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Abstract

A new radiosynthetic protocol for the preparation of [11C]aryl nitriles has been developed. This 

process is based on the direct reaction of in situ prepared L•Pd(Ar)X complexes (L=biaryl 

phosphine) with [11C]HCN. The strategy is operationally simple, exhibits a remarkably wide 

substrate scope with short reaction times, and demonstrates superior reactivity compared to 

previously reported systems. With this procedure, a variety of [11C]nitrile-containing 

pharmaceuticals were prepared with high radiochemical efficiency.

Incorporation of short-lived radioisotopes such as 11C (t1/2 = 20.4 minutes) into organic 

molecules for application in positron emission tomography (PET)1 presents unique synthetic 

challenges.2 The short half-life of 11C necessitates reaction times on the order of seconds/

minutes with clean reaction profiles to facilitate rapid purification. Additionally, the 

radiochemical reaction must outcompete all possible side reactions, which can be a 

challenge because there is a large stoichiometry bias between radionuclide and all other 

species present in the reaction mixture (including the carrier gas), and submicromolar 

concentrations of radionuclides are typically employed. Lastly, the reaction conditions 

should be mild (i.e., room temperature under neutral conditions) to minimize decomposition 

of the radiotracer that is formed. Due to these restrictions, many high-yielding catalytic and 

even stoichiometric reactions cannot be applied to the synthesis of radiolabeled compounds.

Corresponding Author. sbuchwal@mit.edu, hooker@nmr.mgh.harvard.edu.
‡These authors contributed equally.

ASSOCIATED CONTENT
Supporting Information. Experimental details and compound characterization data. This material is available free of charge via the 
Internet at http://pubs.acs.org.

The authors declare the following competing financial interest: MIT has obtained or has filed patents on some of the ligands/
precatalysts used in this work from which S.L.B. and former/current coworkers receive royalty payments.

HHS Public Access
Author manuscript
J Am Chem Soc. Author manuscript; available in PMC 2015 April 13.

Published in final edited form as:
J Am Chem Soc. 2015 January 21; 137(2): 648–651. doi:10.1021/ja512115s.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pubs.acs.org


A promising method to introduce a radioactive carbon unit into organic molecules is the Pd-

mediated cyanation of aryl (pseudo)halides (Scheme 1).3,4 This transformation is based on 

oxidative addition (OA) of the aryl (pseudo)halide to an “L•Pd(0)” intermediate to form 

complex A, transmetallation (TM) with cyanide, and reductive elimination (RE) to form the 

desired aryl nitrile product.

However, extension of this strategy to the radiosynthetic setting does not necessarily meet 

the challenges discussed above.2,3 The use of traditional ligands (e.g., PPh3 or 1,1′-

bis(diphenylphosphino)ferrocene (dppf)) requires harsh reaction conditions, such as high 

temperatures, relatively long reaction times, and the use of base (e.g., K2CO3) to capture 

[11C]HCN in the gas phase, which diminishes the substrate scope (Scheme 2, a).5 In 

addition, these reactions are typically carried out in DMF or DMSO, which can hamper 

purification or multi-step syntheses involving reactions incompatible with these solvents. On 

the other hand, we have recently demonstrated that biaryl phosphine ligands, specifically L1 
(Figure 1), facilitate stoichiometric transmetallation with cyanide and reductive elimination 

of aryl nitriles at ambient temperature in under 5 minutes.6 Thus, we hypothesized that 

[11C]cyanation of aryl (pseudo)halides, even with an extremely low concentration of 

[11C]HCN, could be achieved under mild conditions using biaryl phosphines instead of 

traditional ligands (Scheme 2, b).

Even with this strategy, reagent activation (i.e., generation of “L•Pd(0)” from the Pd source) 

and oxidative addition, steps that do not involve the radionuclide, still take place after the 

end of bombardment (EOB), when [11C]HCN addition is complete, resulting in an 

unnecessary loss of radioactivity. Ideally, a preformed oxidative addition complex A, with 

L1, could be used directly (Scheme 2, c)7 to avoid this loss of radioactivity. However, the 

independent synthesis and purification of A, which can be a challenging task for non-

experts, would limit the applicability of this strategy to radiotracer synthesis for PET 

imaging. Recently, we introduced a new class of biaryl phosphine (L1–L4)-bound Pd(0) 

complexes 1–4, which are functionally equivalent to "L•Pd(0)" at ambient temperature 

(Figure 1).8 We envisioned that utilizing complexes 1–4, along with the desired aryl 

(pseudo)halide, should allow for the convenient generation of A in situ to set the stage for 

the formation of the aryl-[11C]CN bond (Scheme 2, d). This setup should allow us to take 

full advantage of the established system to prepare [11C]aryl nitriles in a mild and 

expeditious manner.

To test this hypothesis, a synthesis of [11C]3-aminobenzonitrile was attempted using 3-

bromoaniline as a substrate (Table 1). In these experiments, the Pd source and the aryl halide 

were mixed and allowed to stand for 30 minutes to generate A in situ (Table 1, a). Then, 

[11C]HCN in THF9 was introduced into the reaction vial, allowed to react for one minute 

(Table 1, b), and the reaction mixture was analyzed by radio TLC. The desired product was 

successfully formed with 81% radiochemical conversion (RCC) in the presence of 1 (entry 

1).10 In fact, nearly the same RCC was observed after only 10 seconds of reaction time 

(entry 2), though subsequent reactions were conducted for 1 minute for consistency. In 

contrast, conventionally used Pd(0) sources, including [Pd(PPh3)4] (entry 3) and a 

combination of Pd2(dba)3/dppf (entry 4) did not produce any product at either room 

temperature or after heating the reaction mixture at 50 °C for 5 minutes. Only when the 
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reaction with [Pd(PPh3)4 was carried out under much harsher conditions (DMF, 100 °C, 5 

minutes) was the desired product formed, and then only in low yield (entry 5). Notably, 

Pd2(dba)3/L1 (entry 6) and L1-bound palladacycle 5,6 alone (entry 7) or with activating base 

(entry 8), could also be used to furnish the product, though both were less efficient than 1. 

Therefore, 1 is uniquely effective at forming A at room temperature in high yield, allowing 

for the effective [11C]cyanation of 3-bromoaniline under extremely mild conditions.

Having demonstrated the viability of this strategy, we next applied it to the syntheses of a 

variety of functionalized [11C](hetero)aryl nitriles (Table 2). Although 1 showed the most 

general reactivity, the ease of setting up these reactions with a stock solution of [11C]HCN 

in THF allowed for the quick determination of the ideal solvent and reagent (1–4) for each 

substrate. The reaction tolerates nucleophilic amine (6) and hydroxyl (7) groups, as well as a 

formyl group (8), which is susceptible to benzoin condensation at elevated temperatures.6 

Both aryl iodides and bromides can be used to furnish [11C]aryl nitriles in high yield, with 

aryl chlorides providing lower but still radiosynthetically useful yields (7).11 The electronic 

nature of the arene did not bias the outcome of the reaction: highly electron-rich (7, 9) and 

electron-deficient (8, 10) [11C]nitriles were prepared with comparable efficiency. 

Heterocyclic compounds, such as quinoxaline (11), quinoline (12), thiazole (13) and 

pyrazole (14), were also viable substrates for this reaction. To our knowledge, these are the 

first examples of the [11C]-cyanation of 5-membered heteroaryl halides. Finally, a [11C]CN-

labeled derivative of estrone was successfully synthesized from the corresponding triflate 

with high radiochemical yield (15). In all cases, the same straightforward setup as described 

above was used, and the results proved to be highly reproducible.

The susceptibility of the [11C]-cyanation of 3-bromoaniline with 1 or [Pd(PPh3)4] to 

inhibition by common contaminants and functional groups was also evaluated (Table 3).12 

Potential inhibitors were placed in the reaction vessel together with the aryl halide before 

carrying out oxidative addition to form A. The presence of common acidic compounds, such 

as water, phenol, or an amide did not significantly affect the outcome of the reaction with 1 
(entries 2–4a). Nitrogen-containing heterocycles that can impede metal-catalyzed cross-

couplings, such as pyridine (entry 5a), imidazole (entry 6a), and indole (entry 7a), also did 

not show any inhibitory effects when using 1. In contrast, while the reaction with 

[Pd(PPh3)4] could tolerate phenol (entry 3b), the presence of a free amide (entry 4b) or 

pyridine (5b) diminished the yield, and imidazole completely inhibited the desired reaction 

(entry 6b). Thus, reactions carried out with 1 at room temperature are more robust than those 

carried out with [Pd(PPh3)4] at 100 °C.

Another motivation in the development of our [11C]cyanation protocol is the abundance of 

cyano groups in pharmaceutically important small molecules,13 as well as their ability to be 

readily transformed into other common functional groups such carboxylic acids, amides,14 

amidines,15 and tetrazoles.16 Therefore, the syntheses of complex drug-based radiotracers 

using the corresponding aryl bromides as precursors were carried out (Table 4). All 

compounds were prepared using the same simple procedure presented above with no need to 

isolate the oxidative addition complexes. [11C]Citalopram (16, antidepressant),17 

[11C]vilazodone (17, antidepressant),18 and [11C]perampanel (18, antiepileptic)19 could be 

formed with high efficiency. The nitrile precursor to [11C]LY279505020 (19) was also easily 
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prepared. Notably, [11C]LY2795050 itself (20, κ-opioid receptor antagonist) was also 

effectively prepared with 25% RCC from the corresponding bromide, demonstrating the 

potential utility of our protocol in multistep radiosyntheses. It is important to note that, to the 

best of our knowledge, this is the first preparation of [11C]vilazodone and [11C]perampanel. 

Although 18 could be prepared using [Pd(PPh3)4] with comparable yield as with 1 (albeit 

with a less clean reaction profile), both 16 and 17 were formed in significantly higher yields 

with 1 at room temperature than with [Pd(PPh3)4] at 100 °C (Table 4).

Finally, high-radioactivity syntheses of compounds 17–19 were carried out to assess 

applicability of this method for in vivo imaging (Table 5). To avoid loss of activity during 

transfer, [11C]HCN was captured from the carrier gas into the reaction mixture (vide supra). 

After achieving maximum radioactivity in the reaction mixture, HPLC eluent was added and 

the product was purified by reverse-phase HPLC. The absolute (decay uncorrected) 

radioactivity of the purified product ranged from 15–35 mCi21 and the whole process 

including chromatography took only 12–23 minutes after the solution capture of [11C]HCN, 

which is only 0.61–1.1 half lives of 11C. In addition, the specific activities of the products 

were all sufficiently high and reproducible. This is especially important in the preparation of 

high specific activity [11C]radiotracers. For comparison, the previous report of the synthesis 

of [11C]LY2795050 provided the final product with a specific activity of 0.64 Ci/µmol.20 It 

should also be mentioned that the protocol is suitable for automation and remote control due 

to the ease of setup and purification of the product. This permits translation to human PET 

studies, which require strict validation.22

In conclusion, we have demonstrated the capability of new Pd complexes 1–4 to promote the 

nearly instantaneous [11C]cyanation of (hetero)aryl halides and triflates at room 

temperature, an otherwise difficult transformation. The remarkable reactivity stems from the 

capability of 1–4 to produce oxidative addition complex A in situ. As a consequence of the 

mild reaction conditions and robustness of this methodology, it exhibits wide functional 

group tolerance and is highly amenable for high-activity synthesis, even of densely 

functionalized molecules.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structure of ligands L1–L4 and complexes 1–4.
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Scheme 1. 
Mechanism of Pd-mediated cyanation of aryl (pseudo)halides.
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Scheme 2. 
Synthetic strategies for [11C]aryl nitriles.
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Table 2

Radiosyntheses of [11C]aryl nitriles.a

a
Reported values indicate radiochemical conversion. Reaction conditions: [(L•Pd)n(COD)] (0.004 mmol in Pd), ArX (0.008 mmol), solvent (0.1 

mL), rt, 30 min; then [11C]HCN (1–5 mCi), THF (0.1 mL) rt, 1 min.

b
Toluene as solvent.

c
THF as solvent.
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Table 3

Robustness screen of the radiosynthesis of [11C]3-aminobenzonitrile with 1 (a) and [Pd(PPh3)4] (b).a

Entry Additive RCC (%) w/ 1a (a) RCC (%) w/ [Pd(PPh3)4]b (b)

1 None 81 30

2 water 80 n.d.

3 phenol 94 25

4 4-methoxybenzamide 88 9

5 pyridine 90 14

6 imidazole 92 0

7 5-fluoroindole 80 n.d.

a
Reaction conditions: 1 (0.002 mmol), additive (0.008 mmol), 3-bromoaniline (0.008 mmol), toluene (0.1 mL), rt, 30 min; then [11C]HCN (1–2 

mCi), THF (0.1 mL) rt, 1 min.

b
[Pd(PPh3)4] (0.004 mmol), additive (0.008 mmol), 3-bromoaniline (0.008 mmol), K2CO3 (0.008 mmol), DMF (0.1 mL); then [11C]HCN (1–5 

mCi), DMF (0.1 mL), 100 °C, 5 min.

n.d. =not determined.
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Table 4

Syntheses of [11C]-labeled drugs.a

a
Reported values indicate radiochemical conversion. Reaction conditions: [(L•Pd)n(COD)] (0.004 mmol in Pd), ArBr (0.008 mmol), solvent (0.1 

mL), rt, 30 min; then [11C]HCN (1–5 mCi), THF (0.1 mL) rt, 1 min.

b
Toluene/acetone (5:1) was used as solvent.

c
[Pd(PPh3)4] (0.004 mmol), ArBr (0.008 mmol), K2CO3 (0.008 mmol), DMF (0.1 mL); then [11C]HCN (1–5 mCi), DMF (0.1 mL), 100 °C, 5 

min.

d
DMF as solvent.
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Table 5

High-radioactivity synthesis of [11C]-labeled drugs.

[11C]Ar-CN 17 18 19

starting / final activity (mCi) 188 / 35.3 156 / 15.1 70.0 / 14.5

RCY (%)a 18.8 9.7 20.7

total synthesis time (min)b 16.5 22.5 12.4

specific activity (Ci/µmol) 3.97 1.34 2.69

a
Decay-uncorrected isolated radiochemical yield at end of synthesis.

b
Calculated after [11C]HCN delivery peaked to product isolation after HPLC purification.
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