echo time = 30 ms, flip 

angle = 78°). The first 5 volumes of each session were discarded to allow for stable tissue 

magnetization.

SPM8 (www.fil.ion.ucl.ac.uk/spm/) was used for pre-processing and univariate analyses. 

For all analyses, images were slice timed and realigned in space to the first image of each 

session, and global effects within each session and voxel were removed using linear 

detrending39. All multivariate analyses were conducted in native (subject) space without 

normalizing or smoothing the EPI images.

Univariate data analysis

For univariate analyses, EPI images were additionally normalized (using the segmentation 

algorithm as implemented in SPM8) and smoothed with an 8mm full-width-at half-

maximum (FWHM) Gaussian kernel. Events of interest were modelled as delta (stick) 

functions and convolved with a first-order canonical hemodynamic response function 

(HRF). Button presses were included in all single-subject models as events of no interest, 

and the movement parameters from spatial realignment were included as nuisance variables. 

For univariate group statistics, single-subject activation maps of each condition of interest 

were entered into a within-subject ANOVA using pooled errors. The main comparison of 

interest between early and late retrieval trials (Fig. 5a) was calculated within this ANOVA, 

and results are reported on an uncorrected p-level of < 0.001 (minimum extent threshold k = 

10 voxels). For the regression analysis reported in Fig. 5c, an activation map contrasting 

early and late retrieval trials was calculated in each single participants, and entered into a 

whole-brain, group-level GLM using multivariate indices of target enhancement and 

competitor suppression (see below) as linear regressors.

Similarity-based multivariate data analysis

A template-based variant of representational similarity analysis (RSA40,41) was used to 

assess the degree to which the neural patterns that were active during recall were similar to 
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the neural pattern templates obtained from the pattern localizer. To this end, each trial and 

repetition during selective retrieval was modelled as a single event (regressor) in a general 

linear model by convolving a delta stick function at the onset of the event with a canonical 

HRF. For obtaining the sensory templates, the six repetitions of the same item as visually 

presented during the pattern localizer were modelled as one event (regressor). For the item-

specific linear pattern classification analysis (Fig.6), we modelled the six repetitions of each 

item as separate regressors. With respect to selective retrieval activity, each retrieval trial 

was modelled as a single event (regressor). Overall, this procedure produced 54 (items) × 4 

(repetitions) t-maps from the selective retrieval task, and 72 t-maps from the pattern 

localizer. Only the 18 × 4 recall patterns for which item-specific localizer templates were 

available were included in the item-specific analysis, whereas all 54 × 4 recall patterns were 

included in the categorical analysis.

Anatomical regions of interests (ROIs) were built based on the human atlas as implemented 

in the WFU pickatlas software (http://fmri.wfubmc.edu/software/PickAtlas), and back-

projected into native space using the inverse normalization parameters obtained from SPM 

during segmentation. The large ventral visual cortex ROI was comprised of bilateral inferior 

occipital lobe, parahippocampal gyrus, fusiform gyrus, and lingual gyrus (all bilateral and 

based on AAL definitions). The hippocampal ROI contained only the bilateral hippocampi, 

based on the Talairach Demon’s brodmann areas (dilated by a factor of 2 as this yielded 

optimal coverage of our individual subjects’ anatomies). The multivariate patterns used in 

the correlation approach were obtained by extracting the raw beta values from each region 

of interest and in response to each event of interest, converting them to t-values and finally 

vectorizing these t-values42,43. All similarity-based analyses were based on a correlation 

approach, using Pearson correlation as a metric of similarity between the sensory canonical 

templates and selective retrieval activity.

For the item-specific RSA analysis, we computed the correlation between each single 

selective retrieval trial and the corresponding target template (yielding an index of target 

reactivation), and the correlation between the same trial and the corresponding competitor 

template (yielding an index of competitor reactivation). To obtain an appropriate baseline 

for target and competitor reactivation on each single trial, we computed the correlation 

between the selective retrieval pattern and each single baseline template corresponding to 

the same category as the target (used as a baseline for item-unique target reactivation), or the 

same category as the competitor (used as a baseline for item-unique competitor 

reactivation). For the target and competitor baseline measures, correlations were first 

computed between the retrieval pattern and each single available baseline template from the 

target’s and competitor’s category, respectively. We then used the average correlation with 

the baseline templates (as opposed to the correlation with the average baseline template, 

which is an important difference) as a measure of baseline similarity. All further analyses 

performed on the raw similarity values, including linear fits, are described in the results 

section of the main text.

For the categorical analysis, we first computed an average face template, an average object 

template, and an average scene template based on all available baseline pictures from the 

pattern localizer task. To assess categorical target enhancement and competitor suppression, 
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we then correlated each selective retrieval trial with the categorical template of the current 

target category (e.g. a face), the categorical template of the current competitor category (e.g. 

an object), and the average template of the category that was currently not involved as target 

or competitor category (e.g. a scene). All methods using linear pattern classifiers are 

described in the Supplementary Methods.

Repeated measures ANOVAs and t-tests were used to test for differences in multivariate 

pattern similarity. All t-tests were used to test directional hypotheses, and unless indicated 

otherwise, one-tailed p-values at an alpha threshold of 0.05 are thus consistently reported 

throughout the results section. Brain-brain and brain-behaviour relationships were tested 

both within- and across subjects. For across-subjects relationships, Spearman correlation 

coefficients were used. All within-subject, item-by-item correlations (including logistic 

regression) were computed from fixed-effects models in order to increase power to detect a 

relationship. Empirical p-values for the logistic regression analyses were derived by 

randomly re-assigning the observed outcome on the final recognition test (with a value of 0 

or 1) across trials, and computing the regression for 10,000 of these random models. Note 

that for the correlations between prefrontal cortex and neural suppression slopes, the same 

results were obtained when using a random-effects model; for the logistic regression relating 

neural suppression slopes to behavioural outcome on the final test, there were not enough 

forgotten trials on an individual subject basis to yield stable beta coefficient estimates. For 

reasons of consistency, were therefore report fixed-effect analyses throughout. Before 

collapsing trials across subjects, outlier trials were identified within each subject, and 

rejected according to an absolute deviation from the mean (with a criterion of 2.044).

Classifier-based multivariate analyses

All pattern classification analysis used linear support vector machines as implemented in the 

LIBSVM library (http://www.csie.ntu.edu.tw/~cjlin/libsvm/). For the “diagnostic voxels” 

analysis reported in the main results section and in Figure 6, we trained separate binary 

classifiers, based on the six repetitions of each item during the sensory pattern localizer, to 

distinguish an individual target and competitor item from each same-category baseline item. 

For example, to derive the linear weights that optimally separate the “hat” pattern in ventral 

visual cortex from the pattern elicited by other baseline objects, six binary classifiers were 

trained to distinguish the hat from the goggles, the hat from a chair etc. During this 

procedure, each voxel is assigned a linear weight (ω), the absolute value of which directly 

reflects the importance of a feature (voxel) in discriminating the two classes. We defined the 

intersection of those voxels that consistently yielded the 10% highest weights across the 

separate classifiers for each competitor/target as the “diagnostic” voxels for a given target or 

competitor. The same procedure was used to determine the diagnostic voxels for each 

baseline item, except that here we trained five binary classifiers for each item, separating 

this baseline item from all remaining, same-category baseline items.

Having derived these diagnostic voxels for each localizer item, we were then able to 

compute the average activity (average t-values) of the voxels most diagnostic for the target 

and competitor item or a given recall trial during the selective retrieval task. In order to 

ensure that the diagnostic target and competitor voxels did not overlap, we also removed the 
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intersection of those two sets of voxels for this analysis. This rationale was purely theory-

driven, as competitor voxels (“features”) that overlap with target voxels (features) should 

not be subject to inhibition1,17. Finally, to parallel the similarity-based analyses using our 

template tracking approach, we subtracted from those average activity estimates on each 

retrieval trial the average activity of other voxels that are diagnostic for same-category 

baseline items, but not the specific target and competitor items involved in this trial. The 

results of this analysis are described in the main results section, and depicted in Figure 6 and 

Supplementary Figure 3.

For our categorical classification analysis, we trained binary linear classifiers purely on the 

patterns elicited in ventral visual cortex by the baseline items during the sensory pattern 

localizer. Three separate classifiers were trained to optimally distinguish faces from scenes, 

faces from objects, and objects from scenes. We then tested the accuracy of those classifiers 

to guess, on each selective retrieval trial, the category of the target by using the binary 

classifier representing the target vs. non-involved, baseline category (e.g. the face-scene 

classifier for the examples shown in Figures 1 and 2), and to guess the category of the 

competitor by using the binary classifier representing the competitor vs. non-involved, 

baseline category (e.g., the object vs. scene classifier in the example shown in Figures 1 and 

2). Note that this way of setting up the analysis automatically builds in the non-involved 

category, i.e. the one category that should not be elicited by a given cue word, as a baseline 

on each trial. The results reported in the main results section and in Figure 7 (lower row) and 

Supplementary Figure 4 correspond to the average accuracy, across all 54 retrieval trials, to 

predict the target (black) and competitor (red) categories, respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of the procedure (excluding initial familiarization and the pattern localizer) 
and behavioural results
(a) Participants were trained on novel word-picture pairs, each word being linked with two 

associates. During scanning, participants were cued with a word (4 times each across the 

entire selective retrieval task), and were asked to retrieve the first associate that they studied 

(the target), with the second associate (the competitor) assumed to interfere. On each trial 

they classified the memory that came to mind as being a face (“F”), object (“O”), scene 

(“S”), or unsuccessful retrieval (“?”). Some of the originally trained targets were not tested 

during this phase, and served as a baseline against which we assessed the impact of selective 

target recall. We expected to observe a disruptive aftereffect of selective retrieval on 

competing associates on a forced-choice visual recognition task that required participants to 

distinguish studied pictures from familiar foils. The coloured frames illustrate item types and 

were not visible to participants. (b) Illustration of the associative relationships assumed to 

have been formed after training, and of the different types of items created by the 

experimental procedure. (c) Behavioural data from the selective retrieval phase. The upper 
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panel shows the proportion of trials on which participants correctly selected the category of 

the target (e.g. face), or incorrectly selected the category of the competitor (e.g. object), the 

third (unrelated) category not linked to the current cue word (e.g. scene), or “don’t know.” 

The lower panels show the number of intrusion errors (competitor responses) and the 

corresponding increase in correct responses across repetitions (mean +/− SEM) (d) 

Behavioural results from the visual recognition memory task. The upper panel shows the 

disruption of discrimination performance for competitors, compared with their matched 

baseline items. Boxes reflect median (+/− 1st and 3rd quartile, error bars show minimum and 

maximum).
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Figure 2. Rationale of the item-specific canonical pattern analysis approach
For each region of interest, we extracted multivoxel activity patterns elicited during a given 

selective retrieval trial (left), and computed similarity with the canonical neural templates 

obtained from the sensory pattern localizer (middle). Item-specific similarity was assessed 

by correlating the selective retrieval pattern in a given region of interest, trial-by-trial, with 

the item-unique template of the current target, the template of the current competitor, and 

the templates of baseline items that were initially trained and came from the same categories 

as the target and competitor, respectively, but were never cued by a reminder word during 

the selective retrieval phase. The graphs show the hypothesized changes in pattern similarity 

across the four repeated retrieval trials. As sketched in these graphs, we expected the 

patterns during target retrieval to show increasing similarity with the target template (e.g. 

Marilyn Monroe), compared with baseline first associates from the same category (e.g. 

Albert Einstein), and decreasing similarity with the competing template (e.g. hat), relative to 

baseline second associates from the same category (e.g. goggles).
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Figure 3. Item-specific target reactivation and competitor suppression
The multivoxel pattern during selective retrieval was extracted and compared with the 

sensory template patterns in (a) ventral visual cortex, and (b) hippocampus. The first row 

shows an overlay of the respective anatomical ROIs on a standard MNI brain. The second 

row shows the raw average correlation (similarity) between selective retrieval activity and 

the canonical template of the current target (black solid), the templates of non-cued baseline 

items from the target category (grey dotted), the current competitor (red), and the templates 

of non-cued baseline items from the competitor category (pink dotted). Along the x-axis, 
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changes in similarity across the four repetitions of retrieving the same target memory are 

shown. The third row shows mean competitor-related (red) similarity, subtracting similarity 

with the respective baseline templates (mean +/− SEM across single subject estimates), 

along with the average of the best linear fit (ML estimates) across participants. The bottom 

row shows the same baseline-corrected measures for target-related (black) similarity. 

Evidence for item-specific memory reactivation or suppression is indicated by a significant 

(p < .05, indicated by asterisks) deviation from zero difference.
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Figure 4. Correlation between item-specific competitor suppression and forgetting
Across-participant correlations between cortical and behavioural suppression of competing 

memories are shown separately for (a) ventral visual cortex and (b) the hippocampus. The x-

axis in each graph shows our behavioural forgetting index on the delayed visual recognition 

memory test (forgetting of competitors relative to baseline items, with positive scores 

indicating more forgetting), and the y-axis shows the overall cortical suppression of 

competitors during the selective recall task, calculated as the difference between reactivation 

of competitors and baseline items, averaged across all four repetitions.
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Figure 5. Relationship between prefrontal activity and cortical suppression of competing 
memories
(a) Left and right mid-ventrolateral prefrontal cortices (VLPFC) showed stronger univariate 

activity (p < .001) during early (first half) than during late (second half) selective recall 

repetitions. (b) The univariate decrease across repetitions in both regions predicted the slope 

of cortical pattern suppression (ML estimates) in ventral visual cortex (VVC), with larger 

prefrontal decreases associated with more negative-going slopes of competitor suppression. 

(c) Whole-brain regression showing areas that, across participants, significantly correlate 

with the slope of competitor suppression (red) and the slope of target reactivation (black) in 
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ventral visual cortex. Both contrasts are shown at p < .001 (uncorrected). (d) Cortical pattern 

suppression as a function of PFC engagement, splitting the sample into participants with 

high and low PFC engagement. Participants with high PFC engagement showed a significant 

(p < .05) difference in the slope of competitor suppression, and in the level of competitor 

suppression on the fourth (final) retrieval trial. (e) Error bars in panels (b) and (d) represent 

SEM across participants for each single measure.
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Figure 6. 
Activation in diagnostic voxels for individual targets and competitors, across repetitions. 

Diagnostic voxels were determined from item-specific linear classifiers that were trained to 

distinguish a given target and a given competitor picture from all same-category baseline 

items. Based on the weights of these classifiers, we investigated average BOLD signal 

changes in the 10% most diagnostic voxels of each target (black) and competitor (red). 

Diagnostic target voxels showed above-baseline activation on the second and third 

repetitions (upper right). Importantly, on average, competitor voxels showed a significant 

linear decrease in activation across the four recall repetitions, and a significant below-

baseline suppression effect at the final repetition (lower right).
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Figure 7. 
Results from the categorical multivariate analyses in (a) ventral visual cortex and (b) the 

hippocampus. The upper line plots show raw similarity (Pearson correlation) values between 

selective recall patterns and the canonical template of the target category (black solid), the 

canonical template of the competing category (red solid), and the canonical template of the 

currently non-involved category (grey dotted), averaged across trials and participants. The 

middle plots show the same measures transformed into differences in categorical activation 

relative to category that was not involved on a given trial. The lower row shows the results 
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from a complementary categorical analysis using linear pattern classifiers (SVMs), with 

plotted means reflecting classifier accuracy in determining the target and competitor 

category (against the baseline, non-involved category). Both approaches converge in 

indicating highly significant categorical target reactivation in ventral visual cortex (but not 

the hippocampus), with no reliable change over repetitions. No significant below baseline 

suppression of the competitor’s category was evident. All measures plotted as mean +/− 

SEM (across subjects).
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