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Abstract

This study was carried out to characterize three aldehydes of health concern (formaldehyde,
acetaldehyde, and acrolein) at a central Beijing site in the summer and early fall of 2008 (from
June to October). Aldehydes in polluted atmospheres come from both primary and secondary
sources, which limits the control strategies for these reactive compounds. Measurements were
made before, during, and after the Beijing Olympics to examine whether the dramatic air pollution
control measures implemented during the Olympics had an impact on concentrations of the three
aldehydes and their underlying primary and secondary sources. Average concentrations of
formaldehyde, acetaldehyde and acrolein were 29.3+15.1 pg/m?3, 27.1+15.7 pg/m?3 and 2.3+1.0
pg/m3, respectively, for the entire period of measurements, all being at the high end of
concentration ranges measured in cities around the world in photochemical smog seasons.
Formaldehyde and acrolein increased during the pollution control period compared to the pre-
Olympic Games, followed the changing pattern of temperature, and were significantly correlated
with ozone and with a secondary formation factor identified by principal component analysis
(PCA). In contrast, acetaldehyde had a reduction in mean concentration during the Olympic air
pollution control period compared to the pre-Olympic period and was significantly correlated with
several pollutants emitted from local emission sources (e.g., NO,, CO, and PM, 5). Acetaldehyde
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was also more strongly associated with primary emission sources including vegetative burning and
oil combustion factors identified through the PCA. All three aldehydes were lower during the
post-Olympic sampling period compared to the before and during Olympic periods, likely due to
seasonal and regional effects. Our findings point to the complexity of source control strategies for
secondary pollutants.
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1. Introduction

1.1 Unique opportunity to collect air pollution data

The Chinese government implemented a series of air pollution control measures to improve
air quality during the 2008 Beijing Olympics and Paralympics. Control measures included
the reduction of pollutant emissions from factories and industrial facilities and cutting by
half the number of private cars on the road, according to an odd/even plate number rule.
Additionally, all construction projects were suspended during the Olympic period (Wang et
al., 2009a). These control measures resulted in significant reductions in concentrations of
primarily emitted pollutants (e.g., PM> 5, SO, NOy) (Huang et al., 2010; Li et al., 2010a; Li
et al., 2010b; Wang et al., 2009a; Wang et al., 2010a; Wang et al., 2010b; Wang et al.,
2010c; Wang and Xie, 2009; Wang et al., 2009b; Wang et al., 2009d; Xin et al., 2010; Zhou
etal., 2010). However, it is less straightforward whether the same trend occurred for
pollutants that had both primary and secondary sources, such as ozone and aldehydes. Our
study utilizes a valuable data set before, during, and after the Olympic Games to verify
whether, and at what extent, the change in emission source intensities resulted in the
abatement of pollution.

Based on the intensity of the air pollution control measures (Wang et al., 2009a), our study
used three periods defined as follows: the pre-Olympic period (June 4th — July 19th) when
some light controls were implemented, the during-Olympic period (July 20th — September
19th) when the full-scale control measures were implemented, and the post-Olympic period
(September 20th — October 30th) when the control measures were relaxed. Extra control
measures were also adopted during the Olympic (August 8th — August 24th) and the
Paralympic periods (September 6th — September 17th), which included barring an additional
20% of government-owned cars from traveling on the road, suspending outdoor construction
work, and temporarily closing some gas stations. Therefore, the during-Olympic period can
be further divided into the sub-period 1 with full-scale control measures (July 20th — August
7th and August 24th — September 5th), and the sub-period 2 with the extra actions described
above (August 8th — August 23rd and September 6th — September 17th).

1.2 Ambient concentrations and sources of aldehydes

Aldehydes are reactive compounds that induce adverse health effects in humans and animals
(Akbar-Khanzadeh and Mlynek, 1997; Benjebria et al., 1994; Cassee et al., 1996a; Cassee et
al., 1996b). Although a number of papers have been published assessing the air quality
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impact of emission controls during the Beijing Olympics (Huang et al., 2010; Li et al.,
2010a; Wang et al., 2009a; Wang and Xie, 2009; Wang et al., 2009d), only one paper dealt
with formaldehyde and acetaldehyde measured at one quasi-suburban Beijing site, and none
on acrolein. In fact, our overall knowledge about ambient acrolein exposure is extremely
limited despite the high toxicity of this compound. Aldehydes can be directly emitted into
the atmosphere from the incomplete combustion of biomass and fossil fuels (Schauer et al.,
2001; Zhang and Smith, 1999), and formed in the atmosphere as a result of photochemical
oxidation of reactive hydrocarbons (Altshuller, 1993; Possanzini et al., 2002). Important
combustion sources of aldehydes include vehicles, power plants, and residential wood
burning (Stahl 1969; Lipari 1984). Hence it is important to identify dominant sources in
order to set up more effective control strategies. Compared to many other air pollutants (e.g.,
hydrocarbons, PM mass and certain species), the relative contributions of primary and
secondary sources to aldehydes in metropolitan centers has been understudied (Altshuller,
1993; Chan and Yao, 2008; Feng et al., 2005).

To examine whether aldehyde concentrations were reduced during the air pollution control
period, we measured formaldehyde, acetaldehyde, and acrolein for approximately one month
during each period (pre-Olympic, during Olympic, or post-Olympic). In the during-Olympic
period, aldehydes were measured in both sub-periods 1 and 2. Furthermore, in order to better
understand the impact of the Beijing Olympic control measures, we also obtained data for
numerous other air pollutants at the same monitoring site, and meteorological data
(temperature, relative humidity, wind speed, and wind direction) from a nearby site, and
analyzed their relationships to the aldehydes.

1.3 Influence of weather, meteorology, and regional sources on pollution in Beijing

Another important factor influencing the concentrations of ambient aldehydes could be
meteorological conditions dominating the Beijing region during the summer months (Streets
et al., 2007). Beijing is located at 39°56°N and 116°20’E on the northwest border of the
Great North China Plain. It is located in a warm temperate zone and has a typical continental
monsoon climate (Chan and Yao, 2008). The air quality of Beijing in the summer is largely
determined by the meteorology (Streets et al., 2007), in particular, temperature and solar
radiation are key factors that control the photochemistry processes (Wang et al., 2009d). The
influence of wind direction is associated with the origin of air masses transported from the
surrounding areas of Beijing while wind speed controls the dispersion of air pollution. In
summer months, Beijing typically experiences high temperatures (mean: 27 °C) and relative
humidity (mean: 64%), both favoring the photochemical reactions. In the summer, Beijing
also has few windy days, which is unfavorable for atmospheric dispersion of air pollutants.

In addition, neighboring regions impact Beijing air quality (Wang et al., 2009b; Wang et al.
2010b). PM concentrations, ozone, and sulfate have all been shown to have significant
regional contributions. For PM, air masses transported from the south of Beijing have been
shown to increase PM concentrations in the region while air masses from the northwest have
been shown to decrease PM concentrations.
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Methods

2.1 Air sample collection, storage, and analysis

Sample collection, storage and analysis were performed in conjunction with the Health
Effects of Air pollution Reduction Trial (HEART) study (Zhang et al. 2013). The HEART
study included a comprehensive characterization of air pollution before, during, and after the
games. All the air samplers and monitors were collocated at a secured spot on the Peking
University 15t Hospital campus that served as the clinical base for the health outcome
measurements of the HEART study. The hospital was located in the center of Beijing,
within the 2"d ring road, 3 kilometers northwest of Tiananmen Square, surrounded by busy
streets of local motor vehicle traffic, cyclists, and pedestrians.

2.2 Aldehyde measurement methods

A passive sampling technique was used to collect aldehydes on a 24-hour integrated basis. A
C18 cartridge (LC-18, 0.5g/4.5mL, Supelco, Inc. US) coated with dansylhydrazine (DNSH)
was used to collect and derivatize the aldehydes. Samples and field controls were eluted
with acetonitrile and aliquots of extracts were analyzed using an HPLC system with
fluorescent detection. This method was described in detail previously (Herrington et al.,
2005; Weisel et al., 2005; Zhang et al., 2000). Throughout the entire sampling period, 78
aldehyde samples were collected in total, including 28, 26, and 24 samples for the pre-,
during-, and post-Olympic periods, respectively. One field control and one duplicate sample
were collected every 3 to 5 days for quality control purposes. Sample concentrations were
corrected with the average field blank concentrations. All the samples had detectable
concentrations of aldehydes.

2.3 Other pollutants and meteorological data measurement methods

Other pollutants, including O3, CO, SO,, NO, NO», NO,, respirable particles (PM1g), fine
particles (PM> 5), and numerous constituents of the fine particles were measured
simultaneously with the aldehydes. The constituents analyzed from PM5 5 have been
reported in a previous report (Zhang et al. 2013). In brief, PM> 5 were collected on four
filters (two Teflon and two quartz) simultaneously, and the constituents analyzed in the PCA
included elemental carbon (EC), organic carbon (OC) and polycyclic aromatic hydrocarbons
(PAHs) from the two quartz filters, and ions (Na*, NHs*, K*, Mg2*, Ca2*, F~, CI~, NO3~,
S0,427) and elements (Na, Mg, Al, K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn, Se, Pb) from the two
Teflon filters. Meteorological data (temperature, relative humidity, wind speed, and wind
direction) were collected at a nearby meteorological station (within 5 km). These methods
are detailed in previous papers (Zhang et al. 2013).

There were 94 days of data available from the HEART study concerning the other
pollutants. Among the 35 variables included in our principal component analysis, 33 had
two or fewer missing days of data. The two exceptions are sulfur dioxide (SO5), which is
missing 7 days of data during the middle period, and nickel, which is missing 16 days of
data mostly during the middle period.
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2.4 Principal component analysis and source apportionment

Principal component analysis (PCA) is a common technique to define new variables from
linear combinations of initial variables (Jolliffe 2002). PCA was used for source
apportionment before, during, and after the Summer Olympic Games in Beijing in August
2008. The PCA was conducted using the daily average concentrations of the PM, 5
constituents, as shown in Table 1, as well as PM1q concentrations and the daily average
concentrations of several gases measured (O3, SO,, NO, NO,, and CO). Statistical analysis
was completed in R. The principal() function in R from the ‘psych’ package was used. This
function utilizes a correlation matrix.

Certain pollutant data collected was included or omitted from the PCA. Elements analyzed
from PM,, 5 were chosen based on two criteria — the average concentration observed and
their expected utility as a tracer for particular sources. Furthermore, PAHs were chosen for
inclusion in the PCA based on their molecular weight. Lower molecular weight PAHSs are
not as useful for source apportionment since they are converted in the atmosphere (Park et
al. 2002, Schauer et al. 1996).

By inspection of the loadings for each factor, comparison to the existing literature, and
consultation with co-authors on PM> 5 source compositions, assessments were made
regarding the most likely source type of each factor. This analysis, along with the
information provided by the PCA regarding the percent of variance in the data explained by
each factor, was used to surmise the relative contribution of each major, underlying source
type for air pollution in Beijing. All five factors that were included had eigenvalues greater
than 1.4, and each accounted for at least 7.9% of the variability in the data. The five factors
in total accounted for 85% of the variability in the data.

2.5 Regional contributions assessed with air mass back trajectories

Results

Air mass back trajectories were calculated using the National Oceanic and Atmospheric
Administration (NOAA) ARL HYSPLIT 4.0 model with meteorological data from the
Global Data Assimilation System (GDAS) (Draxler and Rolph 2014). For each 24 hour
sample, three trajectories were calculated (one every eight hours) and the trajectory heights
were 20 m, 830 m, and 1480 m — the sample collection height, the average summer mixing
height, and the average daily maximum summer mixing height for Beijing, respectively
(Cheng et al., 2001).

3.1 Concentrations of atmospheric aldehydes

Mean, standard deviation, minimum and maximum concentrations of aldehydes
concentrations throughout the entire period and in the three specific periods are given in
Table 1. The average concentrations of all three aldehydes were lowest during the post-
Olympic period. Furthermore, despite the controls put in place during the Olympics, the
average concentrations of both formaldehyde and acrolein peaked in this period, although
the difference for formaldehyde from the pre- to the during-Olympic period was not
statistically significant. In fact, formaldehyde increased by 1.6 ug/m?3 (4%, p=0.576) from

Atmos Environ (1994). Author manuscript; available in PMC 2016 May 01.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Altemose et al.

Page 6

the pre- to the during-Olympic period and decreased by 23.4 pg/m?3 (63%, p<0.0001) from
the during- to the post-Olympic period. The concentration of acrolein increased by 0.5
pg/m3 (20%, p=0.038) from the pre- to the during-Olympic period and decreased by 1.5
pg/m3 (52%, p<0.0001) from the during- to the post-Olympic period. For acetaldehyde, the
average concentrations were highest before the Olympics. In fact, it decreased by 11.5
pg/m3 (33%, p=0.0074) from the pre- to the during-Olympic period, and in the post-
Olympic period it continued to decrease by 3.1 pg/m3 (13%, p=0.483).

Sixteen and ten samples were collected in the sub-period 1 (with full scale controls) and 2
(with full scale and extra controls), respectively. The mean concentrations of all aldehydes
were higher in sub-period 1 than in the sub-period 2. The concentrations in these sub-periods
were respectively, 37.7+10.7 pg/m?3 (28.2+8.0 ppb) and 36.5+12.4 pg/m?3 (27.2+9.3 ppb) for
formaldehyde, 26.3+15.9 pug/m3 (13.4+8.1 ppb) and 19.9+12.3 pg/m?3 (10.1+6.3 ppb) for
acetaldehyde, and 3.0£0.8 pg/m?3 (1.2+0.3 ppb) and 2.7+0.8 pg/m3 (1.10.3 ppb) for
acrolein. The reductions in aldehyde concentrations in sub-period 2 compared to sub-period
1 were 3%, 24%, and 10% for formaldehyde, acetaldehyde and acrolein, respectively.

3.2 Meteorological conditions

The daily average temperature, relative humidity, precipitation, and wind speed and the
prevailing wind direction in the three sampling periods are summarized in Rich et al, 2012.
The prevailing wind direction in summer for the Beijing’s urban area was S-SSE-SE, and
was similar before and during the Olympics. The change in wind speed was not statistically
significant. There also was no significant change in temperature or daily average RH
between the two periods. In contrast, temperature decreased by 11.7 °C (41.8%, p<0.0001)
and RH decreased by 12.2% (18.9%, p=0.0560) after the Olympic Games. The daily average
precipitation increased by 3.0 mm (99.4%, p=0.167) from the pre- to the during-Olympic
period, and then decreased by 5.7 mm (93.3%, p=0.012).

3.3 Correlation of aldehydes with other air pollutants and meteorological conditions

Since some of the air pollutants, e.g. PM; 5, NO and NO,, did not satisfy the normality
distribution assumption, the Spearman rank correlation test was used to examine the
association between pollutants. The Spearman correlation coefficients among aldehydes and
other air pollutants are shown in Table 2. The p-value for each coefficient was calculated
using permutation test and the significance level of each correlation coefficient is indicated
in Table 2 as well. Formaldehyde, acetaldehyde, and acrolein were significantly correlated
with each other. The correlation coefficients were 0.59 for formaldehyde and acetaldehyde,
0.63 for formaldehyde and acrolein, and 0.43 for acetaldehyde and acrolein. Formaldehyde
was significantly correlated with oxides of nitrogen (NO, NO, and NO,) in the negative
direction and the correlation coefficients ranged from —0.31 to —0.53. Formaldehyde was
significantly correlated with each of daily average O3, daily maximum Oz, CO and PMy 5 in
the positive direction with coefficients of 0.41, 0.38, 0.26, and 0.39, respectively.
Acetaldehyde was significantly and positively correlated with SO, NO,, CO and PM5 5
with correlation coefficients of 0.51, 0.23, 0.46, and 0.47, respectively. Acrolein was
significantly correlated with oxides of nitrogen in the negative direction (r=—0.53 with NO
and —0.36 with NO») and significantly correlated with daily average ozone (r=0.34), daily
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maximum ozone (r=0.33), and PM> 5 (r=0.24) in the positive direction. No significant
correlation was found for any of the three aldehydes with daily average photooxidant,
approximated as the sum of O3z and NO,. However, daily maximum photooxidant (the sum
of maximum O3 and NO,) was significantly correlated with formaldehyde (r=0.26, p=0.023)
and acrolein (r=0.23, p=0.053), respectively. Both formaldehyde and acrolein were
significantly correlated with temperature (r=0.56 and 0.59) and RH (r=0.62 and 0.38).
Acetaldehyde was significantly and positively correlated with RH (r=0.30) but not with
temperature.

3.4 Principal component analysis

The principal component analysis (PCA) was performed with and without the aldehydes in
the model. Inclusion of the aldehydes did not significantly change the interpretation of the
source apportionment or the ordering of the factors in terms of eigenvalues or percent
variance explained by each factor. By inspection of the loadings for each factor, comparison
to the existing literature, and consultation with co-authors on PM> 5 source compositions,
assessments were made regarding the most likely source type of each factor. This analysis is
further detailed in the supplemental materials.

With the aldehdyes in the model, formaldehyde and acrolein had component loadings from
0.73 to 0.75 for the secondary formation factor, while acetaldehyde had a component
loading of 0.46. Acetaldehyde had a component loading of 0.42 for the factor that
represented oil combustion.

The five source types identified — vehicle and industrial combustion, natural soil/road dust,
secondary formation, oil combustion, and vegetative burning- are consistent with previous
source apportionment studies in Beijing (Song et al. (1) 2006, Song et al. (2) 2006, Song et
al. 2007, Wang et al. 2008, Zheng et al. 2005). Motor vehicles and industrial sources were
separate factors in all of these previous studies, while they were jointly included in Factor 1
(vehicle and industrial combustion) in the current study. This was due to the fact that these
two sources were both targeted for control during the Olympic period, and the two sources
were highly correlated during the study period.

The other major novelties of the source apportionment in this study compared to previous
studies are the addition of an oil combustion source and the lesser impact of secondary
formation in the variance of the data. The former in previous studies was probably merged
with other combustion sources such as motor vehicles or industrial sources. The greater
contribution of secondary formation in the previous studies is easily explained, since they
included measurements in the winter and spring months not considered in this study;
differences in secondary formation of aldehydes would therefore be more evident with the
dramatic changes in atmospheric and weather conditions occurring in these seasons.

It is also notable that even though the spring Asian dust storms that impact Beijing did not
occur during the time frame of this study, Factor 2 (natural soil/road dust) still accounted for
a significant proportion of the variance in the principal component analysis (23.5%).
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3.5 Association of aldehydes with air pollution sources

Each aldehyde was regressed with the five source types identified through PCA in order to
evaluate the strength of the association between them and the identified air pollution
sources. The source types determined without the aldehydes included in the PCA were used
for this regression (see results in Table 3).

The daily concentrations of both formaldehyde and acrolein were most significantly related
to the secondary formation source type, in terms of both the coefficient rates and the
statistical significance of those coefficients (p<0.0001). Both coefficients in relation to the
secondary formation source type were negative, and this may be due to a negative and
positive component loading, respectively, for ozone and nitrogen dioxide in the secondary
formation source type. That is, the secondary formation source type daily score was highest
when NOy concentrations were high and ozone concentrations were low. Since
formaldehyde and acrolein were positively associated with ozone and negatively associated
with NOy, they were negatively associated with the secondary formation source type; their
concentration tended to increase when the secondary formation daily score was lower.

All three aldehydes were positively associated with the vegetative burning source type. In
fact, for acetaldehyde, this was the most significant source type with regards to rate and
statistical significance of the regression coefficient (p=0.0004). Formaldehyde and acrolein
were also significantly associated, but less significantly than acetaldehyde (p=0.0007 and
0.009, respectively).

Acetaldehyde and acrolein also had significant associations with the oil combustion source
type (p=0.005 and p=0.046, respectively), while formaldehyde well fitted with the natural
soil/road dust source type (p=0.0008). Unexpectedly, none of the aldehydes had a significant
association with the vehicle and industrial combustion source type, which as will be
discussed may have been obscured by secondary formation and regional effects.

3.6 Regional contributions

As shown in Table 4, the air mass back trajectories show that the before- and during-
Olympic periods, the air masses came predominantly from the south and east, which is
consistent with other HYPLIT modelling during the summer of 2008 in Beijing (Wang et
al., 2009b; Wang et al. 2010b). After the Olympics, the air masses came predominantly from
the north and west.

4. Discussion

4.1 Comparison of aldehyde concentrations in this study to other cities

As shown in Table 5, formaldehyde and acetaldehyde concentrations during the summer in
Beijing were at the high-end of concentration ranges measured in other cities during seasons
characterized by photochemical processes. For example, Milan and Rome in Italy, the
downtown area of Savannah, Georgia in the US, Rio de Janeiro in Brazil, and Guangzhou in
China, all had lower formaldehyde and acetaldehyde concentrations in the atmosphere
compared to this study (Andreini et al., 2000; Baez et al., 1995; Feng et al., 2005; Feng et
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al., 2004; Grosjean et al., 2002; Maclntosh et al., 2000; Possanzini et al., 1996; Zhang et al.,
1994).

Acrolein concentrations recently reported are summarized in Table 6. The acrolein level
observed in the summer in Beijing was in the high end of the range of acrolein compared to
levels reported in the other studies. The acrolein level observed in Beijing was roughly one
order of magnitude higher than those observed in most of the other studies. Only one study
reported acrolein concentrations higher than those found in Beijing during this study,
conducted in the urban area of Los Angeles, US, where the mean concentration of ambient
acrolein was 2.58 pg/m? close to an international airport.

4.2 Changes in aldehyde concentrations before, during, and after the Olympic period

As described earlier (in section 3.1), the time trends of formaldehyde, acetaldehyde, and
acrolein were different in the investigated period. The reduction in acetaldehyde
concentration (—-44%) from the pre-Olympics to sub-period 2 was markedly larger than from
the pre-Olympics to sub-period 1 (—-25%). However, the standard deviation in the two sub-
periods was large (SD=14.7 ug/m3), so the change was not significant (p=0.079). Because
the observation did not follow a normal distribution, the median concentration of
acetaldehyde was calculated; it reached 25.1 pg/m3 and 17.7 ug/m3 in sub-periods 1 and 2,
respectively. Therefore, only weak evidence was found suggesting an association between
the Beijing Olympic air pollution control measures and the reduction in ambient
concentration of acetaldehyde.

4.3 Sources of aldehydes in Beijing

Aldehydes in the atmosphere are generated primarily from direct emissions, e.g., industrial
and/or traffic sources, and secondarily from photochemical reactions. Both direct emissions
and photochemical reactions might have contributed to the high concentration of
atmospheric aldehydes in Beijing in the summer of 2008. Streets with high densities of
motor vehicles surrounded our monitoring site and mobile sources were expected to be
important sources of aldehydes. In fact, besides primary aldehydes, they release NOx and
VOCs, which are precursors of photochemical smog products including aldehydes.

According to Table 3, the three aldehydes are negatively correlated with the secondary
formation source type, which in turn showed positive coefficients for NO, and a negative
coefficient for ozone. Formaldehyde and acrolein in particular showed highly significant and
negative regression coefficients.

For formaldehyde and acrolein, the impact of the reduction of emission rates imposed during
the Olympics period was compensated by high concentrations of ozone not titrated by NOXx.
In fact, ozone concentrations were higher during the Olympic period, due to both high
incident sunlight and decreased NO,. Ozone formation is typically either NOy limited or
VOC limited (Seinfeld and Pandis, 1998). The Beijing urban area was most likely in a VOC-
limited regime (Wang et al., 2009c). Therefore a reduction in NOy would be expected to
result in higher ozone production, and consequently in higher concentrations of
formaldehyde during the Olympics.

Atmos Environ (1994). Author manuscript; available in PMC 2016 May 01.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Altemose et al.

Page 10

All three aldehydes are significantly associated in the positive direction with biomass
burning sources. This relationship may be driven by wood burning for cooking (Lipari et al.,
1984).

Acetaldehyde and acrolein, but not formaldehyde, are significantly associated in the positive
direction with oil combustion. However, none of the aldehydes are significantly associated
with the vehicle and industrial combustion source type. Although these sources, particularly
motor vehicles, were expected to contribute to atmospheric aldehyde concentrations, their
contribution during this study could be obscured by the strong influence of the secondary
formation factor; besides, as NO, emissions from motor vehicles decreased, ozone and
aldehyde concentrations tended to increase. So, although vehicle and industrial source
emissions and many associated pollutants decreased during the Olympic control period,
ozone, formaldehyde, and acrolein were not similarly reduced owing to these secondary
formation contributions.

The only other significant relationship among the aldehydes and air pollution factors in this
study is that formaldehyde was negatively correlated with the natural soil/road dust source
type (p < 0.001). It may be that weather or other patterns that lead to higher natural soil and
road dust, such as windy days, also caused low formaldehyde concentrations. However, as
shown in Table 2, the aldehydes did not show an association with wind speed. Furthermore,
the other aldehydes did not show a significant relationship with natural soil and road dust.

4.4 Effect of weather on aldehyde concentrations

Average concentrations of aldehydes and the mean values of meteorological parameters in
the three periods were plotted together pairwise in Figure 1. We observed that formaldehyde
and acrolein followed the trend of temperature. The 10.1% increase of temperature was
accompanied by a 4% and 20% increase in formaldehyde and in acrolein, respectively, from
the pre- to the during-Olympic period. From the during to the after-Olympic period, the
41.8% decrease in temperature corresponded with a 63% reduction in formaldehyde and a
52% reduction in acrolein. Higher relative humidity favors the formation of photochemical
smog (Seinfeld and Pandis, 1998); this explains our observation that concentrations of
formaldehyde and acrolein tracked the RH levels (see Figure 1). In the post-Olympic period,
RH decreased by 18.9% which was accompanied by large reductions in the aldehydes
concentrations. These relationships between the aldehydes and temperature and RH suggest
that the secondary photochemical sources were a major contributor to atmospheric
formaldehyde and acrolein in Beijing. In contrast, temperature and RH had much smaller
impact on acetaldehyde; and the variation in its concentration by period appears to be driven
by changes in emission sources. In addition, during the Olympic period, higher precipitation
was observed, and this was favorable to lower concentrations of water soluble pollutants
such as aldehydes. Thus, the reduction in acetaldehyde in the during-Olympic period might
be partly due to the higher rainfall intensity (Li et al., 2010a).

4.5 Effect of VOC and regional sources on aldehyde concentrations

It is interesting to note that with further controls during sub-period 2 during the Olympics,
formaldehyde and acrolein concentrations began to decrease, compared to sub-period 1
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during the Olympics. This might suggest a transition from a VOC limited (NOy saturated)
regime to a NOy limited regime, as evidenced by the fact that both NO, and ozone
decreased from sub-period 1 to 2. However, as shown in Figure 2, a decrease in ozone and
formaldehyde concentrations were not observed at the minimum NOy concentrations during
this study. The lowest daily average NO, concentration measured during this study was 10.5
ppb. Although this may be at the cusp of the transition from a VOC-limited to a NO-limited
regime, the concentration at which this transition might occur in Beijing could not be
established. The minimum concentration of NOy in this study exceeds that at which the
transition to a NOy-limited regime was observed to occur in the San Joaquin Valley in
California. There, the transition occurred at approximately 5 to 9 ppb NO even at high
ambient temperatures (Pusede and Cohen 2012).

As shown in Table 4 and previously discussed, regional air mass transport to the sampling
location was primarily from the south and east before and during the Olympics, but
primarily from the north and west after the Olympics. The impact of this regional effect
coupled with the seasonal change in sunlight, temperature, and relative humidity, along with
the consequent change in atmospheric chemistry, likely explains why all three aldehydes had
lower concentrations during the post-Olympic period. Not only might less aldehydes emitted
by primary sources be transported into the Beijing region from the north and west compared
to the south and east, but also less VOCs would be transported into the area. This lower
VOC concentration along with the lower incident sunlight, temperature, and humidity would
produce less aldehyde through secondary formation.

4.6 Limitations

It is important to note that our observations were made from only one monitoring site in
central Beijing, and the results may not reflect the overall situation for Beijing. Furthermore,
only summer and fall seasons were investigated during the study.

5. Conclusions

When Beijing hosted the 2008 Summer Olympics, concentrations of formaldehyde,
acetaldehyde and acrolein were found to be at the high-end of concentration ranges
measured in other cities around the globe. Although the aggressive air pollution control
measures implemented during the Olympics, especially when coupled with favorable
meteorological conditions, led to drastic reductions in pollutants of large primary sources
(e.g., PM5y 5, CO, SOy, and NOy), there was not a reduction in concentrations of
formaldehyde and acrolein. Our findings point to the complexity of source control strategies
for secondary pollutants, suggesting that the secondary photochemical processes may have
dominated the formation of formaldehyde and acrolein. The importance of the
photochemical contribution to formaldehyde and acrolein formation is evident since both
had highly significant regression coefficients for the secondary formation source type
identified using principal component analysis. Based on the results of this regression, it
appears the high concentrations of formaldehyde and acrolein during the Beijing Olympics
may be due largely to their relationship with ozone, and coincided with high incident
sunlight and low NOy concentrations during the Olympic period. Concentrations of
acetaldehyde, on the other hand, decreased during the Olympic period compared to the
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period before. Our regression for acetaldehyde indicates that the reduction in primary
emissions may have contributed to the reduction in acetaldehyde concentration, since
acetaldehyde was more strongly associated with primary emission sources including
vegetation burning and oil combustion rather than secondary formation. Higher rainfall
intensity during the Olympics may also have contributed to the lower acetaldehyde
concentration. Finally, seasonal and regional effects likely led to lower concentrations of all
three aldehydes during the post-Olympic period.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A — Potential Impact of Ozone on Aldehyde Measurements

We used the DNSH-based method instead of the DNPH-based method for the following
reasons: (1) This method is not affected by ozone at concentrations up to 300 ppb, as
previously reported by Rodler et al. (1993). This finding was also reproduced in a set of
experiments we have conducted to test the effects of ozone on the aldehydes recovery, as
shown in Appendix A. (2) This method is more reliable for acrolein. The DNSH-based
method has proven to substantially improve the collection efficiency and precision for
acrolein and crotonaldehyde (Herrington et al., 2005; Weisel et al, 2005). (3) This method
uses passive sampling thus offering convenience in the field.

In order to evaluate the possibility of DNSH and DNSH-derivatives oxidation within the
sampling cartridges, we used a dynamic dilution system. Aldehydes and ozone were
introduced into the dilution system at desired concentrations. A wide range of carbonyls (1-
100ppb) and ozone (0-300ppb) were achieved by adjusting the ozone generator output and
regulating the total flow rates through the clean dilution air. The test conditions were as the
following: (1) sampling duration was 48 hours; (2) chamber temperature was 25°C; (3) face
velocity was 0.05 m/s; (4) relative humidity were 32% and 90%; (5) ozone concentrations in
the chamber (ppb) were 0, 50, 100, 200, and 300.

Measured concentrations of formaldehyde, acetaldehyde, and acrolein, under different ozone
concentrations are shown in Table G1. Results show that the presence of ozone from 50 ppb
to 300 ppb caused <10% changes in measured concentrations of formaldehyde and that the
presence of ozone from 50 ppb to 200 ppb caused <10% changes in measured
concentrations of acetaldehyde and <15% changes in measured concentrations of acrolein.
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Table Al

Measured concentrations for three aldehydes with different ozone concentrations and the
recovery for two different methods

Aldehydes concentration: Mean+sd (ppb, n=4)

50 100 200 300
Ozone (ppb)

Formaldehyde 42.39+1.14 37.94+255 39.01+2.15 39.02+3.30 38.39+4.18
Acetaldenyde  22.23+0.25 20.12+1.30 20.12+1.07 21.01£1.66 17.89+0.94
Acrolein 17.03+0.39  14.73+0.67 15.31+1.22 14.46+1.06 13.02+0.81

The ratio of measured aldehydes concentrations, with and without the presence of ozone,
ranged from 89.5%—-92.0% for formaldehyde, 80.5%-94.5% for acetaldehyde, and 76.5%—
89.9% for acrolein.

Samples and field controls were eluted with acetonitrile and aliquots of extracts were
analyzed using an HPLC system with fluorescent detection. A Nova-Pak C18 column was
used, along with a mobile phase program described as follows: mobile phase A was
composed of 80% water, 10% acetonitrile, and 10% tetrahydrofuran containing 0.68 g/L of
KH2PO4 and 3.48 g/L of K2HPO4; mobile phase B was composed of 30% water, 40%
acetonitrile, and 30% tetrahydrofuran containing 0.68 g/L of KH2PO4 and 3.48 g/L of
K2HPOA4. The excitation and emission wavelengths used for detecting aldehyde-DNSH
derivatives were 250 nm and 525 nm, respectively. The collection efficiencies for ambient
formaldehyde, acetaldehyde and acrolein of this method were 115.5%+11.0%, 105.8%
+9.1%, and 87.5%+4.7% (mean + SD, N=30), respectively. The analytical detection limits
of the method were 0.98 ng, 0.86 ng and 1.15 ng per cartridge and the analytical precision,
determined as relative standard deviations (RSDs) of replicate samples, were 7.72%, 1.84%
and 4.56% (N=8) for formaldehyde, acetaldehyde and acrolein, respectively.

Appendix B — Principal Component Analysis

Song et al. previously utilized PCA for source apportionment of PM 5 in Beijing (Song et
al. (1) 2006). Based on data they collected for 6 days during each season (January, April,
July, and October) in 2000, the primary sources of PM5 5 in Beijing were secondary sulfate
and nitrate, mixed coal/biomass burning, industrial emissions, motor vehicle exhaust, and
road dust. Cao et al. also previously conducted source apportionment based on airborne
particulate matter data collected just outside of Beijing (to the northwest, in an area of heavy
motor vehicle traffic) from December 1998 to September 2000 (Cao et al. 2002). The four
most predominant sources identified included soil and fly ash, a mixture of refuse
incarnation and limestone from construction activities, motor vehicle and coal burning
sources, and sea spray.

Liu et al. utilized the United States Environmental Protection Agency (USEPA) Community
Multiscale Air Quality (CMAQ) modeling system to study seasonal variations and formation
mechanisms of major air pollutants in China (Liu et al. (1) 2010, Liu et al (2) 2010). They
found higher surface concentrations of sulfur dioxide, nitrogen dioxide, PMyq, and carbon
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monoxide in winter and fall compared to spring and summer. Ozone, on the other hand, was
higher in spring and summer.

In order to keep a reasonable ratio between the number of days and the number of pollutant
variables, certain pollutant data was omitted from this analysis. Overall, 14 of 24 PM5 5
elements and 4 of 14 PAHs were chosen for PCA. The elements were chosen based on two
criteria — the average concentration observed and their expected utility as a tracer for
particular sources. PAHs were chosen for inclusion in the PCA based on their molecular
weight. Lower molecular weight PAHs are not as useful for source apportionment since they
are converted in the atmosphere (Park et al. 2002, Schauer et al. 1996).

Since the principal component analysis ignores rows with missing data, replacement was
made for missing data with the arithmetic average value for the pollutant. Based on our
sensitivity analysis with and without replacement, the impact of replacement was found to
be minimal.

To evaluate how the aldehydes affected the PCA, our analysis was performed with and
without the aldehydes in the models. The addition of the aldehydes did not change the
interpretation of the source apportionment or the ordering of the factors in terms of
eigenvalues or percent variance explained by each factor. Each aldehyde was regressed with
the daily scores for the five factors in order to evaluate the strength of the associations. The
factors determined without the aldehydes in the PCA were used for this regression.

Along with the information provided by the PCA regarding the percent of variance in the

data explained by each factor, was used to surmise the relative contribution of each major,
underlying source type for air pollution in Beijing. All five factors that were included had
eigenvalues greater than 1.4, and each accounted for at least 7.9% of the variability in the
data. The five factors in total accounted for 85% of the variability in the data.

The results of the PCA are shown in Table B2. By inspection of the loadings for each factor,
comparison to the existing literature, and consultation with co-authors on PM, 5 source
compositions, assessments were made regarding the most likely source type of each factor.
This analysis, along with the information provided by the PCA regarding the percent of
variance in the data explained by each factor, was used to surmise the relative contribution
of each major, underlying source type for air pollution in Beijing. All five factors that were
included had eigenvalues greater than 1.4, and each accounted for at least 7.9% of the
variability in the data. The five factors in total accounted for 85% of the variability in the
data.

The five factors identified all have meaningful interpretations with respect to sources
contributing to the air pollution in Beijing during this study. Factor 1 appears to be a mixed
vehicle and industrial combustion source, based on the contribution of OC, EC, Cu, NO,™,
Se, Na, PM, 5, Zn, Pb, NO3™, and Mn to the factor. Factor 2 is predominated by elements
including Ca, Ti, Al, Mg, Fe, Na, Mn, and Ni, as well as the ions Ca2*, F~, Mg?*, and Na*.
This source is consistent with natural soil and road dust. Factor 4 is primarily V, Ni, Zn, and
Mn, which is indicative of an oil combustion source.
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Factor 3 has a strong positive correlation to NO and NO», and a strong negative correlation
to ozone, that is, it is strongly related to the titration reaction between ozone and the nitrogen
oxides. Factor 5 is primarily associated with the four PAHs included in the model, although
NH4+, SO42-, Cl-, CO, Pb, PM5 5, K+, and K are also significant components. This factor
appears to be associated with vegetative burning, based on the presence of the PAHSs along
with CO and K. The reason for the heavy loading for the PAHs with the vegetative burning
source type and negligible loadings for the other combustion source types does not
necessarily indicate that PAHs were not emitted by the other sources, but does imply that the
variation of PAHSs during this study followed the trend for vegetative burning sources more
closely than the other combustion sources.

Table B1

Acrolein levels of the field blanks in three Olympic period and the whole period

Pre-Olympics | During-Olympics | Post-Olympics | Whole period
N 7 8 3 24
Mean 0.6 0.7 0.8 0.7
Standard deviation 0.3 0.6 0.7 0.5
Table B3

VARIMAX rotated factor loading matrix for Beijing air pollution data (without aldehydes)

Factor 1 Factor 2 Factor 3 Factor 4

Vehicle/industrial combustion  Natural soil/road dust ~ Secondary formation  Oil Combustion

Factor 5

Vegetative burning

S0, 0.655 0.143 -0.060 0.372
NO 0.195 0.315 0.756 -0.092
NO, 0.679 0.319 0.605 0.091
0; -0.026 -0.070 -0.850 -0.122
co 0.490 0.050 0.255 0.432
PM,s 0.794 0.254 -0.114 0.085
oc 0.827 0.304 0.330 -0.021
EC 0.780 0.352 0.363 -0.023
Na 0.720 0512 0.077 0.173
Mg 0.138 0.903 -0.042 0.218
Al 0.239 0.897 0.195 0.173
K 0.600 0.245 0.095 0.441
Ca 0131 0.957 0.085 0.115
Ti 0.196 0.924 0.046 0.165
Mn 0.503 0504 0.221 0.542
Fe 0.376 0.749 0.206 0.239
cu 0.772 0.161 -0.075 0.038
Zn 0.584 0.164 0.225 0.648
Pb 0.717 0.127 0.030 0.382
Ni 0.200 0.438 0.137 0.732
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Vehicle/industrial combustion

Factor 1

Factor 2

Natural soil/road dust

Factor 3

Secondary formation

Factor 4

Oil Combustion

Factor 5

Vegetative burning

\% 0.055 0.162 -0.152 0.866 0.232
Se 0.761 0.151 0.258 0.374 0.245
Na* 0.641 0.445 0.017 0.238 0.398
NH,* 0.617 -0.040 -0.318 0.014 0.635
K* 0.568 0.136 -0.015 0.385 0.525
Mg?* 0.239 0.904 0.058 0.063 -0.013
Ca?* 0.109 0.950 0.039 0.027 -0.017
F_ 0.105 0.936 0.157 0.004 -0.043
Cl_ 0.359 0.126 0.211 0.137 0.628
NO3~ 0.752 0.174 0.061 0.089 0.405
S0,% 0.584 0.028 -0.468 0.008 0.563
BbF 0.181 -0.040 -0.107 0.129 0.946
BeP 0.033 -0.091 -0.225 0.124 0.945
IcP 0.326 0.040 0.011 0.056 0.906
BghiP 0.245 -0.019 -0.046 0.064 0.934
Eigenvalue 16.79 6.92 1.41 1.87 2.84

% Var. 26% 23% 8% 10% 19%

Cum % var. 26% 49% 57% 66% 85%
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Figure 1.
Period-specific means of ambient aldehydes and meteorological parameters, e.g.
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temperature, relative humidity, wind speed, and precipitation, in three sampling periods.
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Figure 2.

Ozone and formaldehyde concentrations as a function of nitrogen oxide concentration,

Beijing, China, June to October 2008.
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