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Abstract

Single-gene analyses indicate that maternal genes associated with metabolic conditions (e.g., 

obesity) may influence the risk of neural tube defects (NTDs). However, to our knowledge, there 

have been no assessments of maternal-fetal metabolic gene-gene interactions and NTDs. We 

investigated 23 single nucleotide polymorphisms among 7 maternal metabolic genes (ADRB3, 

ENPP1, FTO, LEP, PPARG, PPARGC1A, and TCF7L2) and 2 fetal metabolic genes (SLC2A2 and 

UCP2). Samples were obtained from 737 NTD case-parent triads included in the National Birth 

Defects Prevention Study for birth years 1999–2007. We used a 2-step approach to evaluate 

maternal-fetal gene-gene interactions. First, a case-only approach was applied to screen all 

potential maternal and fetal interactions (n=76), as this design provides greater power in the 

assessment of gene-gene interactions compared to other approaches. Specifically, ordinal logistic 

regression was used to calculate the odds ratio (OR) and 95% confidence interval (CI) for each 

maternal-fetal gene-gene interaction, assuming a log-additive model of inheritance. Due to the 

number of comparisons, we calculated a corrected p-value (q-value) using the false discovery rate. 

Second, we confirmed all statistically significant interactions (q<0.05) using a log-linear approach 

among case-parent triads. In step 1, there were 5 maternal-fetal gene-gene interactions with 

q<0.05. The “top hit” was an interaction between maternal ENPP1 rs1044498 and fetal SLC2A2 
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rs6785233 (interaction OR=3.65, 95% CI: 2.32–5.74, p=2.09×10−8, q=0.001), which was 

confirmed in step 2 (p=0.00004). Our findings suggest that maternal metabolic genes associated 

with hyperglycemia and insulin resistance and fetal metabolic genes involved in glucose 

homeostasis may interact to increase the risk of NTDs.
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1. INTRODUCTION

Neural tube defects (NTDs) are among the most common, costly, and deadly of all human 

congenital anomalies whose etiologies remain largely unknown [1, 2]. Maternal pre-

gestational diabetes and pre-pregnancy obesity are two well-established risk factors for 

NTDs [3–19]. While the exact mechanisms behind these associations are unknown, it is 

believed that glucose homeostasis plays an important role. At the time of neural tube closure 

(approximately the fourth week of gestation), mothers with poorly regulated glucose levels 

are likely to have an altered intrauterine environment leading to abnormal organogenesis. 

Several genes related to glucose homeostasis have been previously identified in human and 

animal studies. Furthermore, genes related to glucose homeostasis have been associated with 

type 2 diabetes and obesity risk in genome-wide association studies (GWAS) [20–23]. Work 

from our group indicated an association between inherited (i.e., fetal) variation in the UCP2 

gene and NTDs [24]. SLC2A2 is an important glucose transporter during embryonic neural 

tube development [25]. Additionally, we found associations between maternal genotypes in 

FTO, TCF7L2, and LEP and NTDs suggesting maternal genetic effects may cause changes 

in intrauterine environment and play a role in disease risk [24]. The Hyperglycemia and 

Adverse Pregnancy Outcome (HAPO) study has demonstrated that common genetic variants 

in genes such as TCF7L2 are associated with fasting and post-challenge glucose levels 

during pregnancy [26]. Because of these findings, we sought to evaluate the interactions 

between maternal and fetal genes related to glucose homeostasis and the risk of NTDs.

2. MATERIALS AND METHODS

2.1 Subjects

The study population included NTD case-parent triads (n=737) from the National Birth 

Defects Prevention Study (NBDPS), with estimated dates of delivery between January 1, 

1999 and December 31, 2007. Details of the NBDPS have been published elsewhere [27]. In 

brief, the NBDPS is a population-based case-control study of major structural birth defects. 

For the period 1999–2007, case infants with one or more congenital anomalies were 

ascertained through ten birth defects surveillance systems throughout the United States 

(Arkansas, California, Georgia, Iowa, Massachusetts, New Jersey, New York, North 

Carolina, Texas, and Utah) and included live births, stillbirths, and induced pregnancy 

terminations. NTDs included in the NBDPS had British Pediatric Association (BPA) codes 

for the diagnoses anencephaly (740.0), craniorachischisis (740.1), spina bifida (741.0), and 

encephalocele (742.0). Abstracted data for all NTD case infants were reviewed by clinical 
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geneticists using specific criteria, including standardized case definitions and confirmatory 

diagnostic procedures [28]. Infants/fetuses with known single gene disorders or 

chromosomal abnormalities were excluded from the NBDPS. Mothers completed a one-hour 

computer assisted telephone interview (CATI) in English or Spanish between 6 weeks and 2 

years after the estimated date of delivery. The interview included sections on maternal 

conditions and illnesses, lifestyle and behavioral factors, and multivitamin use.

2.2 Maternal and Fetal Candidate Genes and Single Nucleotide Polymorphisms (SNPs)

The selection criterion for candidate genes and SNPs were reported previously [24]. Briefly, 

genes and SNPs selected were those identified as being associated with type 2 diabetes or 

obesity in multiple GWAS studies, or those with supporting evidence from both candidate 

gene studies and animal models. Maternal candidate genes included in the current study 

were ADRB3, ENPP1, FTO, LEP, PPARG, PPARGC1A, and TCF7L2. Fetal candidate 

genes analyzed were UCP2 and SLC2A2 [20, 25, 29–34]. Information on the SNPs 

evaluated and the selection criteria used is listed in Table 1.

2.3 DNA Samples and Genotyping Analysis

Buccal brushes from mothers, fathers, and infants were collected as part of the NBDPS [35]. 

DNA was extracted from buccal cells and a standard quality control procedure was applied 

to each sample before they were submitted to the NBDPS sample repository [35]. To assure 

genotyping proficiency, high quality, and high concordance among all NBDPS laboratories, 

annual evaluations are conducted to confirm the performance of each laboratory (See 

Supplemental Material). Our laboratory at the University of Texas at Austin, Dell Pediatric 

Research Institute has passed all of these evaluations with a score of 100%. SNPs were 

assayed using TaqMan method (Life Technologies Corporation, Carlsbad, CA) and 

genotypes were read and discriminated on the ABI PRISM® 7900HT Sequence Detection 

System (Life Technologies Corporation, Carlsbad, CA).

2.4 Statistical Analysis

The characteristics of cases and case mothers were summarized using counts and 

proportions for the following variables: phenotype (spina bifida, anencephaly, 

encephalocele); infant sex (male, female); maternal age (<20, 20–34, ≥35 years); maternal 

race/ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, other); maternal 

education (<12, 12, 13–15, >15 years); maternal folic acid supplementation during three 

months before conception through the first month of pregnancy (no, yes); maternal pre-

pregnancy body mass index or BMI (underweight [<18.5 kg/m2], average weight [18.5–24.9 

kg/m2], overweight [25.0–29.9 kg/m2], and obese [≥30.0 kg/m2]; and maternal pre-

pregnancy diabetes (no, yes). For each analyzed polymorphism, samples for which a 

genotype could not be assigned and triads that had genotype combinations that were 

inconsistent with Mendelian inheritance were determined. For each subject, the number of 

genotyping failures (i.e., genotypes that could not be assigned) was determined. These 

analyses were performed using Intercooled Stata, version 12.1 (StataCorp LP, College 

Station, TX).
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We utilized a 2-step approach to evaluate maternal-fetal gene-gene interactions [36]. For 

step 1, a case-only approach was used to screen all potential interactions (n=76), as this 

design provides greater power in the assessment of gene-gene interactions compared to a 

case-control design or case-parent triads [37]. The case-only design has been described 

elsewhere [38] and has been used extensively for the assessment of gene-environment and 

gene-gene interactions [36, 38–43]. Specifically, ordinal logistic regression was used to 

calculate the odds ratio (OR) and 95% confidence interval (CI) for each maternal-fetal gene-

gene interaction, assuming a log-additive model of inheritance. The genotypes for each SNP 

were classified according to the number of minor alleles present (i.e., 0, 1, 2). In the ordinal 

logistic regression model, the maternal genotype was treated as the dependent variable and 

the fetal genotype was treated as the independent variable [36, 37, 43]. Due to the number of 

comparisons, we calculated a corrected p-value (q-value) to control for the false discovery 

rate (FDR) at 0.05 [44, 45]. These analyses were conducted using Intercooled Stata version 

12.1 (StataCorp LP, College Station, TX). All interactions where q<0.05 were included in 

step 2.

For step 2 (i.e., case-parent triad approach), maternal-fetal gene-gene interactions that were 

associated with NTDs in the case-only analyses (i.e., q<0.05) were investigated using log-

linear models for joint effects [46]. To test the no-interaction null hypothesis, we calculated 

a 2-degrees-of-freedom likelihood ratio test (LRT) statistic as twice the difference of the log 

likelihoods for the log-linear model that included two parameters indexing the inherited 

genotype (SNP1), two parameters indexing the maternal genotype (SNP1), and two 

interaction terms representing the product of maternal-fetal SNP1-SNP2 pairwise genotypes 

(SNP2 being the fetal “interacting” SNP) and a reduced model that excluded the interaction 

terms [36, 46]. These analyses were run using LEM [47], a program for log-linear analysis 

with missing data that allows information from case-parent triads that have not been 

completely genotyped (e.g., father not available) to be included in the analysis for any given 

variant [48]. To reduce concerns regarding possible mating stratification bias [49, 50], we 

also examined interactions among case-parent triads in which both parents were reported to 

be non-Hispanic White. Additionally, analyses were conducted in three subgroups: 1) those 

case-parent triads with spina bifida only (to reduce the potential for phenotypic 

heterogeneity); 2) those case-parent triads where mothers did not have pre-gestational 

diabetes (in order to determine if these effects were independent; and 3) those case-parent 

triads where mothers were not obese (in order to determine if these effects were independent 

of obesity).

3. RESULTS

Participation in the NBDPS for the period 1999–2007 was 74% among NTD case mothers, 

yielding 1,553 families available for analysis. Among those, 759 (49%) provided buccal 

brushes (1,787 individuals). Genotyping was performed on DNA samples derived from 

these 759 families. Based on quality control checks, 18 families (2% of families) were 

excluded for being inconsistent with Mendelian inheritance at more than two genotypes. 

Additionally, 47 subjects were excluded for failure at more than 11 genotypes (>50%), 

leaving a total of 737 case-parent triads (97% of the original sample). Of those, 317 were 

complete triads, 313 were dyads, and 107 were monads with only one person in the family. 
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After these quality control measures were applied, at least 95% of the samples for each 

variant were available; therefore the genotypes were considered of sufficiently high quality 

for analysis.

The distributions of key characteristics among NTD case-parent triads are presented in 

Table 2. Spina bifida was the most common phenotype among case subjects (n=449, 

60.9%). Furthermore, a majority of case mothers were non-Hispanic White (n=439, 59.8%). 

Among case mothers, 176 were obese (25.4%), 13 had pre-pregnancy diabetes (1.8%), and 

28 had gestational diabetes (4.2%). The only characteristics presented in Table 2 that were 

significantly different between interviewed case mothers who provided buccal brushes and 

those who did not were race/ethnicity (those who provided buccal brushes were more likely 

to be non-Hispanic White compared to those who did not) and education (those who 

provided buccal brushes were more likely to have >12 years education compared to those 

who did not), data not shown.

Of the 76 interactions evaluated, five had q<0.05 (Table 3). Among these five, four were 

confirmed using log-linear models among case-parent triads (step 2). Our results were 

similar when restricted to non-Hispanic white mating combinations (data not shown). 

Specifically, the following interactions were confirmed: maternal ENPP1 rs1044498-fetal 

SLC2A2 rs6785233 (interaction OR=3.65, 95% CI: 2.32–5.74, q=0.001, LRT p=0.00004); 

maternal LEP rs12706831-fetal SLC2A2 rs6785233 (interaction OR=0.45, 95% CI: 0.29–

0.71, q=0.016, LRT p=0.00001); maternal ENPP1 rs1044498-fetal SLC2A2 rs5400 

(interaction OR=1.98, 95% CI: 1.34–2.92, q=0.016, LRT p=0.001); and maternal LEP 

rs2071045-fetal SLC2A2 rs5400 (interaction OR=0.50, 95% CI: 0.32–0.77, q=0.03, LRT 

p=0.008). As in our previous assessment [24], our results were similar when our analyses 

were restricted to 1) those case-parent triads with spina bifida only; 2) those case-parent 

triads where mothers did not have pre-gestational diabetes; and 3) those case-parent triads 

where mothers were not obese (Table 4 for results among non-obese mothers) [24].

4. DISCUSSION

To our knowledge, this is the first study reporting maternal-fetal gene-gene interactions in 

metabolic genes and their associations with NTD risk. Significant interactions were 

identified between the fetal SLC2A2 gene and maternal variants in LEP and ENPP1 genes. 

Specifically, four of the 76 interactions were q<0.05 and were confirmed in step 2 of our 

analysis. The minor alleles of maternal ENPP1 and fetal SLC2A2 were associated with 

increased risk of NTDs, whereas the minor alleles of LEP and fetal SLC2A2 were inversely 

associated with NTD risk. The direction of these associations is consistent with our previous 

single locus analysis [24]. Interestingly the maternal (ENPP1 rs1044498, LEP rs12706831, 

and LEP rs2071045) and fetal (SLC2A2 rs6785233 and SLC2A2 rs5400) SNPs identified as 

being significant in these analyses were not significant in single locus analyses [24], 

suggesting the importance of evaluating factors that may not have significant “main” effects. 

It is noteworthy and SLC2A2 gene is known to contribute to impaired glucose tolerance and 

type 2 diabetes [51]; however, we have previously evaluated potential maternal effect of 

SLC2A2 SNPs and no significant association was observed [24].
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Leptin is a hormone produced and secreted by white adipose tissue and has profound effects 

on eating behavior, metabolic rate, endocrine function, and glucose homeostasis. Leptin 

deficiency in both mice and humans causes morbid obesity and diabetes, and replacement 

treatment leads to decreased food intake, normalized glucose homeostasis, and increased 

energy expenditure [32, 52–55]. Two genetic markers adjacent to human LEP gene have 

been found to be modestly associated with NTDs possibly via an inherited effect, 

irrespective of maternal BMI [56]. In our previous study, we observed a modest increase of 

NTD risk (though not statistically significant) among women who carried the minor allele of 

SNP rs2071045 [24]; however, the functionality of this SNP is unknown.

Ectonucleotide pyrophosphate phosphodiesterase (ENPP1) is a membrane-bound 

glycoprotein that inhibits insulin receptor signaling. ENPP1 is the same protein as liver 

nucleotide phosphodiesterase and liver alkaline phosphodiesterase 1 and a member of a 

family of five enzymes (ENPP1–5) that regulate nucleotide metabolism [57]. The K121Q 

polymorphism (rs1044498) in exon 4 of ENPP1 gene has been associated with insulin 

resistance in some populations [31] but not others [58–60]. There is evidence suggesting that 

this variant interacts with adiposity in modulating glucose homeostasis [61, 62]; however, 

the possible effect of this variant on obesity remains unclear, with variable results [62–64]. 

We did not find a significant association between the ENPP1 gene and NTD risk when 

evaluating main genetic effects in our previous assessment [24].

At the time of neural tube closure (approximately the 4th week of gestation), an embryo 

receiving excessive amounts of glucose may not be able to regulate these levels, which 

subsequently leads to abnormal organogenesis and birth defects [25, 65, 66]. In mice, Glut2 

is expressed from the 8-cell stage onward [67]. Under the condition of maternal 

hyperglycemia, inactivation of the Glut2 gene in mouse can protect embryos from maternal 

diabetes-induced NTDs [25]. Our previous study shows that fetal variants in SLC2A2 (the 

human homolog of mouse Glut2) alone does not significantly influence NTD risk [24]. 

However, in this analysis, it appears as though SLC2A2 may interact with maternal LEP and 

ENPP1 genes to modify the risk of NTDs, suggesting SLC2A2 may confer sensitivity of the 

developing embryos under compromised intrauterine environment.

An important strength of our study is the use of data from the NBDPS, the largest 

population-based study of birth defects, which provided a unique opportunity to examine the 

interactions between maternal and fetal genes on NTD risk. The case-parent triad design is 

immune to population stratification bias in the assessment of fetal genotypes [50]. The log-

linear modeling approach to analyses also allowed us to include data from incomplete triads 

(i.e., genotype data is missing for one or two individuals) [48, 68]. An additional strength of 

the NBDPS is the extensive and standardized case review employed by clinical geneticists, 

which maximizes homogeneity among case groups. The main weakness of this study was 

the limited proportion of families with biologic samples (49%), which may limit the 

generalizability of our findings. In addition, clinical data such as insulin resistance or fasting 

blood glucose levels are not available as part of the NBDPS; therefore it is not possible to 

exclude mechanisms other than their associations with maternal obesity or impaired glucose 

homeostasis that alter the intrauterine environment. In conclusion, our findings suggest that 

maternal metabolic genes associated with hyperglycemia and insulin resistance and fetal 
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metabolic genes involved in glucose homeostasis may interact to increase the risk of NTDs. 

Replication of these findings in other populations and investigation of additional genes is 

warranted. Furthermore, since maternal obesity and diabetes are also risk factors for other 

malformations [5, 8, 69], assessing the maternal-fetal gene-gene interactions in other birth 

defects will broaden our understanding of diabetes and obesity-related teratogenicity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Single-gene analyses indicate that maternal genes associated with metabolic 

conditions may influence the risk of neural tube defects (NTDs)

• In order to evaluate the interactions between maternal and fetal genes related to 

glucose homeostasis and the risk of NTDs we investigated 23 single nucleotide 

polymorphisms among 7 maternal metabolic genes and 2 fetal metabolic genes

• Samples were obtained from 737 NTD case-parent triads included in the 

National Birth Defects Prevention Study

• We found 5 statistically significant maternal-fetal gene-gene interactions

• Our findings suggest that maternal metabolic genes associated with 

hyperglycemia and insulin resistance and fetal metabolic genes involved in 

glucose homeostasis may interact to increase the risk of NTDs
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Table 2

Characteristics of neural tube defect case-parent triads (n=737), National Birth Defects Prevention Study, 

1999–2007

Characteristic No. %

Phenotype

 Spina bifida 449 60.9

 Anencephaly 217 29.4

 Encephalocele 71 9.6

Infant sex

 Male 337 47.9

 Female 366 52.1

Maternal age

 <20 83 11.3

 20–34 556 75.4

 ≥35 98 13.3

Race/ethnicity

 Non-Hispanic White 439 59.8

 Non-Hispanic Black 34 4.6

 Hispanic 221 30.1

 Other 40 5.5

Education (years)

 <12 142 19.3

 12 184 25.0

 13–15 226 30.7

 >15 185 25.0

Folic acid supplementationa

 No 351 47.6

 Yes 386 52.4

Body mass index (kg/m2)

 Underweight (<18.5) 28 4.1

 Normal (18.5–24.9) 336 48.6

 Overweight (25.0–29.9) 152 21.9

 Obese (≥30) 176 25.4

Pre-pregnancy diabetes

 No 724 98.2

 Yes 13 1.8

Gestational diabetes

 No 667 95.8

 Yes 29 4.2

a
Three months before conception through the first month of pregnancy
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Table 4

Top maternal-fetal metabolic gene-gene interactions in non-obese mothers associated with neural tube defects, 

National Birth Defects Prevention Study, 1999–2007

Maternal SNP Fetal SNP Interaction ORa 95% CIb p-value

ENPP1 rs1044498 SLC2A2 rs6785233 3.24 1.83–5.74 5.18E-05

LEP rs12706831 SLC2A2 rs6785233 0.54 0.31–0.93 0.0027

ENPP1 rs1044498 SLC2A2 rs5400 1.78 1.12–2.86 0.0153

LEP rs2071045 SLC2A2 rs5400 0.58 0.37–0.91 0.0259

LEP rs2071045 SLC2A2rs6785233 0.49 0.27–0.88 0.0172

LEP rs12706831 SLC2A2 rs5400 0.58 0.37–0.91 0.0176

LEP rs11760956 SLC2A2 rs6785233 0.85 0.50–1.44 0.5506

LEP rs3828942 SLC2A2 rs6785233 0.72 0.43–1.25 0.2552

a
Interaction odds ratio (OR) from case-only analysis

b
Confidence interval (CI)
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