
Power analysis for generalized linearmixedmodels in

ecology and evolution

Paul C. D. Johnson1,2*, Sarah J. E. Barry2, HeatherM. Ferguson1 andPieM€uller3,4

1BoydOrr Centre for Population andEcosystemHealth, Institute of Biodiversity, Animal Health andComparativeMedicine,

University of Glasgow,GrahamKerr Building, GlasgowG12 8QQ,UK; 2RobertsonCentre for Biostatistics, University of

Glasgow, BoydOrr Building, GlasgowG12 8QQ,UK; 3Department of Epidemiology andPublic Health, Swiss Tropical and

Public Health Institute, Socinstrasse 57, POBox, Basel CH-4002, Switzerland; and 4University of Basel, Petersplatz 1, Basel

CH-4003, Switzerland

Summary

1. ‘Will my study answer my research question?’ is the most fundamental question a researcher can ask when

designing a study, yet when phrased in statistical terms – ‘What is the power of my study?’ or ‘How precise will

my parameter estimate be?’ – few researchers in ecology and evolution (EE) try to answer it, despite the detrimen-

tal consequences of performing under- or over-powered research. We suggest that this reluctance is due in large

part to the unsuitability of simple methods of power analysis (broadly defined as any attempt to quantify pro-

spectively the ‘informativeness’ of a study) for the complex models commonly used in EE research.With the aim

of encouraging the use of power analysis, we present simulation from generalized linearmixedmodels (GLMMs)

as a flexible and accessible approach to power analysis that can account for random effects, overdispersion and

diverse response distributions.

2. We illustrate the benefits of simulation-based power analysis in two research scenarios: estimating the preci-

sion of a survey to estimate tick burdens on grouse chicks and estimating the power of a trial to compare the effi-

cacy of insecticide-treated nets in malaria mosquito control. We provide a freely availableR function, sim.glmm,

for simulating fromGLMMs.

3. Analysis of simulated data revealed that the effects of accounting for realistic levels of random effects and

overdispersion on power and precision estimates were substantial, with correspondingly severe implications for

study design in the form of up to fivefold increases in sampling effort. We also show the utility of simulations for

identifying scenarios whereGLMM-fittingmethods can performpoorly.

4. These results illustrate the inadequacy of standard analytical power analysis methods and the flexibility of

simulation-based power analysis for GLMMs. The wider use of these methods should contribute to improving

the quality of study design in EE.

Key-words: experimental design, sample size, precision, generalized linear mixed model, random

effects, simulation, overdispersion, long-lasting insecticidal net

Introduction

‘Will my study answer my research question?’ is the most fun-

damental question a researcher can ask when designing a

study, yet when phrased in statistical terms – ‘What is the

power of my study?’ or ‘How precise will my parameter esti-

mate be?’ – few researchers in ecology and evolution (EE) try

to answer it (e.g. Taborsky 2010). Consequently many, possi-

bly most, studies are underpowered (Jennions & Møller 2003;

Smith, Hardy&Gammell 2011) and likely to be uninformative

or misleading (Ioannidis 2005). Failure to consider power can

also result in overpowered studies. Both under- and overpow-

ering waste resources and can raise ethical concerns (e.g. in

animal studies, by potentially causing needless suffering; and

in disease control by causing potentially promising control

methods to be prematurely dismissed). Hence, researchers

should take all reasonable steps to ensure sufficient, but not

wastefully excessive, power.

Power is defined as the probability of rejecting the null

hypothesis when it is false and is equal to oneminus the type II

(false negative) error rate or 1-b. In other words, it is the proba-
bility of detecting an effect, given that it exists. It depends on

the sample size, the effect size, the amount of variability in the

response variable and the significance level. Generally, the aim

of a power analysis is to predict the power of a particular

experimental design, or the sample size required to achieve an

acceptable level of power [80% power is conventionally

deemed adequate, although often without justification (Di

Stefano 2003)]. Power analysis therefore exists within the

framework of null hypothesis significance testing (NHST). In

this article, we define power analysis more broadly as any

attempt to quantify prospectively the ‘informativeness’ of a*Correspondence author. E-mail: paul.johnson@glasgow.ac.uk
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study (Bolker 2008; Cumming 2013). This definition of power

analysis covers, for example, predicting the precision of an esti-

mate, and could be applied within alternative inference frame-

works such as Bayesian or information theoretic.

A major obstacle to power analysis is that standard meth-

ods are suitable for only the simplest statistical analyses,

such as comparing means using t-tests or ANOVA, or propor-

tions using v2 tests, and are inadequate when confronted

with the more complex analyses generally required to ana-

lyse ecological data. Such analyses commonly accommodate

multiple sources of random variation (e.g. within and

between study sites), where random effects models (also

known as mixed effects models) are recommended. In addi-

tion, response measures such as counts that are common in

EE are not readily shoehorned into t-tests, ANOVA or v2 tests,
and consequently, the associated power analysis methods

are inappropriate. Neither random effects nor count

responses are handled in relatively sophisticated power

analysis software such as G*POWER (Faul et al. 2007).

The generalized linear mixed model (GLMM) is an analysis

framework widely used in EE that can accommodate these

complexities. GLMMs allow modelling of diverse response

distributions and multiple sources of random variation termed

random effects, both of which are common in EE (Bolker

et al. 2009; Zuur, Hilbe & Leno 2013). Although analytical

formulae for estimating power are available for the simplest

Gaussian GLMMs (Snijders & Bosker 1993), more general

formulae are not available. A more flexible approach is to use

Monte Carlo simulation (Thomas & Juanes 1996). Simula-

tion-based power analysis has many additional advantages

over analytical power analysis, beyond its greater flexibility. It

is more accurate, conceptually simpler and easy to extend

beyond hypothesis testing (Bolker 2008). Simulation-based

power analysis methods are available for Gaussian GLMMs

(Martin et al. 2011), but there is a lack of guidance and soft-

ware facilitating power analysis for scenarios with non-Gauss-

ian responses and more complex random effect structures.

The first aim of this study is to illustrate the value of power

analysis in the broad sense of predicting the informativeness of

a study. The second is to present simulation from GLMMs as

a flexible and accessible power analysis method, with examples

taken from two ecological systems where standard power

analysis methods are inadequate: estimating tick density on

game birds and assessment of insecticide-treated nets for

malariamosquito control.

Materials andmethods

POWER ANALYSIS USING SIMULATION

Estimating the power of a test of a null hypothesis by simulation

requires the following steps (Bolker 2008):

1. Simulate many data sets assuming that the alternative hypothesis is

true, that is, the effect of interest is not zero. ‘Many’ means enough

to give an adequately precise power estimate. As a guide, with 100

simulations and 80% power, the power estimate will fall within 72–

88%with 95%probability, while using 1000 simulations will reduce

this range to 77�5–82�4%.

2. Using each simulated data set, perform a statistical test of the null

hypothesis that the effect size is zero.

3. Calculate the proportion of simulated data sets in which the null

hypothesis was rejected. This proportion is the power estimate.

The effect of different designs and assumptions (e.g. sample size,

effect size, random effect variances) on power can be explored by

repeating steps 1–3 across a range of realistic scenarios.

This scheme can be easily adapted to quantify the informativeness of

a study in the broader sense of power analysis defined above. The preci-

sion of an effect estimate could be predicted by averagingCI width over

the simulated data sets, or, in an information theoretic framework

(Burnham & Anderson 2001), the expected difference in the Akaike

information criterion (AIC) betweenmodels could be estimated.

AN OVERVIEW OF GLMMS

We focus on counts and proportions because these are common types

of response data in EE. First, we introduce generalized linear models

(GLMs). Like a standard linear regression model (LM), a GLMmod-

els, the relationship between the response of the ith observation, yi, and

a set of p predictor variables or covariates, x1i, . . ., xpi via p regression

coefficients, b1,. . ., bp. Unlike a LM, the response can follow distribu-

tions other than normal (Gaussian), including binomial, Poisson and

negative binomial. As in standard linear regression, the predictors,

weighted by the regression coefficients, are summed to form the linear

predictor,

gi ¼ b0 þ
Xp
m¼1

bmxmi;

where b0 is the intercept. The expected value of yi and the linear predic-

tor, gi, are related through the link function. For example, in a Poisson

GLM, where yi �Pois kið Þ and ki is the expected value of yi, the link

function is gi = log(ki) (where ‘log’ means the natural logarithm, loge,

throughout the text). If the responses were binomially distributed with

ni Bernoulli trials and pi probability of success in each trial, that is

yi �Binom ni; pið Þ, thenwewouldmodel the responses using a binomial

GLM, usually with a logit (log of the odds) link function,

gi ¼ logit pið Þ � log
pi

1� pi

� �
:

There is often a need to account for additional sources of random

variation, for example where observations are clustered within study

sites, or where multiple observations are taken over time on each study

subject. In such data sets, the assumption of theGLM that the yi values

are conditionally independent (i.e. independent after adjusting for the

effects of covariates) is violated, because clustered observations are cor-

related. To account for these correlations, a random effect can be added

to the linear predictor, allowing each cluster (e.g. site or individual) to

have its own mean value. The resulting model is a GLMM. In the

example of intersite variation, we are now modelling the response of

the ith observation in the jth site, yij. The only change to the model is

the addition of a single random effect, cj, to the linear predictor, repre-

senting the ‘effect’ of the jth site. Now

gij ¼ b0 þ
Xp
m¼1

bmxmij þ cj;

where cj �N 0; r2c
� �

. This is a random intercepts GLMM, so-called

because the random effect allows the intercept to vary randomly among
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sites. Multiple random effects can be included, and random effects can

takemore complex forms that allow greater flexibility inmodelling cor-

relations between observations (e.g. due to familial relationships or

proximity in space or time). GLMMs in which regression coefficients,

or slopes, are allowed to vary randomly between clusters are termed

random intercepts-and-slopes GLMMs. Random intercepts-and-

slopesmodels have been applied tomodelling inter-individual variation

in regression coefficients both where this variation is the focus of

enquiry, as in random regression models (Nussey, Wilson & Brommer

2007), and where it is a nuisance variable that must nevertheless be

modelled to guard against overconfident inference (Schielzeth &

Forstmeier 2009; Barr et al. 2013). Power analysis for random inter-

cepts-and-slopes GLMMs is beyond the scope of this article, although

simulation-based power analysis methods have been developed for

Gaussian random regression models and implemented in the PAMM

package for theR statistical environment (Martin et al. 2011).

SIMULATING FROM A GLMM

The first step of simulation-based power analysis is to simulate a large

number of data sets. When simulating responses from a GLMM, we

must assume values for the intercept and the regression coefficients (the

fixed effects) and the variances and covariances of the random effects.

Estimates of these parameters, or a range of plausible values, will some-

times be available fromprevious studies; otherwise, a pilot study should

be conducted. If no data are available, a plausible range of parameter

values could, in some cases and with careful justification, be assumed

based on knowledge of the study system.

While designing a study, we will often suspect which predictor vari-

ables are most strongly related to the response variable. To simulate

responses fromaGLMM,wemustmake assumptions about these rela-

tionships, which amounts to assuming values for each of the bm. The
interpretation of the bm depends on the type of GLMM. In a Poisson

GLMM, they are log relative abundances, or rate ratios, and in a bino-

mial GLMM with a logit link they are log odds ratios. Generally, we

will have little knowledge of the size of the effect that is the focus of the

study, but this is not an obstacle to power analysis because the study

should be powered to detect the smallest biologically meaningful effect,

which is purely a question of scientific judgement (seeDiscussion).

In addition to the bm, we must assume a value for the intercept, b0,
which is the expected value of gij where all the xmij are zero. If setting
the xmij to zero is meaningful – for example, if the xmij represent time

from the start of the study, or all but one of the levels of a categorical

variable – then the intercept is the value of the linear predictor at base-

line or in the reference category, respectively. Thus, in a Poisson

GLMM, b0 is the log expected count in the baseline or reference cate-

gory, and in a binomialGLMMwith a logit link, b0 is the logit expected
proportion or prevalence in the baseline or reference category.

Next, we must make assumptions about the random effects. In the

example of a single between-site random effect, only a single variance

needs to be assumed. In more complex models, such as random inter-

cepts-and-slopes, multiple random effects and their covariances might

need to be considered, but here, we consider only uncorrelated random

effects and so assume zero covariance. The value assumed for a random

effect variance should be based on an estimate from previous studies or

pilot data, where available. Uncertainty around variance estimates can

be considerable, and the sensitivity of the power analysis to this uncer-

tainty can be assessed by repeating the power analysis across a range of

plausible variance values in place of the point estimate.

An additional source of variation that needs to be considered is over-

dispersion. Overdispersion is variation exceeding what would be

expected from a given distribution and can be thought of as unex-

plained variation. For example, a Poisson distributionwithmean k also
has variance k. If the variance in a set of counts is greater than themean

then theywill not fit a Poisson distribution and are overdispersed. Simi-

larly, a set of binomial responses is overdispersed if the variance exceeds

np (1 – p), where n is the number of trials, n > 1, and p is the probability

of success in each trial. Overdispersion in aGLMMfit can be artefactu-

al or real (Zuur, Hilbe & Leno 2013). Artefactual overdispersion arises

frommodel misspecification and has several potential causes including

missing or poorly modelled covariates, interactions or random effects;

wrong choice of distribution or link function; outliers; and zero-infla-

tion. Once these potential causes have been investigated and remedied,

any overdispersion that remains is ‘real’ and should be modelled. Fit-

ting a Poisson or binomial GLMM that does not allow for overdisper-

sion is equivalent to assuming that all of the variation that does not

arise from the Poisson or binomial distribution is explained by the fixed

and random effects. Biological data rarely justify this assumption, so

overdispersion should be considered as a matter of course (but note

that overdispersion does not apply to the normal distribution because

the variance is independent of the mean). While EE researchers have

long been alert to overdispersion in count data (Bliss & Fisher 1953;

Eberhardt 1978; O’Hara & Kotze 2010), awareness of overdispersion

in binomial data (Crowder 1978;Warton&Hui 2011) is comparatively

limited. Various methods of accounting for overdispersion are avail-

able, including negative binomial and quasi-Poisson for counts, and

beta-binomial and quasi-binomial for binomial data (Bolker et al.

2009; O’Hara &Kotze 2010; Warton &Hui 2011; Zuur, Hilbe & Leno

2013). Here, we model overdispersion in both Poisson and binomial

GLMMs by adding a normally distributed random intercept, eij, to the

linear predictor of each observation, giving

gij ¼ b0 þ
Xp
m¼1

bmxmij þ cj þ eij;

where eij �Nð0; r2eÞ (Elston et al. 2001; Warton & Hui 2011). By

absorbing excess (i.e. unexplained) variation, this random effect per-

forms the same role as the residual error term in a linear regression

model. Like the random effects variances, the value assumed for the

overdispersion variance in the simulation model should be estimated

frompilot data.

EXAMPLES

We illustrate power analysis for GLMMs with two contrasting exam-

ples. In the first, the responses are counts and the random effects are

nested. This example is a power analysis in the broad sense because the

aim is to predict not power but the precision of an estimate in terms of

confidence interval (CI) width. The second example, in which the

responses are binomial and the random effects are crossed, is a narrow

sense power analysis where the aim is to estimate the power of a

hypothesis test.

Count response example: estimating tick burden on grouse

chicks

This example is based on an analysis of tick burdens recorded on

grouse chicks on an Aberdeenshire moor from 1995 to 1997 (Elston

et al. 2001). Our sampling scheme is a simplified version of Elston et al.

(2001), with chicks nested within broods and broods within geographi-

cal locations. The aim of the study is to estimate the mean tick bur-

den on grouse chicks in a single year with an expected margin of error

of� 25%. We define margin of error as the average distance from the
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95%confidence limits to the estimate (it is necessary to average because

a CI for a Poisson mean estimated from a GLM or GLMM is asym-

metrical, due to having been back-transformed from a symmetrical

95%CI on log scale). For example, a 95%CI of 8 to 13 around an esti-

mate of 10 ticks per chick has confidence limits that are on average

(2+3)/2 = 2�5 units from the estimate, giving an adequately precise

margin of error of 2�5/10 = 25%. The aim of the power analysis is to

determine the sampling effort required to give adequate precision.

Because we are aiming for 25% expectedmargin of error, and the mar-

gin of error is subject to sampling error, we are implicitly prepared to

accept a 50% risk of a higher margin of error. If estimating tick burden

with poorer precision were expected to have undesirable consequences,

the specification could be changed to give greater confidence (e.g. 80%

or 90%) of adequate precision. It would be straightforward to adapt

the power analysis to estimate the additional sampling effort required.

Predicting the precision to which we can measure tick burden

requires the following assumptions (Table 1):

1. The mean tick burden per chick.Mean tick burden is highly variable,

ranging from 1�2 to 11�1 over the three years. To account for this

uncertainty, we simulated mean tick burdens of 1, 5 and 10 ticks per

chick.

2. The effect sizes of factors affecting tick burden. Tick burden varies

substantially between locations, between broods within locations

and between chicks within broods (Elston et al. 2001).Wemodelled

variation between locations, broods and chicks with a random effect

at each hierarchical level. These random effects are nested, because

each brood belongs to only one location, and each chick to only one

brood. As each chick provided only one tick count, the chick-level

random effect models overdispersion. We simulated na€ıve (zero)

and pessimistic (high) variances for each hierarchical level (Table 1).

Pessimistic random effect variances were selected by choosing values

towards the upper ends of the 95% CIs in Table 1 of Elston et al.

(2001). In the interests of simplicity, we did not include any fixed

effects in the simulation model. Fixed effects are introduced in the

second example.

3. The number of chicks sampled. We assumed that every brood con-

sisted of three chicks and that two broods were sampled at every

location. We varied sampling effort by increasing the number of

locations sampled from 10 to 200.

The tick burden on the ith chick from the jth brood in the kth loca-

tion, yijk, was modelled as Poisson distributed, that is yijk �Pois kijk
� �

.

The expected log tick burden, log(kijk), is

gijk ¼ b0 þ lk þ bjk þ eijk;

where b0 is the global mean log tick burden, and lk, bjk and eijk are the
location, brood and chick random effects, which are normally distrib-

uted with zeromeans and variances r2l , r
2
b and r

2
e , respectively.

Binomial response example: comparingmortality ofmalaria

mosquitoes exposed to long-lasting insecticidal nets

Long-lasting insecticidal nets (LLINs) are made of fabric with incorpo-

rated insecticide which maintains residual activity for several years.

LLINs are a key intervention against malaria (Roll BackMalaria Part-

nership 2008; World Health Organization 2013b). They provide per-

sonal protection from malaria mosquitoes by constituting a physical

barrier and community protection by killing potentially infectiousmos-

quitoes upon contact (Lengeler 2004). To evaluate their insecticidal

activity, LLINs are tested in standardized experimental huts (World

Health Organization 2013a) against free-flying, wild mosquitoes. The

mosquitoes can enter but not leave the huts, allowing assessment of

LLIN efficacy under controlled conditions. Despite their importance in

large-scale malaria prevention programs, power analysis has not gener-

ally been performed for LLIN hut trials. Power analysis for LLIN hut

trials is hindered by the difficulty of accounting for the effects of multi-

ple sources of variation in mosquito mortality, including variation

between huts and over time. We show how simulation can be used to

account for these complexities.

The aim is to optimize the design of an experimental hut trial com-

paringmortality in themalaria vectorAnopheles gambiae among differ-

ent types of LLIN. This is achieved by estimating power across a

realistic range of assumptions and designs, identifying those that give

adequate (≥80%) power. In this example, six types of LLIN are to be

tested in six experimental huts, in accordance with the World Health

Organization Pesticide Evaluation Scheme (WHOPES) guidelines

(World Health Organization 2013a). To prevent confounding of hut

and net effects, the LLIN types are rotated through the huts weekly, so

that after six weeks, one Latin square rotation has been completed,

with each LLIN type having passed one week in each hut (Table 2).

Simple rotation, where net type E2 always follows E1, etc, would lead

to confounding between LLIN type and any carry-over effects, so

Table 2 presents a design balanced against such effects, where each net

type follows each other net type only once (Williams 1949). Data are

collected on six nights per week. Nets are replaced after each night so

that six replicate nets of each type are used per week. The outcome of

interest is mosquito mortality, calculated as the proportion of mosqui-

toes entering the hut at night that are found dead in the morning or in

the following 24 hours. Any mosquito found alive inside the hut is

transferred to an insectary and mortality recorded after a holding per-

iod of 24 hours. We aim to estimate the number of six-week Latin

square rotations that will be required to give adequate power.

Performing the power analysis requires the following information:

1. The primary aim of the experiment and the consequent primary

analysis. This example follows the standard WHOPES design in

Table 1. Study design choices and effect parameter assumptions for

the two example studies

Example

study Study variable

Simulated

values

Tick burden

survey

No of locations 10, 20, 50,

100, 200

No of broods per location 2

No of chicks per brood 3

Mean tick burden per chick, eb0 1, 5, 10

Location-level variance, r2l 0, 1

Brood-level variance, r2b 0, 0�7
Chick-level variance, r2e 0, 0�3

LLIN trial No of rotations of the Latin square 1, 2, 3, 4, 5

No of huts, No of nets, No of weeks per

rotation

6

No ofA. gambiae entering each hut each

night, nijk

5, 25

Mortality using the control net,

eb0=ð1þ eb0 Þ
70%

Minimum acceptablemortality using

LLIN type E1,

eb0þb1=ð1þ eb0þb1 Þ(odds ratio, eb0þb1 )

80% (1�7)

Mortality assumed using the four

secondary LLINs (odds ratio)

80% (1�7)

Between-hut and -week variances,

r2h ¼ r2w

0, 0�5

Observation-level (overdispersion)

variance, r2e

0, 0�5, 1
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which multiple net types are tested simultaneously, allowing

multiple secondary research questions to be asked. This power

analysis, however, is concerned only with the primary aim of the

study, which is to evaluate the efficacy, in terms ofmosquitomortal-

ity, of an experimental LLIN (labelled E1 in Table 2) compared

with a positive control LLIN (labelled C in Table 2), which would

typically be aWHOPES-recommended LLIN (World Health Orga-

nization 2013a). The primary analysis will be a two-tailed test of the

null hypothesis that the control and E1 LLIN types cause the same

mortality. The other four experimental LLIN types (labelled E2 to

E5 in Table 2) do not feature in the primary analysis, but are

included in the simulation because they contribute to the estimation

of the hut effect.

2. The number of mosquitoes in each treatment group. The total number

of A. gambiae expected to be sampled in each of the six treatment

groups, n, is the product of the number of nights per week when

mosquitoes are collected (six), the number of weeks in one rotation

(six), the number of mosquitoes caught per night in each hut (nm)

and the duration of the study in number of six-week rotations (nr),

so that n = 36nmnr The number of mosquitoes entering a hut is dif-

ficult to predict. We investigated low (nm = 5) and high (nm = 25)

A. gambiae abundance, which is a realistic range (Malima et al.

2008; Winkler et al. 2012; Ngufor et al. 2014). The study was run

for nr = 1,. . . 5 complete six-week rotations of the nets through the

huts.

3. The mortality in huts using the positive control LLIN type. We

assumed a realistic mortality rate of 70% (Malima et al. 2008; Win-

kler et al. 2012;Ngufor et al. 2014).

4. The size of the smallest treatment effect worth detecting (the sensitiv-

ity of the study). We considered mortality of at least 80% using

LLIN type E1 to represent a worthwhile improvement in efficacy

relative to the control LLIN. This treatment effect can be repre-

sented as an odds ratio of 80=20
70=30 � 1:7. For simplicity, we also

assumed 80%mortality with the four secondary LLINs.

5. The impact of non-treatment factors on mortality. Variation in mor-

tality among huts and over time is expected, which we simulated as

simple random effects between huts and between weeks. The justifi-

cation for modelling week-to-week variation as random rather than

fixed is that we cannot predict the form of the relationship between

mortality and time, so any choice of fixed effect formwould be arbi-

trary. A randomeffect is a simple and conservative way ofmodelling

week-to-week variation without foreknowledge of its nature. The

hut and week random effects are completely crossed, because data

are collected from each hut during each week (Table 2). Between-

hut and between-week random effect variances of up to 0�5 are plau-
sible based on analysis data from Winkler et al. (2012). In order to

limit the number of parameter combinations, we set the variances

between huts and between weeks to be equal. We simulated two hut

and week random effect scenarios: r2h ¼ r2w ¼ 0, representing a

na€ıve assumption that mortality does not vary between huts or over

weeks and a more realistic assumption of r2h ¼ r2w ¼ 0:5. Another

potential source of variation in mortality is the six sleepers who

rotate nightly through the huts, in accordance with the WHOPES

guidelines (World Health Organization 2013a). We ignored this

aspect here for the sake of simplicity and assumed that sleepers have

no influence onmosquitomortality.

6. The amount of unexplained variation in mortality (overdispersion).

We explored three scenarios: a na€ıve assumption of no overdisper-

sion (r2e ¼ 0); realistic overdispersion (r2e ¼ 0:5, similar to the esti-

mated value of 0�4 from analysis of Winkler et al. (2012)); and a

pessimistic assumption of strong overdispersion (r2e ¼ 1).

These assumptions are summarized in Table 1. TheGLMMthat fits

the design described above models the number of dead mosquitoes

recorded on the ith night from the jth hut in the kth week among the

nijk mosquitoes entering the hut, yijk, as binomially distributed, that is

yijk �Binom nijk; pijk
� �

. The log odds of mortality, logit pijk
� �

, can be

modelled as

gijk ¼ b0 þ
X5
m¼1

bmxmjk þ hj þ wk þ eijk;

where the intercept, b0, is the predicted log odds of mortality when

using the positive control net (type C) and bm is the log odds ratios

representing the difference in the log odds of mortality between the

mth of the five experimental nets (types E1-E5) and the control net.

The covariate xmjk is an indicator, or dummy variable, that takes the

value 1 when the mth of the five experimental nets is in use and 0

otherwise. For example, when the first experimental net, type E1, is in

use, x1jk = 1 and x2jk = x3jk = x4jk = x5jk = 0, so the log odds of mor-

tality on the ith night in the jth hut in the kth week is

gijk = b0+b1+hj+wk+eijk. The hut random effect, hj, the week random

effect, wk, and the observation-level random effect, eijk, are normally

distributed with zero mean and variances r2h, r
2
w and r2e , respectively.

For simplicity, we simulated nijk as a constant, although in reality this

quantity is random. Simulations of nijk as random indicated that

power was not sensitive to this simplification (data not shown).

SIMULATION METHODS

All combinations of the parameter values in Table 1 were simulated,

giving a total of 120 scenarios for the tick burden survey and 60 for the

LLIN trial. For each example study, 1000 data sets were simulated

from each scenario. The responses were simulated using a function,

sim.glmm, for the statistical environmentR (R Core Team 2014) which

is freely available at https://github.com/pcdjohnson/sim.glmm. The

function simulates from Gaussian, Poisson, binomial and negative

binomial GLMMs; a tutorial is provided as Appendix S1. The simu-

late.merMod function included in recent versions (≥1�0) of the lme4 R

package has similar functionality (Bates et al. 2014).

The next step is to analyse the simulated data set. Ideally, this should

be done using the same methods that would be used for the real data,

but this is problematic for non-Gaussian GLMMs because the most

reliable method for estimatingP-values and CIs, parametric bootstrap-

ping (Faraway 2005), is prohibitively slow formultiple simulations.We

have therefore taken the approach of using fast, approximate methods

to estimateP-values andCIs, while monitoring performance to identify

scenarios where precision and power estimates are unacceptably inac-

curate. In such cases, themore accuratemethods should be used despite

their slowness (see Appendix S1). The definition of ‘unacceptably inac-

curate’ is subjective, but would cover, for example, a 95% CI that

included the true value with only 85% probability. Small biases are

acceptable because power analysis is an inherently approximate

Table 2. Latin square design for trialling one control (C) and five

experimental (E1 to E5) types of long-lasting insecticidal net, rotated

through six huts over six weeks according to a design balanced against

carry-over effects (Williams 1949)

Week Hut 1 Hut 2 Hut 3 Hut 4 Hut 5 Hut 6

1 E1 E2 E3 E4 E5 C

2 E2 E3 E4 E5 C E1

3 C E1 E2 E3 E4 E5

4 E3 E4 E5 C E1 E2

5 E5 C E1 E2 E3 E4

6 E4 E5 C E1 E2 E3
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procedure, with results being strongly dependent on uncertain assump-

tions. However, in an analysis of real data, where computation time is

much shorter because the analysis need be run only once, researchers

should use the most accurate methods available, such as parametric

bootstrapping (Faraway 2005).

We analysed each simulated data set by fitting the GLMM from

which it was simulated using the lme4 package (Bates et al. 2014) for

R. Wald z CIs around tick burden estimates were calculated as

expðb̂0 � 1:96sb0 Þ; where sb0 is the estimated standard error of b̂0 and
1�96 is the 97�5th percentile of the standard normal distribution. The

null hypothesis of equal mortality between the standard (C) and experi-

mental (E1) net types was tested using a Wald v2-test with one degree of

freedom for the b1 parameter, with the null hypothesis being rejected

when P < 0�05. In GLMMs with overdispersion, Wald z CIs and

v2-tests are expected to give overconfident 95% CI coverage (i.e. true

confidence being <95%) and inflated type I error rate (Bolker et al.

2009), leading to overestimation of precision and power. We therefore

monitored type I error rate (the proportion of null hypotheses rejected

when the null hypothesis is true) and 95% CI coverage (the proportion

of 95% CIs that include the true effect size). We also monitored bias in

parameter estimation.

Power to detect the difference in mosquito mortality between

the two LLIN types was estimated as the proportion of the 1000 simu-

lated data sets in which the null hypothesis was rejected. Margin of

error in the tick burden example was averaged over the 1000 simulated

data sets. Mean computation time per 1000 simulations was 8�8 min

for the binomial example and 2�0 min for the Poisson data exam-

ple using a 2�7 GHz Intel Core i7 processor, parallelizing across 8

processor cores.

Results

COUNT RESPONSE EXAMPLE: ESTIMATING TICK

BURDEN ON GROUSE CHICKS

The precision of the estimates was greatly reduced by allowing

counts of ticks on chicks to be non-independent within broods

and locations (Fig. 1). The analysis assuming independence

among chicks (random effect and overdispersion variances = 0;

black circles and solid lines in Fig. 1) suggests that sampling only

20 locations will be sufficient to keep the expectedmargin of error

within � 25% (below the grey line in Fig. 1) even at the lowest

mean tick burden. Under more realistic assumptions that allow

tick burdens to be correlated at the chick, brood and location lev-

els (red triangles and dashed lines in Fig. 1), the margin of error

doubles. The impact on the study design of considering random

effects is severe. A fivefold increase in sampling effort to 100 loca-

tions is required to achieve the desired level of precision, regard-

less ofmean tick burden. In contrast to the binomial example (see

below), random effects at all levels, not just overdispersion, con-

tribute to reducing precision.

Of the three random effects, the location effect had the

largest impact on precision. The brood effect also substan-

tially reduced precision, while the effect of the chick (or over-

dispersion) random effect was generally small. We confirmed

that this effect was not simply due to location having the

strongest random effect (r2l ¼ 1) by repeating the simulations

with random effects variances at all levels set to 0�5 (data not

shown).

BINOMIAL RESPONSE EXAMPLE: COMPARING

MORTALITY OF MALARIA MOSQUITOES EXPOSED TO

LONG-LASTING INSECTICIDAL NETS

Standard power calculators ignore sources of non-indepen-

dence such as the hut, week and overdispersion effects con-

sidered here, producing power estimates equivalent to the

black circles in Fig. 2 (i.e. variance for each random effect

was set to 0). This was verified by estimating power assum-

ing independent observations using G*POWER (Faul et al.

2007) and the power.prop.test function in R. Ignoring these

effects and assuming that on average only five A. gambiae

will enter each hut each night, 56% power is achieved after

one rotation, 89% after two and 96% after three. Under the

high abundance scenario of 25 A. gambiae per hut per night

on average, a single rotation of the Latin square is sufficient

to give 100% power. Thus, a cautious researcher might plan

to run the experiment over two 6-week rotations to insure

against low A. gambiae abundance. How does consideration

of the random effects change this conclusion? Power is

decreased slightly by the hut and week random effects (trian-

gles in Fig. 2), but is markedly reduced by overdispersion

(red dashed and blue dotted lines). When mosquito abun-

dance is low, realistic overdispersion (r2e ¼ 0:5; red dashed

lines) necessitates three rotations to achieve at least 80%

power, and strong overdispersion (r2e ¼ 1; blue dotted lines)

requires three to four rotations. At higher abundance, and

assuming realistic overdispersion (red dashed lines), power

falls just short of the 80% threshold after one rotation so

that two rotations are required to exceed it. Two rotations

are also just sufficient to achieve 80% power assuming

strong overdispersion (blue dotted lines). Thus, consideration

of non-independence, and overdispersion in particular,

would motivate extending the duration of the trial by 50–

100%, with important implications for planning and resourc-

ing the study.

An alternative to extending the duration of the trial would

be to focus effort on the two net types of primary interest, the

control net and the primary experimental net, by reducing the

number of net types trialed. For example, if only the control

net and two experimental nets were trialed, the number of

observations per net type could be doubled.We found that this

gives equivalent power to doubling the duration of the trial

(data not shown).

BIAS AND CONFIDENCE INTERVAL COVERAGE

Bias in the tick burden estimates ranged from �3�9% to

7�9% (Fig. S1), although the effect of bias was small relative

to sampling error, with absolute bias always at least 4�3-fold
smaller than the margin of error (median 28-fold), so that,

relative to the overall error, bias was always small and usually

negligible. In the LLIN trial example, bias in the odds ratio

estimates was slightly lower, ranging from �0�2% to 7�7%
(Fig. S2). In both binomial and count examples, bias was

highest in scenarios where low sample size led to inadequate

power or precision.

© 2014 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.,

Methods in Ecology and Evolution, 6, 133–142

138 P. C. D. Johnson et al.



On average, CI coverage tended to be slightly overconfident

(i.e. too narrow) in the count example and accurate in the

binomial example (Fig. S3 and S4). Mean 95% CI coverage

across all scenarios was 93�4% for the tick burden estimates

and 94�4% for the mortality odds ratio estimates. Coverage of

the odds ratio estimate under the null hypothesis of no differ-

ence between the nets (odds ratio = 1), which is equivalent to

one minus the type I error rate, was similar to coverage under

the alternative hypothesis (Fig. S5), with mean coverage of

94�6%, or, equivalently, a type I error rate of 5�4%, close to

the nominal value of 5%. Under both the null and alterna-

tive hypotheses, scenarios that gave significantly low coverage

(< 93%) tended to be those where A. gambiae abundance was

low and overdispersion was at realistic (r2e ¼ 0:5) or strong

(r2e ¼ 1) levels. CI coverage in the tick abundance example fol-

lowed a similar pattern to that shown by bias, tending to be

more problematic when sampling effort was low, with cover-

age typically around 90% in scenarios where the total number

of ticks was low, either due to low tick abundance or low sam-

ple size.

Discussion

The key question to answer when assessing the utility of the

power analysis methods presented here is: will they help

researchers in ecology and evolution to design better studies?

To do this, they must be (i) substantially more accurate than

conventional power analysis methods to justify the extra time

and effort required and (ii) reasonably straightforward to use.

On the first point, consideration of random effects had amajor

impact on study design in both of the examples, motivating an

increase in sampling effort of up to twofold in the binomial

example and fivefold in the count example. On the second

point, although our experience is that the perceived complexity

of simulation from GLMMs can be intimidating, we argue

that the methods presented here are no more complex concep-

tually, and only slightly more challenging technically, than fit-

ting and interpreting aGLMM.

The methods presented here are flexible because GLMMs

are flexible. Their flexibility is illustrated by the contrast

between the two example studies: binomial vs. count responses;

crossed vs. nested random effects; inference via NHST vs. con-

fidence interval estimation; experimental vs. observational

study design. This flexibility encompasses many common sim-

pler analyses which can also be simulated as GLMMs, includ-

ing linear mixed effects regression, GLMs, linear regression,

ANOVA and t-test. More complex models can also be simulated.

For example, zero-inflated count models (Zuur, Saveliev &

Ieno 2012) could be simulated as the product of binary and

Poisson or negative binomial responses.

What do these results tell us about the impact of random

effects and overdispersion on power and precision? Although

we cannot generalize beyond the two examples, the results

show that the effects of random variation on power and preci-

sion can depend on the specific study scenario. In the binomial

example, overdispersion was the principal drain on power,

while the higher level random effects (hut and week) had

little impact. An implication of this observation is that when
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overdispersion is present, power can depend not just on the

quantity of data (here total mosquito numbers), but also on

how it is collected. For example, running the trial for one rota-

tion catching 25mosquitoes per hut per night yields exactly the

same number of mosquitoes per treatment arm, 150, as run-

ning five rotations with an abundance of 5 mosquitoes per hut

per night, yet in the presence of overdispersion, the latter sce-

nario gives considerably more power (Fig. 2). In the count

example, by contrast, overdispersion had relatively little

impact compared with the higher level random effects. The

critical factor in determining precision was the variance at the

highest level, among locations. This effect has been observed in

multilevel LMMs, where power is limited principally by the

highest level sample size (Maas & Hox 2005; Snijders 2005).

The contrasting patterns between the two examples presented

emphasize the unpredictability of the results of power analysis

when there are multiple sources of variation, and the necessity

of tailoring power analysis to apply to specific study designs

and study systems.

Although we have shown that ignoring the influence of ran-

dom effects and overdispersion on power analysis can grossly

mislead study design, we are not suggesting that many

researchers would be so na€ıve. EE researchers are generally

alert to the impact of non-independence and overdispersion on

inference, as evidenced by the widespread awareness of pseu-

doreplication (Hurlbert 1984) and the popularity of GLMMs

(Bolker et al. 2009). It is more likely that they would not do a

power analysis at all. Why not? Our experience is that there is

simply not a culture of performing power analysis. This suppo-

sition is supported by the fact that fewEE journals recommend

that authors use power analysis. Together the Ecological Soci-

ety of America (ESA; n = 3 journals), the British Ecological

Society (BES; n = 4), the European Society for Evolutionary

Biology (ESEB; n = 1) and the Society for the Study of Evolu-

tion (SSE; n = 1) publish nine of the most prominent primary

research journals in EE. Only the ESA mentions power analy-

sis in its guidance for authors, in tentatively supportive terms

[‘Power analyses . . . occasionally can be very useful’ (Ecologi-

cal Society of America Statistical Ecology Section 2012)], while

none of the other journals mention the topic at all in their guid-

ance. If journals are committed to raising the quality of the sci-

ence they publish, journal editors should encourage and, where

appropriate, require authors to include an a priori power

analysis, or at least a justification of its omission. Although we

have no objective evidence identifying other barriers to power

analysis, in our experience these include a belief that power

analysis cannot be extended beyondNHST inference; a lack of

available power analysis methods for complex analyses; a lack

of technical knowledge of even simple power analyses; and the

perceived difficulty of defining a biologically meaningful effect

size.

We argue that the last of these obstacles arises from amisun-

derstanding of the concept of a biologically meaningful effect

size. This obstacle is (in our experience) frequently expressed as

a question: ‘How can I power my study to detect an effect size

of which I have no knowledge?’ The answer is that the study

should be powered to detect not the actual effect (which cannot

anyway be known before collecting the data) but the smallest

effect that would be considered biologically meaningful. In

other words, the study should be sufficiently sensitive to detect

the smallest effect that, in the judgement of the researcher, is

worth detecting. In the LLIN hut trial example, we chose to

power the trial to detect a difference between a mortality of
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80% with the experimental net and 70% with the control net.

This choice implies that effect sizes that equate to experimental

net mortalities in the range 80–100% are worth detecting,

while those in the range 70–80% are not, because the study

would be underpowered to detect them. Whichever combina-

tion of reasons explains the under-use of power analysis in EE,

alleviation of this problem will require greater availability of

methods and guidance on conducting power analysis for

GLMMs such as those presented here, and greater recognition

of the importance of power analysis in EE curricula.

Simulation-based power analysis for GLMMs has disad-

vantages. First, it is relatively slow. Secondly, while power

analysis formulae can be rearranged to output any parameter,

including sample size, sample size can only be an input when

using simulations. It is therefore necessary to run simulations

across a range of sample sizes in order to locate the one that

gives the desired power, although an efficient algorithm to

automate this procedure has been developed (Hooper 2013).

Nevertheless, these disadvantages are easily outweighed by

the much greater flexibility of simulation-based power analy-

sis. Researchers should, however, resist the temptation to

abuse this flexibility by overcomplicating power analysis.

Most power analyses rest on strong assumptions with consid-

erable inherent uncertainty whose impact is likely to dwarf

the effect of fine adjustment to the simulation model. The sim-

plifying assumptions made in both examples highlight an

important distinction between retrospectively fitting a model

to data and prospectively choosing a simulation model for

power analysis. In the former, all available information is used

to maximize the efficiency of the model, while in the latter, the

absence of information and the practical necessity of limiting

the number of scenarios to be explored necessitate simplifica-

tion, while erring on the side of conservatism (i.e. we would

rather underestimate than overestimate power).

In conclusion, power analysis should be much more widely

used. Failing to include power analysis as a key element of

study design misses an opportunity to increase the probability

of a study being successful. However, power analysis is chal-

lenging for the dominant analysis framework – GLMMs –

and hindered by lack of guidance and software. The guidance

and methods presented here are intended to make power

analysis for GLMMs more accessible to researchers and ulti-

mately improve the standard of study design in ecology and

evolution.
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