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Mupirocin decolonization of nasal Staphylococcus aureus prior to surgery decreases surgical-site infections; however, treatment
requires 5 days, compliance is low, and resistance occurs. In 2010, 3M Company introduced povidone-iodine (PVP-I)-based skin
and nasal antiseptic (Skin and Nasal Prep [SNP]). SNP has rapid, broad-spectrum antimicrobial activity. We tested SNP’s effi-
cacy using full-thickness tissue (porcine mucosal [PM] and human skin) explant models and human subjects. Prior to or follow-
ing infection with methicillin-resistant Staphylococcus aureus (MRSA) (mupirocin sensitive and resistant), explants were treated
with Betadine ophthalmic preparation (Bet), SNP, or mupirocin (Bactroban nasal ointment [BN]) or left untreated. One hour
posttreatment, explants were washed with phosphate-buffered saline (PBS) plus 2% mucin. One, 6, or 12 h later, bacteria were
recovered and enumerated. Alternatively, following baseline sampling, human subjects applied two consecutive applications of
SNP or saline to their anterior nares. One, 6, and 12 h after application of the preparation (postprep), nasal swabs were obtained,
and S. aureus was enumerated. We observed that treatment of infected PM or human skin explants with SNP resulted in >2.0
log10 CFU reduction in MRSA, regardless of mupirocin sensitivity, which was significantly different from the values for BN- and
Bet-treated explants and untreated controls 1 h, 6 h, and 12 h after being washed with PBS plus mucin. Swabbing the anterior
nares of human subjects with SNP significantly reduced resident S. aureus compared to saline 1, 6, and 12 h postprep. Finally,
pretreatment of PM explants with SNP, followed by a mucin rinse prior to infection, completely prevented MRSA infection. We
conclude that SNP may be an attractive alternative for reducing the bioburden of anterior nares prior to surgery.

Methicillin-resistant Staphylococcus aureus (MRSA) has emerged
as one of the most important pathogens in nosocomial or

hospital-acquired infections (HAI) (1). Surgical-site infections
(SSIs), a class of HAI, are defined by the National Healthcare
Safety Network (NHSN) as those infections that occur up to 30
days postsurgery or up to 90 days after surgical implantation of a
medical device and remain a significant clinical problem despite
advances made in reducing the risk of SSIs (2). The frequency of
SSI can be as high as 20%, depending on the type of surgery (3). S.
aureus is the leading cause of SSIs, accounting for 30% of all SSIs
with almost half (49.2%) of those caused by MRSA (4). Preventing
a single case of MRSA SSI can reduce hospital costs by as much as
$42,300 and reduce the length of stay by 50% (median, 2 weeks)
(5–7).

S. aureus colonizes the anterior nares, skin, and mucosal sur-
faces of approximately 30% of the population (8–10). Nasal colo-
nization with S. aureus is a well-known risk factor for acquisition
of SSIs (11–13). Decolonization of the anterior nares is one strat-
egy for reducing risk of SSIs. Intranasally applied mupirocin has
been the therapy of choice since the 1980s (14). The most effica-
cious regimen for S. aureus eradication from the anterior nares is
twice-daily applications of mupirocin ointment for 5 days for a
total of 10 doses (15, 16). In a prospective study, Yano et al. saw a
reduction in the rate of S. aureus SSIs in patients decolonized with
mupirocin prior to upper gastrointestinal surgery compared to
the control group (0.71% versus 11.7% [P � 0.001]) (17). Others
have observed �60% reduction in SSIs in a cohort of cardiotho-
racic patients treated with mupirocin prior to surgery (18, 19).
Furthermore, there was a significant cost savings, considering that
the average cost of mupirocin treatment was $12.47 compared to

$10,428 � $9,125 for a superficial sternal infection or $81,018 �
$41,567 for a deep sternal infection (18). Finally, in a review by T.
Perl, although not statistically significant, a subset of surgical pa-
tients decolonized with mupirocin experienced approximately
50% fewer SSIs than those who did not receive treatment (20).

In contrast to these studies, double-blind, randomized, placebo-
controlled clinical trials have failed to demonstrate a significant
impact of nasal decolonization by mupirocin on SSI. For example,
intranasal mupirocin administered to S. aureus carriers did not
reduce the rates of overall cardiac surgical SSIs caused by this
organism (21). In 2002, Perl et al. failed to demonstrate a signifi-
cant difference in the rate of SSI patients treated prophylactically
with mupirocin versus those treated with a placebo (22).

Treatment failure has been associated with increased mortality
(23). Patient noncompliance may contribute to treatment failure
(24). However, there is growing evidence that treatment failure
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may also be due to acquired antibiotic resistance (25–27). The
prevalence rates of high-level mupirocin resistance (Mupr) in-
creased from 1.6% of MRSA strains during the 5-year period of
1995 to 1999 to 7% for 2000 to 2004 (28). The increasing preva-
lence of Mupr has important implications for institutions where
decolonization is the standard of care. While there are no stan-
dardized guidelines for screening or decolonization, most clini-
cians attempt to decolonize patients who are at risk with a combi-
nation of chlorhexidine gluconate applied to the skin and
intranasal mupirocin (29). The use of mupirocin enhances selec-
tive pressure, decreasing its effectiveness as a decolonization strat-
egy (30). This has prompted the evaluation of alternative strategies
for reducing the risk of MRSA SSIs.

In early 2010, 3M Company launched 3M skin and nasal anti-
septic (Skin and Nasal Prep [SNP]), an alternative to topical anti-
bacterial therapy with mupirocin, as a topical patient preoperative
antiseptic prep for the reduction of microbial bioburden on the
skin and in the anterior nares. The preparation is based on povi-
done-iodine (PVP-I), which has broad-spectrum antibacterial ac-
tivity, as well as activity against fungi, protozoa, viruses, and some
bacterial spores (31, 32). PVP-I has rapid in vitro activity (bacte-
ricidal within 15 to 20 s), and the duration of the effect on skin has
been reported to be 12 to 14 h due to a phenomenon called back-
diffusion (33, 34). In contrast to the use of antibiotics, there is
minimal potential for the development of resistance to PVP-I due
to multiple cellular targets (35, 36). Finally, excipients in the 3M
SNP formulation protect PVP-I from inactivation by organic
compounds such as blood or mucin and increase mucoadhesion.

Recently, Phillips et al. conducted a prospective, open-label,
randomized clinical study to evaluate 3M SNP as an alternative to
intranasal mupirocin because of lack of patient compliance and
increasing mupirocin resistance (37). They demonstrated that 3M
SNP resulted in significantly fewer S. aureus SSIs than mupirocin.
Therefore, we conducted an analysis of 3M SNP and mupirocin
and determined their ability to reduce MRSA burden on mucosal
tissues and human skin. The aims of this study were threefold: (i)
to demonstrate that 3M Skin and Nasal Prep is efficacious at re-
ducing microbial bioburden and in prevention of methicillin-re-
sistant S. aureus infections in an ex vivo model, (ii) to show efficacy
against Mupr MRSA in a novel ex vivo human skin MRSA infec-
tion model, and (iii) to validate reduction in the anterior nares S.
aureus bioburden of human subjects.

MATERIALS AND METHODS
Bacterial growth and explant inoculation. Methicillin-resistant S. aureus
(MRSA) strain Xen30 was purchased from Caliper Life Sciences (Hopkin-
ton, MA). Mupirocin-resistant clinical MRSA isolates were received from
the Minnesota Department of Health’s repository. Mupirocin susceptibil-
ity was evaluated using Etest strips (bioMérieux, Durham, NC) according
to the manufacturer’s instructions. Strips were interpreted according to
literature and opinion, as they were for research use only. Bacterial strains
described in these studies are maintained in our laboratories as frozen
glycerol stocks. Prior to experimentation, tryptic soy agar containing 5%
sheep blood (TSB) (Becton Dickinson, Franklin Lakes, NJ) is inoculated
from frozen stocks. On the afternoon prior to initiation of the experiment,
Todd-Hewitt broth (BD Biosciences, San Jose, CA) is inoculated with
colonies from fresh TSB plates. Stationary-phase (overnight) cultures are
washed in RPMI 1640 medium (Invitrogen, Carlsbad, CA) and resus-
pended to a concentration of approximately 5 � 108 CFU/ml. Two-mi-
croliter portions of this suspension are used to inoculate explants on the

mucosa or stratum corneum surface (1 � 106 CFU/explants). Explants are
returned to 37°C and 7% CO2 and incubated for 1 to 24 h.

Explants of healthy porcine vaginal mucosa (5-mm diameter; full-
thickness squamous epithelium) or human skin (5-mm diameter; full
thickness) were infected with methicillin-resistant S. aureus. Prior to or
following infection, explants were treated with Betadine solution (oph-
thalmic preparation) (Betadine Ophthalmic) (Alcon, Fort Worth, TX),
3M skin and nasal antiseptic (Skin and Nasal Prep [SNP]) (St. Paul, MN),
or mupirocin ointment (Bactroban nasal ointment [Bactroban Nasal];
Glaxo Smith Kline, Research Triangle Park, NC) or left untreated (con-
trols). Bacteria were enumerated by transferring explants to 2� Dey-
Engley (DE) broth (Becton Dickinson, Franklin Lakes, NJ) for neutraliza-
tion, vortex mixing, and then plating onto TSB plates neat or serially
diluted in phosphate-buffered saline (PBS; Sigma, St. Louis, MO).

Ex vivo porcine vaginal mucosal (PVM) culture. In a previous pub-
lication, we describe a novel model for determining the efficacy of anti-
microbial agents (38). Briefly, specimens of healthy porcine vaginal mu-
cosa are excised from animals at slaughter in the University of Minnesota
Andrew Boss Laboratory of Meat Science. The tissue is a by-product of the
slaughter of animals for human consumption and therefore Institutional
Animal Care and Use Committee (IACUC) exempt. Specimens are then
transported to the laboratory in RPMI 1640 medium supplemented with
10% fetal calf serum (Invitrogen, Carlsbad, CA) on ice. Tissue was utilized
within 3 h of excision. Tissue explants of uniform size were obtained from
the porcine vagina using a 5-mm biopsy punch. Excess muscle tissue was
trimmed away with a scalpel. The explants are washed in serum and anti-
biotic-free medium 3 times and then placed mucosal side up on a 0.4-�m
cell culture insert (BD Bioscience, San Jose, CA) in 6-well plates contain-
ing fresh serum and antibiotic-free RPMI 1640 medium. The mucosal
surface was continually exposed to air.

Procurement culture of human skin explants. Healthy human skin
(deidentified) is procured by the National Disease Research Interchange
(NDRI) and is exempt from Institutional Review Board review. Healthy
skin specimens are excised from cadavers and transported to the labora-
tory in HypoThermosol (BioLife Solutions, Bothell, WA), a cryopreser-
vation medium. Tissue is utilized within 24 h of excision. Decolonization
of normal flora is achieved by drying the surface of the specimen and
swabbing the area with ChloraPrep (CareFusion, San Diego, CA) twice.
Explants of uniform size are then obtained from the specimen using a
5-mm biopsy punch. Tissue explants are washed in RPMI 1640 medium
containing 2% (vol/vol) normal human serum. The explants are then
placed on a polyethylene terephthalate (PET) track-etched 0.4-�m cell
culture insert (BD Biosciences, San Jose, CA) in 6-well plates containing
fresh RPMI 1640 medium plus 2% normal human serum (Invitrogen,
Carlsbad, CA) and incubated at 37°C and 7% CO2. An air interface is
maintained with the stratum corneum.

Application of test formulations or comparators. The model was
developed to be a semihigh-throughput screen of full-strength formula-
tions in the form of liquids, pastes, gels, foams, or dressings. One hundred
microliters of Betadine ophthalmic preparation, 3M Skin and Nasal
Prep, or mupirocin (Bactroban Nasal) ointment is applied topically to
each explant, and the explants were incubated for 1 to 24 h at 37°C and
7% CO2.

Mucin wash. To mimic mucociliary clearance, 1 h following applica-
tion of treatments to the explants, 1 ml of 2% (wt/vol) mucin (Sigma, St.
Louis, MO) in PBS was pipetted into each well containing an explant. The
plate was swirled gently to wash the explants, and the suspension was
aspirated from each well. The explants were then returned to culture for
the indicated time periods.

Bacterial (CFU) enumeration. Bacteria are enumerated from infected
explants by vortex mixing (medium-high setting, 4 min) in 250 �l sterile
antimicrobial neutralizing DE broth at twice the manufacturer’s recom-
mended concentration. Suspensions are serially diluted in PBS (or plated
neat) and spread on TSB plates using a spiral plater (Biotek, Microbiology
International).
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Reduction of normal nasal flora in human subjects. Baseline samples
(n � 70) were taken from healthy human subjects prior to application of
the preparation or saline. Only subjects with baseline levels of �5 � 103

CFU/swab were included in this efficacy study. Depending on the sam-
pling time, 7 to 18 subjects applied 3M Skin and Nasal Prep or 0.9% saline
control to their nostrils for 30 s each, followed by an immediate repeat
application, for a total application time of 1 min per naris (3M study
EM-05-011100). Samples for quantitative cultures were obtained from
the anterior nares using a standardized swabbing procedure. Briefly, one
dry, sterile rayon swab was used to sample both the right and left nostrils.
For each nostril, the rayon swab was inserted carefully into the ante-
rior, apex portion of the nostril and rotated 2 times with slight pres-
sure. This swabbing procedure was used to collect study day baseline
levels and 1, 6, and 12 h after application of the preparation (postprep)
nasal samples. Following collection, the swab sample was immediately
immersed into a tube containing 1 ml of a neutralizer solution (NS)
described previously (39). The sample tube was capped tightly and
vortex mixed for �1 min and then serially diluted in phosphate-buff-
ered saline. Duplicate 0.1-ml aliquots were spread on HardyCHROM
Staph aureus (CSA; Hardy Diagnostics, Santa Maria, CA) and Trypti-
case soy agar with 5% sheep blood (SBA). All samples were plated
within 20 min of collection. After 20 to 28 h of aerobic incubation at 35
to 37°C, CSA plates were evaluated for differentially selective growth
(smooth, deep pink to fuchsia colonies), and SBA plates were evalu-
ated for total growth using a Quebec colony counter (Reichert Tech-
nologies, Depew, NY). Data presented are mean � standard deviation
(SD) log10 reductions of S. aureus from the baseline level.

Statistical analysis. Each ex vivo experiment was repeated a minimum
of three times. Data presented are means � standard errors of the means
(SEMs) for three replicate samples. Analysis of variance (ANOVA) fol-
lowed by Bonferroni’s posttest were performed using the GraphPad
PRISM software (GraphPad Software, Inc., La Jolla, CA). The human
subject study was performed once, and data presented are mean � SD
log10 reduction from baseline. Student’s t test was used to evaluate signif-
icant differences at each time point.

RESULTS
Efficacy of 3M SNP, Betadine Ophthalmic, and Bactroban Nasal
in treatment of MRSA-infected ex vivo porcine vaginal mucosa.
We tested the antimicrobial activity of two povidone-iodine-

based preparations (5%, wt/vol) and 2% mupirocin (Bactroban
Nasal [BN]) using a modified version (Fig. 1a) of a previously
developed ex vivo full-thickness tissue model of MRSA infection
(38). Ex vivo porcine vaginal mucosal (PVM) explants were in-
fected with MRSA (strain Xen30) for 2 h and then treated with
antimicrobials for 1 h. Treated and untreated control explants
were washed in PBS plus 2% (wt/vol) porcine mucin to mimic
mucociliary clearance. CFU were enumerated from neutralized
explants following 1, 6, or 12 h (to mimic short, average, and long
surgeries) of incubation at 37°C. One hour after the explants were
washed (postwash), MRSA bacterial densities of infected PVM
explants treated with 3M SNP or Betadine Ophthalmic were sig-
nificantly lower than that of untreated controls (bacterial densities
[log10 CFU/explant] of 1.09 � 0.57, 2.51 � 0.20, and 5.30 � 0.06,
respectively) (Fig. 1b). Treatment with BN had no effect on
CFU recovered at this time point (log10 5.14 � 0.09 CFU/ex-
plant). There was bacterial growth in untreated control ex-
plants and Betadine Ophthalmic-treated explants 6 h postwash
(6.86 � 0.01 and 5.12 � 0.48 log10 CFU/explant), whereas the
bacterial burden from BN-treated explants remained static and
not different from that of the untreated control (log10 5.07 �
0.06 CFU/explant). 3M SNP exerted a significant persistent
effect at this time point, further reducing bacterial densities
(log10 0.43 � 0.43 CFU/explant).

Efficacy of 3M SNP and Bactroban Nasal against mupirocin-
resistant MRSA infections of ex vivo porcine vaginal mucosa.
We next evaluated the antimicrobial effect of 3M SNP compared
to Bactroban Nasal on 10 Mupr MRSA isolates (both high-level
resistance [HLR] and low-level resistance [LLR]) (see Table 1 for
mupirocin sensitivity data) using the PVM infection model de-
scribed above. As expected, 1 h following 2% mucin wash, 3M
SNP-treated explants had significantly less LLR MRSA bacteria on
infected PVM explants than untreated controls and BN-treated
explants (1.63 � 0.44 versus 5.30 � 0.30 and 5.71 � 0.57, respec-
tively [log10 CFU/explant] [Fig. 2a]). Although some regrowth
was observed at 6 h (Fig. 2c) and 24 h (Fig. 2e), 3M SNP-treated

FIG 1 Efficacy of PVP-I formulations and Bactroban Nasal against MRSA infection in an ex vivo PVM model. (a) Schematic of experimental design. (b) Explants
of normal PVM were infected with S. aureus Xen30, treated, washed with sterile PBS containing 2% mucin and then incubated as shown in panel a. The explants
were treated with Betadine Ophthalmic, 3M SNP, or Bactroban Nasal (B. Nasal) or left untreated as a control. Following incubation for 1, 6, or 12 h, explants were
transferred to a neutralization buffer containing sodium thiosulfate and vortex mixed to release surviving bacteria. Serial dilutions were made in sterile PBS and
plated onto tryptic soy agar supplemented with sheep blood, using a spiral plater. The number of viable bacterial cells is expressed as log10 CFU/explants recovered
over time. Values are means � SEMs (error bars). Values that are statistically significantly different (P � 0.05) from the value for the untreated control are
indicated by an asterisk.
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explants were associated with significantly lower bacterial densi-
ties (2.56 � 1.60 and 3.62 � 0.50, respectively) than untreated
controls (6.60 � 0.75 and 7.76 � 0.22, respectively) or BN-treated
explants (5.08 � 0.39 and 5.99 � CFU/explant) (all values are
shown in log10 CFU/explant). BN appeared to be bacteriostatic,
but it had no significant effect on LLR MRSA CFU recovered at
any time point compared to the control. Similar results were ob-
served with the HLR MRSA isolates as well (Fig. 2b, d, and f). At all
three time points examined, HLR MRSA-infected explants treated
with 3M SNP had significantly lower bacterial densities than un-
treated or BN-treated explants (at 1 h, 1.55 � 0.29 versus 5.68 �
0.29 or 6.03 � 0.32, respectively; at 6 h, 2.98 � 0.23 versus 7.04 �
0.26 or 5.99 � 0.43, respectively; at 24 h, 3.24 � 0.36 versus

TABLE 1 Mupirocin susceptibilities of clinical MRSA isolates by Etest

MRSA isolate
Mupirocin susceptibility
(�g/ml) by Etest

Mupirocin
resistancea

146 8 LLR
823 12 LLR
815 8 LLR
748 12 LLR

103 �1,024 HLR
920 �1,024 HLR
559 �1,024 HLR
476 �1,024 HLR
993 �1,024 HLR
329 �1,024 HLR
a LLR, low-level mupirocin resistance; HLR, high-level mupirocin resistance.

FIG 2 Efficacy of 3M SNP or Bactroban Nasal against low- and high-level mupirocin-resistant MRSA isolates. Explants of normal PVM were infected with �1 �
106 CFU low-level Mupr MRSA isolates (a, c, and e) or high-level Mupr MRSA isolates (b, d, and f) for 2 h. Infected explants were then treated with SNP or
Bactroban Nasal (B. Nasal) or left untreated (control) for 1 h, followed by washing with sterile PBS supplemented with 2% mucin. Washed explants were then
returned to the incubator for 1 h (a and b), 6 h (c and d), or 24 h (e and f). Following incubation, explants were transferred to 2� DE broth and vortex mixed to
release surviving bacteria. Serial dilutions were made in sterile PBS and plated onto tryptic soy agar supplemented with sheep blood, using a spiral plater. The
number of viable bacterial cells is expressed as log10 CFU/explants. Each symbol represents the value for an individual explant, and the mean (horizontal bar) �
SEM (error bar) for each group are shown. Mean values that are significantly different (P � 0.05) from the mean value for the untreated control group are
indicated by an asterisk.

Anderson et al.

2768 aac.asm.org May 2015 Volume 59 Number 5Antimicrobial Agents and Chemotherapy

http://aac.asm.org


7.66 � 0.19 or 6.88 � 0.24, respectively) (all values are shown in
log10 CFU/explant). Although not significantly different from the
control, some growth was observed in the HLR MRSA isolates at
24 h compared to 1 h.

Efficacy of 3M SNP, Betadine Ophthalmic, and Bactroban
Nasal in the treatment of MRSA-infected ex vivo human skin.
We adapted our MRSA PVM infection model to fresh, full-thick-
ness human skin which is more representative of the tissue type in
the anterior nares and therefore more translational. Explants of
normal human skin were prepared as described above and in-
fected with MRSA (strain Xen30) for 2 h (Fig. 3a). Similar to the
above-described experiment on PVM, explants were treated with
3M SNP, Betadine Ophthalmic, or BN for 1 h and then washed
with PBS containing 2% (wt/vol) mucin. Explants were incubated
for 1, 6, or 12 h prior to neutralization and bacterial recovery. One
hour postwash, the MRSA burden of infected PVM explants
treated with 3M SNP or Betadine Ophthalmic was significantly
reduced compared to that of untreated controls (0.33 � 0.33,
2.09 � 0.60, and 4.06 � 0.19, respectively [log10 CFU/explant];
Fig. 3b). Further, CFU recovered from 3M SNP-treated explants
were significantly lower than the Betadine Ophthalmic-treated
explants. Treatment with BN had no effect on CFU recovered at
this time point (log10 4.50 � 0.08 CFU/explant). Six hours post-
wash, there was evidence of growth in the untreated controls
(log10 5.50 � 0.40 CFU/explant) which continued through the
12-h time point (log10 6.57 � 0.35 CFU/explant). Again, 3M SNP
was significantly more effective at reducing MRSA burden than
Betadine Ophthalmic or BN (0 CFU recovered versus 1.72 �
0.0.40 or 4.20 � 0.24, respectively [log10 CFU/explant]). BN treat-
ment appeared bacteriostatic at 6 h postwash; however, this was
not statistically different from control. By 12 h postwash, the dif-
ference between untreated controls and BN treatment was signif-
icant (6.57 � 0.35 versus 3.92 � 0.11, respectively [log10 CFU/
explant]). Zero CFU were recovered from the 3M SNP-treated
explants 12 h postwash, which was significantly lower than BN-
treated and untreated controls. At this time point, no statistically
significant difference between CFU recovered from the 3M SNP-

treated explants and the Betadine Ophthalmic-treated explants
was observed; however, numerically, 3M SNP treatment was more
effective at eradicating MRSA (0 versus log10 0.63 � 0.34 CFU/
explant).

Efficacy of 3M SNP on normal flora in the anterior nares of
human subjects. Having demonstrated that 3M SNP significantly
reduced MRSA in two ex vivo full-thickness models, we next de-
termined whether it could reduce normal flora of human anterior
nares. Baseline samples (n � 70) were taken by swabbing the an-
terior nares. The mean baseline level of S. aureus in subjects in-
cluded in this study was log10 4.77 � 0.62 CFU. The anterior nares
of subjects were then sampled at 1, 6, or 12 h following application
of SNP (n � 13 to 18) or saline control (n � 7 to 9). At all three
time points, the S. aureus log10 reduction from the baseline level in
3M SNP-treated subjects was significantly greater than that ob-
served in the saline control subjects (2.3 � 1.68 versus 0.86 � 0.73
at 1 h, 2.79 � 1.52 versus 0.76 � 0.58 at 6 h and 2.37 � 1.77 versus
0.6 � 0.9 at 12 h [all values are log10 CFU]) (Fig. 4).

3M SNP prevents MRSA infection of PVM explants. Since the
intended outcome of 3M SNP use is to prevent SSIs, we next de-
termined whether treatment could prevent PVM explants from
becoming infected with MRSA. We slightly modified the PVM
infection model described above, as depicted in Fig. 5a. Explants
were treated for 5 min with 3M SNP, Betadine Ophthalmic, or
mupirocin or left untreated, incubated for 15 min, washed with
PBS containing 2% mucin (wt/vol), infected with MRSA
(Xen30), incubated for 1 h, and then neutralized, and CFU
were recovered. The number of CFU recovered from untreated
control explants was log10 4.19 � 0.12 CFU/explant (Fig. 5b).
Treatment with either 5% povidone-iodine-based product re-
sulted in a reduction in the ability of MRSA to infect explants,
with 3M SNP being far superior to the Betadine ophthalmic
formulation (log10 0.00 � 0.00 versus 2.34 � 0.12 CFU/ex-
plant, respectively). CFU recovered from 2% mupirocin-
treated explants was equivalent to that recovered from controls
(log10 4.53 � 0.05 CFU/explant).

FIG 3 Efficacy of PVP-I formulations and Bactroban Nasal against MRSA infection in an ex vivo, full-thickness, fresh human skin model. (a) Schematic of
experimental design. (b) Explants of normal human skin were infected with S. aureus Xen30, treated, washed with sterile PBS containing 2% mucin, then
incubated as shown in panel a. The explants were treated with Betadine Ophthalmic, 3M SNP, or Bactroban Nasal (B. Nasal) or left untreated as a control.
Following incubation for 1, 6, or 12 h, explants were transferred to 2� DE broth and vortex mixed to release surviving bacteria. Serial dilutions were made in
sterile PBS and plated onto tryptic soy agar supplemented with sheep blood, using a spiral plater. The number of viable bacterial cells is expressed as log10

CFU/explants recovered over time. Values are means � SEMs (error bars). Values with different letters are significantly different (P � 0.05).
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DISCUSSION

There are numerous commercially manufactured PVP-I-contain-
ing preoperative skin preparations that meet FDA requirements,
including the recently developed 3M SNP. To our knowledge, this
is the first study in translational, full-thickness tissue models,
which directly compares PVP-I formulations and topical applica-
tion of 2% mupirocin ointment (BN). Using an ex vivo porcine
vaginal mucosal (PVM) infection model, we demonstrated that
treatment with 3M SNP or Betadine Ophthalmic was bactericidal
against MRSA within 2 h of application. This is consistent with the
reported rapid activity of PVP-I-based antimicrobials in the oph-
thalmic surgical setting (40), which, in turn, is associated with a
decreased risk of postoperative infections (41). In contrast, no
change in the MRSA burden of explants treated with BN was ob-

served out to 14 h postapplication (12 h after the mucin wash),
which is consistent with its known slow mode of action (42).
While we recognize that the mupirocin decolonization strategy
includes twice-daily application for 5 days intranasally prior to
surgery, there is also a risk of patient noncompliance. Therefore,
our studies are intended to mimic mupirocin efficacy in a non-
compliant patient being decolonized prior to surgery.

PVP-I kinetics are well understood, and it is well-known that
iodine is the active antimicrobial component. For example,
Schenck et al. showed that povidone complexes with hydrogen
triiodide through hydrogen bonding with the proton (43). Triio-
dide is in equilibrium with iodine (I2) and iodide (I	) shown by
the reaction I3

	 � I2 
 I	. There are other excipients in 3M SNP
which buffer the composition and protect the iodine from reduc-
tion to inactive iodide, which happens rapidly at increased pH
(above 4.5) and reaction with organic matter.

Treatment with 3M SNP resulted in sustained bactericidal ac-
tivity for up to 8 h postapplication (6 h after the mucin wash),
which was a significant improvement over the Betadine Ophthal-
mic-treated explants where �5.0 log10 unit growth was observed.
We believe that the sustained activity is a result of increased adhe-
sion to the net negatively charged mucus on the tissue surface.
This mucoadherence results from the presence of a proprietary
cationic polymer in the formulation (44, 45). We acknowledge
that recolonization after 8 h is a possibility and that is the subject
of ongoing studies.

Recently, universal decolonization was shown to be more ef-
fective than targeted decolonization in the prevention of MRSA
intensive care unit (ICU) infections (46). This, along with the
increased use of mupirocin for prevention of recurrent skin and
soft tissue MRSA infections (47–49), and growing interest in peri-
operative eradication of MRSA for the prevention of SSIs has im-
portant implications for the spread of mupirocin resistance (50).
In 2002, Deshpande et al. (51) performed an extensive study of
mupirocin resistance and noted a marked increase globally
compared to an earlier study. Widespread use of mupirocin is
commonly associated with increased incidence of resistance

FIG 4 3M SNP reduces normal flora of human anterior nares. Thirteen to 18
human subjects (3M study EM-05-011100) applied 3M Skin and Nasal Prep
(3M SNP) and seven to nine human subjects applied 0.9% saline control to
their nostrils for 30 s each, followed by an immediate repeat application, for a
total application time of 1 min per naris. Postprep samples were taken via
swabbing the nares at 1 h, 6 h, and 12 h. Baseline samples were taken prior to
the application of prep or saline. The mean baseline level of S. aureus in sub-
jects included in this study was log10 4.77 � 0.62 CFU. The numbers of viable
bacterial cells are expressed as log10 reduction from baseline level over time.
Values are means � SEMs (error bars). Mean values that are significantly
different (P � 0.05) from the mean value for the untreated saline control group
are indicated by an asterisk.

FIG 5 3M SNP prevents MRSA infection in an ex vivo model. (a) Schematic of experimental design. (b) Explants of normal PVM were treated with PVP-I
formulations or mupirocin ointment (2%) for 5 min at room temperature (RT), followed by 15-min incubation at 37°C. Explants were then washed with sterile
PBS containing 2% mucin. After the wash, explants were infected with �1 � 106 CFU of MRSA Xen30 and incubated at 37°C for 1 h. Explants were transferred
to 2� DE broth and vortex mixed to release surviving bacteria. Serial dilutions were made in sterile PBS and plated onto tryptic soy agar supplemented with sheep
blood, using a spiral plater. The number of viable bacterial cells is expressed as log10 CFU/explants. Values are means plus SEMs (error bars).
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(25, 52–54). The short, defined course (5 days) of mupirocin
prescribed in clinical trials of efficacy does not appear to select
for mupirocin resistance in one study (22). In contrast, Wa-
tanabe et al. reported the development of low-level mupirocin
resistance after intranasal treatment to reduce nasal carriage
(55). This same research group also presented a case study in
2001 which described the development of mupirocin resistance
in the pharynx of a patient during the course of intranasal
application (56). Mupirocin resistance has been associated
with decolonization failure, which correlates with increased
SSIs (57–59). We evaluated 10 Mupr MRSA clinical isolates,
both HLR and LLR, in our PVM infection treatment model. We
saw that both HLR and LLR MRSA isolates were sensitive to 3M
SNP. This is not surprising due to the differences in mechanism
of action by the two agents. Mupirocin reversibly binds to the
isoleucyl tRNA synthetase, resulting in inhibition of protein
synthesis (60). Resistance is mediated by the acquisition of a
plasmid-encoded mupA gene (HLR) (61) or a mutation in the
native ileS gene (LLR) (62). In contrast, iodine has many cel-
lular targets, including fatty acids, nucleotides and the free-
sulfur amino acids cysteine and methionine in proteins (63).
This makes the development of resistance unlikely, and in fact,
has not been reported (35).

We previously developed a semihigh-throughput ex vivo PVM
infection model for determining efficacy and toxicity of antimi-
crobial agents that is translational in nature (38). Its use as a sub-
strate for bacterial attachment and nutrition provides an alterna-
tive, cost-effective method that more closely mimics in vivo
conditions than classic in vitro studies. The indications for use of
3M SNP for nasal bacterial reduction is application to the anterior
nares, which more closely resembles skin in terms of cell type and
microflora (64). The ex vivo PVM explant infection model does
not entirely mimic the host factors or microbial components
found in skin; therefore, we extended the principles of the PVM
infection model to a model that uses fresh human skin as the
substrate. Using this ex vivo human skin MRSA infection model,
we observed results similar to those obtained in the ex vivo PVM
model. This not only confirms that the PVM infection model is a
valuable tool for the preclinical evaluation of topical biocides for
infection prevention or treatment but also suggests that 3M SNP
could reduce skin or anterior nares flora.

3M SNP rapidly achieved a significant reduction in the resident
S. aureus from the anterior nares of human test subjects, demon-
strating clinical translation of the PVM and ex vivo human skin
models. This is consistent with a recent report of a prospective,
open-label, randomized clinical trial where bacterial reduction
with 3M SNP resulted in significantly fewer S. aureus SSIs than in
mupirocin-treated patients (twice daily for 5 days) undergoing
primary or revision arthroplasty or spinal fusion (37).

In conclusion, given the issues with medication compliance
and evolving mupirocin resistance and the importance of reduc-
ing the risk of S. aureus SSIs, the benefits of 3M SNP should be
considered. They include rapid efficacy, broad-spectrum activity
against multiple opportunistic pathogens, lack of development of
antimicrobial resistance, and ease of use. 3M SNP provides just-
in-time, health care provider directly observed preventive appli-
cation and may be an attractive alternative for reducing the
bioburden of anterior nares prior to surgery.
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