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Abstract

pH is a ubiquitous regulator of biological activity, including protein-folding, protein-protein 

interactions and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models 

that were developed to address questions related to the pH-dependent properties of proteins are 

largely based on implicit solvent models. However, implicit solvent models are known to 

underestimate the desolvation energy of buried charged residues, increasing the error associated 

with predictions that involve internal ionizable residue that are important in processes like 

hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled 

in implicit solvent, which are important in systems like membrane proteins and ion channels. We 

report on an explicit solvent constant pH molecular dynamics framework based on multi-site λ-

dynamics (CPHMD
MSλD

). In the CPHMDMSλD framework, we performed seamless alchemical 

transitions between protonation and tautomeric states using multi-site λ-dynamics, and designed 

novel biasing potentials to ensure that the physical end-states are predominantly sampled. We 

show that explicit solvent CPHMDMSλD simulations model realistic pH-dependent properties of 

proteins such as the Hen-Egg White Lysozyme (HEWL), binding domain of 2-oxoglutarate 

dehydrogenase (BBL) and N-terminal domain of ribosomal L9 (NTL9), and the pKa predictions 

are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa 

units. With the recent development of the explicit solvent CPHMDMSλD framework for nucleic 

acids, accurate modeling of pH-dependent properties of both major class of biomolecules – 

proteins and nucleic acids is now possible.
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1. INTRODUCTION

pH is one of the critical regulators of biological activity. Enzymatic activity is optimized 

within a narrow pH range,1 often requiring the participation or presence of ionizable 

residues such as aspartic acid, glutamic acid and/or histidine in the active site,2 and accurate 

measurement of their pKa values is crucial in understanding the catalytic mechanism.3–5 In 

recent years, the role of pH regulation in nucleic acid systems has been acknowledged,6,7 

where parallels to proteins can be drawn, such as the catalytic activity of ribozymes 

(ribonucleic acid enzyme),8–11 demonstrating the ubiquity of pH regulation in biological 

processes. Apart from its influence on catalytic activity, pH regulation has been observed in 

numerous other processes including protein folding,12–15 protein-protein interactions,16 

protein-substrate binding,17,18 translational recoding,19 and aberrant pH regulation has even 

been implicated in cancer-related physiology.20 As such, specific examples of pH-dependent 

properties encompass a wide variety of systems, such as the catalytic mechanism of 

dihydrofolate reductase,21 proton gradient driven ATP synthesis,22 activity of the U6 

intramolecular stem-loop of the spliceosome complex23 and the influenza virus 

haemagglutinin.24

While the pKa values of amino acid monomers have been known for decades, the 

microenvironment around the residue located in a protein environment may alter its pKa 

value. Thus, the ability to measure the microscopic pKa of a site-specific residue is 

invaluable in identifying key titrating residues and understanding the mechanism of these 

pH-dependent biological processes. Using staphylococcal nuclease and its mutants as a 

model system, Garcia-Moreno and co-workers undertook a series of comprehensive 

investigations into the effect that the local microenvironment has on the perturbation of the 

pKa values of protein residues.25–28 Their effort has cumulated in a joint collaboration 

between experimentalist and theoreticians, where the current state-of-the-art computational 

methods for predicting protein pKa values were evaluated against experimentally measured 

pKa values.29,30

One major physics-based approach that has emerged over the years to treat electrostatics in 

proteins and nucleic acids is the Poisson-Boltzmann (PB) equation methodology, which has 

achieved reasonable success in predicting protein pKa values.31 A key limitation of initial 

PB methods was the lack of conformational flexibility, although this has been partially 

addressed using approaches like tuning the effective protein dielectric constant32 and 

including representations of multiple conformations.33,34 The need for conformational 

flexibility led to the development of the other major physics-based approach in 

computational pKa predictions, which is based on molecular dynamics (MD) simulation. 

Warshel and co-workers were the first to demonstrate the use of free energy calculations to 

calculate the pKa values of protein residues.35–38 Subsequent developments in the MD 

community have sought to couple the protonation state of the titrating residue with the 

dynamics of the protein itself. Such pH-coupled simulations, which have been termed 

constant pH molecular dynamics (CPHMD), are uniquely suited to model realistic pH-

dependent responses, even in systems where there is limited experimental data because no a 

priori information on the identity of key titrating residues and their protonation state is 

required.
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The CPHMD methodology has been implemented using two distinct approaches, which vary 

in the manner in which the titration coordinates are treated – either discretely or 

continuously.39 In the discrete CPHMD variant, the MD sampling of atomic coordinates is 

combined with the Monte Carlo (MC) sampling of protonation states. At regular intervals 

during a typical MD simulation, a MC step is performed to determine the change of the 

protonation state. Discrete CPHMD was first reported by Bürgi et. al.,40 which was 

computationally expensive at that time and suffered from convergence issues, owing to the 

fact that it was performed in explicit solvent and used the more expensive thermodynamic 

integration approach to calculate the energies used in the MC evaluation step. Baptista and 

co-workers reported a similar discrete CPHMD implementation but used the Poisson-

Boltzmann finite-difference method to calculate the energies used in the MC evaluation 

step.41–43 With the advances in implicit solvation models around this time,44,45 and the 

initial convergence issues reported for explicit solvent CPHMD,40 subsequent developments 

in discrete CPHMD by Dlugosz and Antosiewicz,46,47 and Mongan et. al.,48 were 

implemented using a Generalized-Born (GB) implicit solvent model. More recent 

improvements in the discrete CPHMD community have been focused on achieving better 

sampling by enhanced sampling techniques, such as Accelerated Molecular Dynamics by 

Williams et. al.49 and replica exchange strategies by Roitberg and co-workers.50–52 Others 

in the field, namely Warshel and co-workers have focused on developing a more physically 

realistic form of CPHMD,53 using time-dependent MC sampling of the proton transfer 

process,54 and the empirical valence bond (EVB) framework to simulate proton transfer 

between solute and solvent.55

By contrast, in the continuous CPHMD variant, which were first reported by Baptista et. 

al.56 and Borjesson et. al.,57 titration coordinates can be treated as mixed states. In the 

continuous CPHMD variant developed by Brooks and co-workers, the titration coordinate 

represents an instantaneous microstate, and it is propagated continuously between the 

protonated and unprotonated states using the λ dynamics approach.58–60 Continuous 

CPHMD allows one to avoid sudden jumps in potential energy that occur after a successful 

MC move in the discrete CPHMD variant, and potentially avoids artifacts that may be 

caused by the MC moves in titration coordinates. Additionally, continuous CPHMD 

facilitates coupled proton moves, which would need to be engineered as specific move types 

in the MC-based variant. Continuous CPHMD was originally implemented in implicit 

solvent,61 improved to account for proton tautomerism,62 and it provided the first 

demonstration of using enhanced sampling strategies to accelerate sampling and 

convergence in CPHMD simulations.63 The effectiveness of continuous CPHMD has been 

demonstrated on numerous pH-dependent systems, including of protein folding,64,65 

aggregation of Alzheimer's beta-amyloid peptides,66 pH-triggered chaperon activity of 

HdeA dimers,67 electrostatic effects on protein stability,68 self-assembly of spider silk 

proteins,69 and RNA silencing in the carnation italian ringspot virus.70 Other investigators in 

the field have also seen a number of successes using discrete CPHMD simulations.71–73

While the move to implicit solvent CPHMD has obvious advantages in sampling and 

convergence, a number of unresolved issues have emerged over the years. It has been 

reported that the generalized Born implicit solvent model underestimates the desolvation of 
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buried charge-charge interactions,63 causing a systematic overstabilization of the ionized 

form74 and consequently increasing the error of predicted pKa values. In addition, these 

models are known to cause structural compaction which may distort the overall 

structure,68,75 introducing another source of error to the pKa calculations. Furthermore, in 

systems such as ion channels76–78 and some transmembrane proteins,79 where the 

microscopic interactions of discrete ions and water with the protein are important, the use of 

an explicit solvent representation of the solvent environment is desirable. Thus, recent 

developments in the continuous CPHMD community have been focused on re-introducing 

explicit solvent into the CPHMD framework. Wallace and Shen were the first to report a 

hybrid solvent CPHMD model, and showed that using an explicit solvent representation of 

the protein’s conformational dynamics can reduce the errors introduced by the GB implicit 

model.75 Around the same time, the first “pure” explicit solvent CPHMD was reported by 

Grubmüller and co-workers, with a proof of concept demonstration for model amino acid 

compounds.80 Brooks and co-workers subsequently reported another “pure” explicit solvent 

constant pH MD simulation, termed as CPHMDMSλD as it is based on the newer multi-site 

λ-dynamics (MSλD) framework.81,82 CPHMDMSλD was developed initially for 

investigating pH-dependent behavior of nucleic acid systems and it has been validated on 

both model nucleotides83 and larger RNA systems.84 The initial challenges associated with 

convergence in explicit solvent were noted by practitioners in the field,80,83 and have been 

addressed to some extent using enhanced sampling strategies.75,85 More recent 

developments in enhanced sampling methods, such as Orthogonal Space Random Walk by 

Yang and co-workers have demonstrated that accurate pKa calculations for buried protein 

residues in explicit solvent simulations can be achieved,86 indicating that practical 

challenges first encountered by Bürgi et. al. over a decade ago will be resolved eventually.

In this article, we will adopt the explicit solvent CPHMDMSλD framework and extend its 

application to include proteins. We apply the multi-site λ-dynamics (MSλD) algorithm to 

seamlessly perform alchemical reactions between protonation and tautomeric states, and 

develop a novel biasing potential to ensure that the physical end-states are adequately 

sampled. The quality of the CPHMDMSλD model for proteins will be demonstrated by its 

ability to reproduce the pKa values of model compounds, simulate coupled pH-dependent 

behavior of dipeptides, and to accurately reproduce experimental pKa values of proteins, 

such as the hen egg-white lysozyme (HEWL), the binding domain of 2-oxoglutarate 

dehydrogenase (BBL) and the N-terminal of ribosomal L9 protein (NTL9).

2. THEORY

2.1 Constant pH Molecular Dynamics Simulations in Explicit Solvent

We briefly review the theory behind constant pH molecular dynamics (CPHMD). In 

CPHMD, the protonation state of the titrating residue is described by a continuous variable, 

λ. The dynamics of λ is described according to multi-site λ-dynamics (MSλD),81,82 a 

formalism that couples the dynamics of λ to the dynamics of the protein system. The 

simulation is under the influence of a hybrid Hamiltonian and its potential energy is 

described by:
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(1)

where Nsites is the total number of titrating residues, X represents the coordinates of the 

environment atoms (i.e., the parts of the protein that are not titrating), and xα,1 and xα,2 

represent the coordinates of atoms in residue α that are associated with the protonated and 

unprotonated states, respectively. λ serves as a scaling factor that is associated with each 

titrating residue α and its value describes the physically relevant protonated (λα,1 = 1) and 

unprotonated (λα,2 = 1) states. Details about the theoretical and methodological treatment of 

λ dynamics can be found in the following references.81,82

CPHMD simulations are calibrated on model compounds (i.e., amino acids) to reproduce the 

external pH environment. Modeling of the external pH is achieved by introducing a fixed 

biasing potential parameter ( ) to the unprotonated state, which results in the biased 

potential energy function:

(2)

The free energy of protonation (ΔGprotonation) is used to calibrate the biasing potential 

( ) that simulates the effect of an external pH environment. By setting the value of 

to ΔGprotonation, approximately equal populations of protonated and unprotonated states are 

sampled in the simulation. Under this condition, the external pH environment is equal to the 

pKa value of the model compound. To change the pH of the simulation,  can be 

adjusted by the following equation:

(3)

where pH is the external pH of the simulation and pKa is the experimental pKa of the model 

compound. The fixed biasing potential is pre-calculated and its value, corresponding to the 

specified external pH, is universally applied to all residues of the same type regardless of the 

protein environment it is in. In explicit solvent CPHMD simulations, when the titration 

coordinates are allowed to propagate dynamically, the two end points that correspond to 

physical protonation states may not be sufficiently sampled to yield converged estimates of 

the pKa shifts. To ameliorate this issue, the inclusion of an extra variable biasing potential 

(Fvar) is introduced, which can be adjusted to tune the sampling efficiency of titration 

coordinates and the fraction of physical protonation states:

(4)

Thus, in the CPHMD treatment, titratable groups in proteins may be viewed as model 

compounds that are perturbed by the introduction of the protein environment. Further details 
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on the implementation and calibration of explicit solvent CPHMDMSλD can be obtained 

from the following reference.83

2.2 pH Replica Exchange Sampling Protocol

The potential for slow convergence of protonation state sampling in CPHMD simulations 

has been well documented, and is exacerbated for residues with conformationally-coupled 

pKa values, where they undergo a local conformation change that causes them to sample 

different electrostatic environments yielding distinct microscopic pKa values.49,84,87 Early 

work by Brooks and co-workers on protein CPHMD simulations has demonstrated that the 

introduction of a temperature replica exchange (T-REX) protocol can significantly 

accelerate sampling to address such issues.63 However, using T-REX in explicit solvent MD 

simulations typically incurs a large computational expense, for example, a moderate sized 

protein of ~100 residues (40k atoms when solvated) requires at least 20 replicas to achieve 

reasonable exchange rates between adjacent temperature replicas, and when simulating 

CPHMD across a reasonable pH range (e.g., pH 5 to 9), the total number of replicas required 

increases to ~100. Therefore, in this paper, we used a pH replica exchange (pH-REX) 

sampling strategy instead, and the pH-REX sampling protocol implemented in our work is 

based on the work of Wallace and Shen,75 where simulations performed at various pH 

conditions are exchanged based on the following Metropolis criterion:

(5)

where β is 1/kbT, the first two terms, UpH({λi};pH') and UpH ({λ i'};pH) are the pH-biasing 

potential energies for the two adjacent replicas after the exchange, and the next two terms, 

UpH({λi};pH') and UpH ({λ i'};pH') are the corresponding energies for the respective replicas 

before the exchange.

3. METHODS

3.1 Generating Input Structures

Input structures of the peptide compounds were generated from the CHARMM topology 

files using the IC facility in CHARMM.88 The input structure for the protein hen egg-white 

lysozyme (HEWL), the 45-residue binding domain of 2-oxoglutarate dehydrogenase 

multienzyme complex (BBL) and the 56-residue N-terminal domain of ribosomal L9 protein 

(NTL9) were generated from the PDB file (accession codes: 2LZT, 1W4H, 1CQU 

respectively). Hydrogen atoms were added using the HBUILD facility in CHARMM. Model 

compounds (single amino acids), test compounds (dipeptide sequences) and the proteins 

were solvated in a cubic box of explicit TIP3P water89 using the convpdb.pl tool from the 

MMTSB toolset.90 For each protein, the system was first neutralized, before an appropriate 

number of Na+ and Cl− counterions was added to match the experimental ionic strength of 

100mM NaCl. All systems were capped at the N-terminus and C-terminus using 

CHARMM’s ACE and CT2 patches. Additional patches were constructed to represent the 

protonated forms of Asp, Glu, His and Lys. All of the associated bonds, angles and dihedrals 

were explicitly defined in the patch. Each titratable residue was simulated as a hybrid model 
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that explicitly included atomic components of both the protonated and unprotonated forms. 

The CHARMM parameters for the partial charges of aspartic acid, glutamic acid and lysine 

used in this study were reported previously by Lee et. al.61 Partial charges for the three 

protonation states of histidine were obtained without modification from the HSP, HSE and 

HSD residues as reported in the CHARM22 all-atom force field for proteins.91

3.2 Simulation Details

MD simulations were performed within the CHARMM macromolecular modeling program 

(version c36a6) using the CHARMM22 all-atom force field for proteins91 and TIP3P 

water.89 The SHAKE algorithm92 was used to constrain the hydrogen-heavy atom bond 

lengths. The Leapfrog Verlet integrator was used with an integration time step of 2 fs. A 

non-bonded cutoff of 12 Å was used with an electrostatic force shifting function and a van 

der Waals switching function. While group-based 8 Å cutoffs investigated in the 1990s were 

notoriously poor in reproducing accurate dynamics of biomolecules relative to the Ewald 

summation technique,93,94 modern atom-based cutoff schemes with sufficiently long cutoff 

distances (12 Å),95 such as those employed in this study, has been shown to be comparable 

to the Ewald summation technique in modeling the dynamics of both proteins96 and nucleic 

acids.97 Titration was performed in the multi-site λ-dynamics framework (MSλD)81,82 

within the BLOCK facility, using the λNexp functional form for λ (FNEX) with a coefficient 

of 5.5.81,82 The titratable fragment included the protonation site and adjacent atoms whose 

partial charge differed according to the protonation state. The environment atoms were 

defined as all atoms that were not included in the titratable fragments. Linear scaling by λ 

was applied to all energy terms except bond, angle and dihedral terms, which were treated at 

full strength regardless of λ value to retain physically reasonable geometries. Each θα was 

assigned a fictitious mass of 12 amu•Å2 and λ values were saved every 10 steps. The 

temperature was maintained at 298K by coupling to a Langevin heatbath using a frictional 

coefficient of 10ps−1. After an initial minimization, the system was heated for 100 ps and 

equilibrated for 100ps (for amino acid compounds and dipeptides) or 400 ps (for HEWL, 

BBL and NTL9). This was followed by a production run of 3 ns (for amino acid compounds, 

dipeptides and NTL9), 5 ns (for BBL) or 20 ns (for HEWL). CPHMDMSλD simulations were 

performed across the pH range, with integer value pH spacing, as indicated in the titration 

curves (see Results and Discussion), from pH 1 to 7 for Asp and Glu, pH 4 to 9 for His, pH 

7 to 12 for Lys, pH 0 to 8 for HEWL, and pH 0 to 5 for BBL and NTL9. In the pH-REX 

simulations, exchange attempts were made at every 1 ps. All CPHMDMSλD simulations 

were performed in triplicate.

3.3 Calculation of pKa value

The populations of unprotonated (Nunprot) and protonated (Nprot) states are defined as the 

total number of times in the trajectory where conditions λα,1 > 0.8 and λα,2 > 0.8 are 

satisfied respectively. They are used in the calculation of the fraction of physical states, 

which is the ratio of Nunprot and Nprot states over all states (which include intermediate λ 

values). The unprotonated fraction (Sunprot) is calculated for each pH window:
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(6)

Sunprot values computed across the entire pH range, were then fitted to a generalized version 

of the Henderson-Hasselbalch (HH) formula98 to obtain a single pKa value:

(7)

To illustrate the effect of coupled titrating residues, CPHMDMSλD simulations on several 

dipeptides (see Supporting Information for discussion) were also performed. For these 

dipeptide simulations, the protonation state statistics for a specific residue may not be 

associated with the titrating residue, because the symmetry of the system may render the 

environment around each titrating residue to be similar. Therefore, the pKa calculation has 

to be performed using a modified version of eqn. 7, where the combined Sunprot ratio for all i 

residues is fitted to the following equation:

(8)

In this study, the reported pKa value and its uncertainty correspond to the mean and standard 

deviation calculated from 3 sets of independent runs.

4. RESULTS & DISCUSSION

4.1 Optimization of Model Potential Parameters for 2-State Titrations

As with the previous implementation of CPHMDMSλD for nucleic acids,83 we used the free 

energy of deprotonation as the fixed biasing potential (Ffixed) in our simulation. The free 

energy of deprotonation was calculated for each isolated model compound embedded in 

explicit solvent using traditional λ-dynamics at zero ionic strength. In order to facilitate 

transitions between the two protonation states, we optimized the force constant (kbias) on the 

variable biasing potential (Fvar) that was applied to each model compound, and targeted to 

achieve a maximal value of the transition rate in λ-space (i.e., titration coordinate sampling), 

while maintaining a high fraction of physical ligands. The optimized parameters for the 

model potentials are reported in Table I. Calculation of the sampling statistics (see Table S1) 

indicates that the fraction of physical states was maintained at ~70% and transitions in λ-

space were ~50 transitions/ns. The sampling properties of our model amino acids are 

comparable to previous work performed on model nucleosides in explicit solvent.83

Next, we performed a 2-state titration simulation, where only two titrating states (protonated 

and unprotonated) were simulated, and tautomers for each protonation state were not 

explicitly modeled. The titration curves for our model compounds are illustrated in Figure 1. 

The calculated pKa of aspartic and glutamic acid for a two-state titration (i.e., without proton 

tautomerism) was 4.1 and 4.3 pKa respectively, which is within ±0.1 pKa units from their 

experimental pKa values of 4.0 and 4.4 respectively.99 For the two-state titration of 

histidine, where either Nδ or Nε was titrated, the pKa values obtained were 6.7 and 7.0 
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respectively,100 which is identical to their experimental pKa values. Finally, the calculated 

pKa of lysine was 10.2, which is in close agreement with the experimental pKa value of 

10.4.99 The excellent agreement between our model compounds calculated pKa values and 

their experimental values indicate that the sampling of titration coordinates in our 

CPHMDMSλD simulations was sufficient to yield accurate results.

4.2 Optimization of Model Potential Parameters for 3-State Titrations

The original form of the Fvar potential assumed the existence of only two states. When 

accounting for proton tautomerism and thus three states, the original form was not suitable 

because it frequently sampled an intermediate state of the two tautomers. This intermediate 

state is typically characterized by λα,1 ≈ 0, λα,2 ≈ 0.5 and λα,3 ≈ 0.5, which corresponds to 

a half proton on both the Nδ and Nε protonation sites (using His as an example), and this 

represents an unphysical state whose sampling should be minimized. The existence of the 

intermediate state can be rationalized by considering that the free energy barrier for 

conversion between the two protonation states would be larger than the conversion between 

the two tautomers, as in the former process there is a change in the net charge of the system 

and a greater reorganization of the distribution of partial charges. The combined functional 

form of the original Fvar potential that uses the same 0.8 cutoff in the definition of physical 

protonation states (see Methods section) as expressed in eqn. 9, where λα,1, λα,2 and λα,3 

denote the alchemical scaling factors associated with each of the 3 states for some residue α, 

does not account for the uneven barrier height of the different alchemical reactions.

(9)

To avoid the intermediate tautomeric states, we modified the existing Fvar potential by 

including additional cross terms (k2 expressions) to account for uneven barrier heights, and a 

final term (k3 expressions) was added to ensure that the relative free energy of the end-states 

were not altered. The resulting functional form as outlined in eqn. 10 results in a more 

versatile biasing potential that is suited to address the asymmetry of the potential energy 

surface associated with changes in both protonation and tautomeric states.

(10)

An iterative grid search strategy was used in testing various combinations of the force 

constants (k1, k2, k3), and the optimal combination is reported in Table II. As illustrated in 

Figure 2, which shows the time-evolution of λ, all 3 end states for the model compounds 

were well sampled. Calculation of the sampling statistics as summarized in Table III 

indicates that the fraction of physical states was maintained above 70%, confirming that the 

modified Fvar potential does not trap λ in an unphysical intermediate state. The transitions in 

λ-space were ~50 transitions/ns, which is comparable to the statistics obtained from 2-state 

titrations of the model compounds.

While the sampling efficiency in λ-space of model compounds allows us to reproduce the 

pKa values of the model compounds, the transition rate is nevertheless limited to ~50 

transitions/ns. In our previous evaluation of explicit solvent CPHMDMSλD simulations of 

larger nucleic acid structures, slower pKa convergence was observed,84 and it is likely that 
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protein systems will encounter similar issues as well. The sampling of titration and spatial 

coordinates can be accelerated using a pH-REX sampling strategy.85 Therefore, we have 

applied pH-REX sampling, and as illustrated in Table III, it resulted in a 6-fold 

improvement in λ-space sampling of model compounds with effectively no loss in the 

fraction of physical states. As pH-REX sampling confers significant improvement over 

straightforward MD simulations and requires negligible overhead in terms of computational 

cost, the results presented in the subsequent sections are obtained from pH-REX 

CPHMDMSλD simulations unless specified otherwise.

We performed a 3-state titration on the model compounds, where alchemical 

transformations across different protonation states and across different tautomers of the 

same protonation state were explicitly modeled. The tautomeric titrations of aspartic and 

glutamic yielded a pKa of 4.4 and 4.8 respectively, which matches well with the 

macroscopic pKa of 4.35 and 4.70 when the double degeneracy of the protonated states is 

taken into account.62 However, since the experimental pKa measured does not distinguish 

between the tautomeric forms, we recalibrated the fixed biasing potential in our 

CPHMDMSλD simulations to reproduce the experimentally measured macroscopic pKa 

values. This was achieved by reducing the biasing potential at pH=pKa by kbTln(2) = 0.41 

kcal/mol, which accounts for the degeneracy of the tautomeric protonated states. Our 

approach is different from that of Khandogin and co-workers,62 where a post-correction 

factor of 0.3 pKa units was applied to tautomeric residues. However, the net result in both 

approaches is the same, in the sense that the final pKa value calculated accounts for tautomer 

degeneracy. The titration curves for our model compounds with proton tautomerism are 

illustrated in Figure 3. The calculated pKa of aspartic and glutamic acid was 4.17 and 4.37 

respectively, which is good agreement with experimental pKa values. For histidine 

tautomeric titration, no re-calibration was performed because the pKa measured by 

experiments were microscopic pKa associated with the titration at the Nε and Nδ sites, and 

the fixed biasing potential applied to each tautomer was identical to those used in the 2-state 

titration setup. Our calculated pKa for the histidine tautomer was 6.45, which is identical to 

the expected macroscopic pKa value of 6.45.62

4.3 pKa Calculations of Proteins: Hen-Egg White Lysozyme (HEWL)

The HEWL protein is a well-studied protein system that contains the 3 most common 

titrating residues (Asp, Glu, His) with microscopic pKa values for each residue that have 

been measured in a number of experimental studies.101–106 It is perhaps the closest thing to 

a “universal benchmark” system that has been evaluated by numerous CPHMD 

implementations over the years.43,48,49,51,63,75,107 To the best of our knowledge, all existing 

“pure” explicit solvent CPHMD simulations reported in the literature have only been 

demonstrated on small peptide compounds80 and simple organic molecules.108 We 

performed a 20 ns pH-REX CPHMDMSλD simulation of HEWL, which is the first example 

of explicit solvent CPHMD simulation on a full protein to be reported.

pKa calculations over 5 ns interval segments of our pH-REX CPHMDMSλD trajectory show 

that good convergence is achieved within 20 ns (Table S3). The difference in pKa values 

across our triplicate runs is small, typically between 0.2 to 0.3 pKa units, demonstrating that 
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our results are robust and reproducible. The accuracy of our calculated pKa values are then 

compared to experimental measurements from consensus NMR titrations.106 As summarized 

in Table IV and Figure S3, the calculated pKa values are in good agreement with 

experiment, with a root-mean-square-error (RMSE) of 0.85 pKa units and an average 

unsigned error (AUE) of 0.68 pKa units. Nielson and co-workers previously estimated that 

experimental pKa values reported in the literature on average may vary by 0.5 pKa units 

depending on the experimental method and/or protocol used to make the measurements.106 

This suggests that the accuracy of our pH-REX CPHMDMSλD simulations are approaching 

the uncertainty of experimental pKa values. Next, we identified the residues that had errors 

in their calculated pKa values, which we defined as having more than 1.0 pKa unit difference 

between calculated and experimental values. Asp-119 was underpredicted by −1.9 pKa units, 

which suggests that the unprotonated state is overstabilized in our simulations. Analysis of 

its microenvironment indicates that persistent hydrogen bond interactions between the 

carboxylic oxygens of Asp-119 and the amide backbone hydrogen of Gln-121 and Ala-122 

were present even in a low pH environment (Figure S4), which accounts for the extra 

stabilization of the unprotonated state of Asp-119. Similar underprediction of Asp pKa 

values has been documented in other CPHMD work, where salt bridge interactions were 

responsible.49 When non-salt-bridge configurations were sampled, it resulted in more 

accurate pKa results.49 This suggests that the apparent error in the Asp-119 pKa value could 

be a sampling issue, and more extensive sampling or more aggressive sampling methods 

may be required when dealing with residues that are “locked” to their initial conformation 

by strong interactions like hydrogen bonds or salt bridges.

We compared the performance of explicit solvent pH-REX CPHMDMSλD simulations to 

CPHMD models implemented in other solvation models. A number of CPHMD variations 

have been implemented in AMBER48 and GROMACS.43 However, they will not be 

included our analysis as deconvoluting the effects originating from force field differences to 

those arising from solvation model differences is not straightforward. Instead, we will focus 

our analysis on CPHMD variations implemented in CHARMM. The original CPHMD in 

CHARMM was implemented with a GB implicit solvent model,61 and we have used the 

HEWL pKa values reported by Wallace and Shen for comparison.75 Since that work was 

reported using a pH-REX sampling strategy, we have also eliminated the effects of using 

different sampling strategies. At the time of writing, there is no “pure” explicit solvent 

CPHMD based on the CHARMM force field that has been tested on the HEWL protein. 

However, a close comparison can be made with Shen’s hybrid solvent CPHMD model.75 

The key methodological difference between explicit and hybrid solvent models is that the 

evaluation of free energies of deprotonation and the forces on the fictitious λ particles that 

govern the titration coordinates are calculated using a GB implicit solvent model in Shen’s 

hybrid solvent CPHMD model, whereas in our explicit solvent CPHMDMSλD model there is 

no use of the GB implicit solvent model in any part of the calculation. Unfortunately, the use 

of such hybrid sampling means there is no clear Hamiltonian for this system and 

correspondence to results from any specific statistical mechanical cannot be demonstrated. 

Lastly, the sampling of titration coordinates in implicit solvent is typically ~2000 

transitions/ns,51 which is an order of magnitude higher than those obtained in our explicit 

solvent simulations. Therefore, to compensate for the differential sampling speed associated 
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with different solvent models, we compared the results of our 20 ns pH-REX CPHMDMSλD 

trajectories to the previously reported 2 ns pH-REX trajectories that uses the implicit and 

hybrid CPHMD model.

As summarized in Table IV, in terms of overall pKa predictive performance, our explicit 

solvent CPHMDMSλD results had a RMSE error of 0.84 pKa units. This is an improvement 

from the results obtained using implicit solvent CPHMD (RMSE = 0.94), and our model 

performance is close to that of the hybrid solvent CPHMD (RMSE = 0.80). A similar trend 

was also noted using alternative error metrics, such as the average unsigned error (AUE). 

We then identified the number of residues that had errors of more than 1.0 pKa unit relative 

to experimental values. Our explicit solvent CPHMDMSλD model had only 1 such residue 

(i.e., Asp-119) compared to the implicit and hybrid solvent CPHMD models which had 5 

and 3 residues respectively. Notable improvements in moving from a hybrid solvent to a 

“pure” explicit solvent model can be observed in His-15, where the overestimation of its 

pKa value is reduced from 1.1 to 0.5 pKa units. Similarly, the hybrid solvent CPHMD model 

incorrectly predicted the direction of pKa shift for residue Asp-101, whereas the explicit 

solvent CPHMDMSλD model not only predicted the right direction of pKa shift, but the 

magnitude of error was also smaller (−1.5 vs +0.6). Our findings suggest that when 

corrected for differences in titrating coordinates sampling, the explicit solvent CPHMDMSλD 

model produces more accurate pKa predictions than the original implicit solvent CPHMD.

4.4 pKa Calculations of Proteins: Other Proteins, BBL and NTL9

Lastly, to demonstrate that the pKa calculations obtained from the CPHMDMSλD framework 

for proteins is not specific to HEWL protein, we performed pKa calculations on two 

additional proteins, the BBL and NTL9 protein. Given that we have only investigated a 

single His residue in a protein environment, for BBL we only titrated the two His residues. 

NTL9 has no His residues, and the Glu and Asp residues that have experimental pKa 

measurements were titrated. As summarized in Table V and Figure S5 the calculated pKa 

values have are reasonably accurate (RMSE = 0.72, AUE = 0.59).109,110 From the 

experimental data, most of the residues titrate close to the pKa of their reference compounds, 

but two residues had more than a 1.0 pH unit shift. For His-166 of BBL, the residue is 

buried and its experimental pKa is 5.4. For Asp-8 of NTL9, its experimental pKa of 3.0 can 

be traced to the salt bridge interactions it forms with the amide backbone of adjacent 

residues. Our calculated pKa values demonstrate a similar downward shift, although in both 

cases the extent of the shift tends to be overestimated. We suggest that this overestimation 

may be due to the lack of sampling stemming from the shorter 3 to 5 ns simulations 

performed for these systems. In other proteins like staphylococcal nuclease, residues with 

shifted pKa values are known to undergo local conformational changes,26,28 and sampling 

these states will be required to improve the accuracy of pKa calculations. Together with our 

observations for Asp-119 in HEWL, our work suggests that while short pH-REX 

CPHMDMSλD simulations are capable of reproducing experimental pKa values of most 

protein residues, accurate reproduction of highly shifted pKa values (e.g., buried charged 

residues) or those involving salt-bridge or similarly strong interactions remains a challenge 

that may be better addressed with more aggressive conformational sampling techniques.

Goh et al. Page 12

Proteins. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. CONCLUSION

In conclusion, we have demonstrated the use of the constant pH molecular dynamics 

framework based on multi-site λ-dynamics (CPHMDMSλD) to simulate realistic pH-

dependent properties of proteins. In the CPHMDMSλD framework, we performed seamless 

alchemical transitions between protonation and tautomeric states using multi-site λ-

dynamics, and designed a novel biasing potential to ensure that only the physical end-states 

are predominantly sampled. Then, we applied explicit solvent CPHMDMSλD simulations to 

the proteins HEWL, BBL and NTL9, which are the first examples of a “pure” explicit 

solvent CPHMD on full protein systems to be reported. Our pKa calculations for HEWL 

protein are in excellent agreement with experimental values, with a RMSE of 0.84 pKa 

units, and this is close to the uncertainty of 0.50 pKa units associated with experimental 

measurements. Our pKa calculations on the other model protein systems, BBL and NTL9 

also provide similarly good agreement with experiments. In addition, comparison with 

implicit solvent CPHMD shows that explicit solvent CPHMDMSλD produces results that are 

more accurate, reducing the number of residues with large errors in their pKa predictions 

from 5 to 1. With the development of explicit solvent CPHMDMSλD for proteins, it will 

finally allow us to confidently address questions related to pH-dependent properties of 

membrane proteins and ion channels, where discrete representation of ions and water is 

important. Coupled with the explicit solvent CPHMDMSλD framework for nucleic acids, 

accurate modeling of pH-dependent properties for all major classes of biomolecules – 

proteins, nucleic acids and even protein-nucleic acid complexes is now a reality.
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Figure 1. 
Titration curve of model compounds: (a) aspartic acid, (b) glutamic acid, (c) lysine, (d) (d) 

histidine-δ and (e) histidine-ε. Calculated pKa values of model compounds are in excellent 

agreement with experimental pKa values. Colors represent the results from the triplicate 

runs.
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Figure 2. 
Titration coordinate transitions of aspartic acid at pH 4 for (a) unprotonated state, (b) 

protonated tautomer #1 and (c) protonated tautomer #2 shows that the physical end states are 

well sampled.
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Figure 3. 
Titration curve of model compounds with proton tautomerism: (a) aspartic acid, (b) glutamic 

acid and (c) histidine. Calculated pKa values of model compounds show excellent agreement 

with experimental pKa values. Colors represent the results from the triplicate runs.
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Table I

Parameters for the Model Potential for 2-state Titrations

Residue ΔGprotonation (kcal/mol)
Fvar (kcal/mol)

Ref pKa

kbias

Asp 43.71 34.00 4.00

Glu 46.00 34.25 4.40

His-δ −3.58 26.00 7.00

His-ε −12.26 26.00 6.60

Lys −23.02 29.50 10.40
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Table V

pKa values of BBL and NTL9 calculated using explicit solvent pH-REX CPHMDMSλD simulations in this 

work. Calculated pKa values with error greater than 1.0 pKa unit relative to experimental values109,110 based 

are identified in red.

Residue
Explicit CPHMDMSλD

Exp pKa pKa Error

BBL

HIS-142 6.5 6.6 ± 0.1 0.1

HIS-166 5.4 4.8 ± 0.0 −0.6

NTL9

ASP-8 3.0 1.5 ± 0.1 −1.5

GLU-17 3.6 4.0 ± 0.5 0.4

ASP-23 3.1 3.7 ± 0.2 0.6

GLU-38 4.0 3.9 ± 0.2 −0.1

GLU-48 4.2 3.4 ± 0.3 −0.8

GLU-54 4.2 3.6 ± 0.2 −0.6

RMSE 0.72

AUE 0.59
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