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Abstract

As a new strategy for treatment which takes individual heterogeneity into consideration, 

personalized medicine is of growing interest. Discovering individualized treatment rules (ITRs) 

for patients who have heterogeneous responses to treatment is one of the important areas in 

developing personalized medicine. As more and more information per individual is being 

collected in clinical studies and not all of the information is relevant for treatment discovery, 

variable selection becomes increasingly important in discovering individualized treatment rules. In 

this article, we develop a variable selection method based on penalized outcome weighted learning 

through which an optimal treatment rule is considered as a classification problem where each 

subject is weighted proportional to his or her clinical outcome. We show that the resulting 

estimator of the treatment rule is consistent and establish variable selection consistency and the 

asymptotic distribution of the estimators. The performance of the proposed approach is 

demonstrated via simulation studies and an analysis of chronic depression data.
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1. Introduction

It is well known that patients possess strong heterogeneity in response to treatments in 

modern clinical studies, especially in chronic diseases. Consequently, a drug may have 

significant treatment effect for some patients with certain characteristics, but not work for 

other patients. Treating each individual based on his or her genomic or prognostic 

information rather than via “one size fits all” approach can thus potentially improve 

drastically the effect of treatment for public health. This significantly motivates interest in 

discovering personalized treatment strategies in statistical research, where an optimal 

personalized treatment strategy is a set of treatment rules tailored to individuals, to 
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maximize long-term clinical outcomes for individual patients, see Murphy (2003); Robins 

(2004); Moodie et al. (2007).

Various methods have been proposed in the statistical literature to estimate the optimal 

personalized treatment strategy. Q-learning (Watkins, 1989; Watkins & Dayan, 1992; 

Murphy, 2005; Zhao et al., 2011; Chakraborty et al., 2010; Song et al., 2014) and A-learning 

(Murphy, 2003; Robins, 2004) are two backward induction methods for deriving optimal 

multistage treatment regimes. Other related approaches include likelihood-based methods 

(Thall et al., 2000, 2002, 2007) and semiparametric methods (Lunceford et al., 2002; Wahed 

& Tsiatis, 2004, 2006; Moodie et al., 2009; Zhang et al., 2012). Zhao et al. (2012) proposed 

outcome weighted learning, which can be viewed as a weighted classification problem using 

the covariate information weighted by the individual response to achieve the goal of 

maximizing the overall outcome. Since more and more individual-level information are 

collected in clinical studies, especially in multi-stage clinical trials, these approaches are 

often challenged by the curse of dimensionality in the presence of high-dimensional 

covariates. Variable selection hence becomes important in discovering individualized 

treatment rules.

In spite of a large effort being devoted to variable selection methods, the topic of variable 

selection for personalized and dynamic treatment regimens has received little attention. 

Some variable selection techniques used in this area include the Lasso (Loth et al., 2007), 

decision trees (Ernst et al., 2005) and Bayesian variable selection (Chen et al., 2009). 

Biernot & Moodie (2010) conducted numerical studies to compare several variable selection 

methods. In some clinical trials where medical decision making is needed, qualitative 

interaction tests (Gail & Simon, 1985; Piantadosi & Gail, 1993; Yan, 2004) have been used 

to test a small number of expert determined pre-specified interactions, such as Allhat et al. 

(2002); Reynolds et al. (2006). Many of the tests were designed for testing only qualitative 

interactions between categorical variables and the treatment. Moreover, when the number of 

covariates is large, these tests are too conservative when controlling the error rate due to 

multiple testing.

When the dimension of the covariate space is high and there are many irrelevant variables 

for decision making, imposing sparsity in the parameters via an automatic variable selection 

procedure can significantly enhance the decision making accuracy. Penalized methods have 

also been studied to identify variables important for making treatment decisions. Qian & 

Murphy (2011) developed a two-stage procedure in the framework of Q-learning, where 

they used L1 penalized least squares to estimate optimal treatment regimes. Lu et al. (2013) 

proposed a penalized quadratic loss in the framework of A-learning. Gunter et al. (2011) 

proposed variable selection methods for qualitative interactions, where two variable-ranking 

quantities were presented. Existing penalization methods are primarily designed for linear 

regression models, which may not be appropriate for variable selection in treatment decision 

making when the true model is not correctly specified. We are therefore motivated to 

develop variable selection methods that do not depend on the parametric modeling of the 

value function.
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In this paper, we propose to adopt the outcome weighted learning framework to 

simultaneously estimate the optimal decision rule and incorporate sparsity in a way that 

retains the computational advantages and theoretical validity. Our proposed method is called 

penalized outcome weighted learning (POWL). We demonstrate later in the paper that 

POWL can achieve comparable or better classification accuracy while, at the same time, 

choosing relevant features. The main idea is to introduce the SCAD penalty proposed in Fan 

& Li (2001) to outcome weighted learning. The resulting optimization problem is a linear 

program and can be efficiently solved. Our approach can handle very high-dimensional state 

spaces. Furthermore, we study Fisher consistency of the linear POWL. We also investigate 

asymptotic properties of the variable coefficients in the SVM solution for linear 

classification. We focus on the case where the decision function is a linear function of the 

covariates. Various variable selection methods were studied in recent years to encourage 

sparsity in support vector machines (Cortes & Vapnik, 1995). References include Zhu et al. 

(2003); Wu et al. (2008); Park et al. (2012) etc. Our work can be viewed as a penalized 

weighted SVM.

The rest of the paper is organized as follows. The proposed POWL is introduced in Section 

2. In Section 3, we study the theoretical properties of POWL and numerical studies are 

presented in Section 4.We apply the proposed method to a chronic depression data set in 

Section 5, and conclude with a brief discussion in Section 6.

2. Method

2.1. Outcome-Weighted Learning (OWL)

Consider data from a randomized trial. By notation, we use A to denote treatment 

assignment, which takes values −1 and 1. The probability of treatment assignment A is given 

as P(A = 1) = π and P(A = −1) = 1 − π, where 0 < π < 1. We use X = (X1,…, Xp)′ to denote 

p-dimensional biomarker and prognostic information associated with the patient and Let X̃ = 

(1, X′)′. Let R be the clinical outcome of interest (assuming large values are desirable) which 

we also call the “reward.” Let f (x, r) and g(x, r) denote the conditional density of (X, R) 

given A = 1 and −1 respectively. In this randomized trial setting, A is randomly assigned to 

patients and the observed data from n i.i.d patients has the form (Ai, Xi, Ri), i = 1,…, n. Our 

goal is to identify a deterministic decision rule, d(x), which takes a given value x of X and 

returns a treatment choice from a space . We denote the distribution of (X, A, R) by P and 

expectation with respect to this distribution by E. Let Pd denote the distribution of (X,A, R) 

when A = d(X), the treatment is determined by the rule d. The expectation with respect to 

this distribution is denoted by Ed, where the individualized treatment rule (ITR) d(x) is used 

to assign treatments. Define the value function as V (d) = Ed (R). Thus, an optimal 

individualized treatment rule, d0, is a rule that has the maximal value, i.e., d0 is the 

maximizer of V(d) over decision rules d. Specifically, V(d0) = E{maxA∈  Q(X, d0(X))} 

where Q(X, A) ≡ E[R|A = d(x), X = x]. The expected reward under ITR  is given as

(1)
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It can be seen from (1) that maximizing V ( ) is equivalent to a weighted classification 

problem, where we classify subjects with X according to treatment A but weight each 

subject by R/(Aπ + (1 − A)/2). Based on this idea, outcome weighted learning was developed 

in Zhao et al. (2012). Because direct optimization of (1) is intractable due to the nonconvex 

and discontinuous 0−1 loss, Zhao et al. (2012) propose to use convex relaxation in 

combination with techniques applied in support vector machines (Cortes & Vapnik, 1995).

In the next section, we generalize this learning approach to allow simultaneous 

maximization of the value function and variable selection, which we call penalized outcome-

weighted learning (POWL). We consider the situation where the optimal decision rule 

belongs to a linear function class of the feature covariates.

2.2. Penalized Outcome-weighted Learning (POWL)

Let pλ(β) denote some penalty function, where β ∈ ℝp+1 is the parameter of interest and λ is 

the tuning parameter. The POWL minimizes the following objective function

(2)

where h(·) is the decision function,  and β− = (β1,…, βp)′, (z)+ = max(z, 0). 

Choices of the penalty functions include the lasso (Tibshirani, 1996) and the SCAD (Fan 

and Li, 2001). The limit of Qn(β) is defined as

(3)

We note that it is the same as the population objective function of the OWL proposed in 

Zhao et al. (2012).

Suppose that the decision function h(X; β) minimizing (3) is a linear function of X with true 

parameter value β = β0, that is, h(X, β) = X̃′β0 and β0 = argminβQ(β). Then the corresponding 

individualized optimal rule will assign a subject with prognostic value X into treatment 1 if 

X̃′β0 > 0 and −1 otherwise. Let β̂ = argminβQn(β). The POWL will classify a subject (Xi,Ai, 

Ri) by the sign of h(Xi, β̂) correspondingly. Define . Let s = |ℳ|, the 

cardinality of the non-sparse set ℳ. We aim to estimate β0 and recover the set ℳ. To 

facilitate the theoretical derivation and the numerical calculation, we consider the SCAD 

penalty proposed in Fan & Li (2001) defined as

where a > 2 and λn > 0 are the tuning parameters.

We propose to use the one-step estimator in Zou & Li (2008) to approximate the penalty 

term. Minimizing (2) can be rewritten as
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where ξi is a slacking variable for subject i to allow a small portion of wrong classification. 

Therefore we use linear programming to solve the above problem.

3. Theoretical Results

In this section, we study the theoretical properties of the proposed POWL with SCAD 

penalty. First we consider the Fisher consistency of the linear POWL. It was shown in Zhao 

et al. (2012) that the decision function based on the surrogate loss Q(β) possess Fisher 

consistency. Since the population version of our objective function remains the same as 

OWL, our procedure also possess Fisher consistency, that is, the population version of our 

estimation procedure is the same as the target of the estimation, and the population 

minimizer of the surrogate objective function yields a classification rule with the same sign 

as that of the Bayes rule.

We define the score as:

We also define

where the δ function is the Dirac delta function, that is, on the real number line it is zero 

everywhere except at zero, with the integral function as the indicator function 1(t ≥ 0).

Next we establish consistency and convergence rates of the estimator β̂ under the following 

conditions. We use lower case to represent the realizations of the random variables. Denote f 

(x) and g(x) as the conditional densities of x given A = 1 and −1 respectively.

A1 The densities f(x, r) and g(x, r) are continuous with finite second moments.

A2 There exists B(x0, δ0), a ball centered at x0 with radius δ0 > 0 such that f(x) > C1, 

g(x) > C1 for any x ∈ B(x0, δ0).
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A3 For some 1 ≤ j ≤ p, E(XjR|A = 1) ≠ E(XjR|A = −1).

A4 Let M+ = {x ∈ |x′β0 = 1} and M− = {x ∈ |x′β0 = −1}. For an orthogonal 

transformation ϕj that maps  to the unit vector ej whose j−th element is 

one and the other elements are zero, for some 1 ≤ j ≤ d, there exist rectangles

Condition A1 and A4 are needed for the Hessian matrix H(β) to be continuous and positive 

definite near β0. Condition A2 and A3 ensure the weighted classification problem is 

nonseparable and β0 is nonzero.

Theorem 1

Under Conditions A1–A4, if λn → 0 and , then with probability tending to one 

we have

To discuss the oracle properties of the POWL with SCAD penalty, we need the following 

notation. Let , where  represents the true value for β1, the nonzero 

elements of β. Let

where H11(β) and G11(β) are the top (1 + s) square sub-matrix of H(β) and G(β), 

respectively. The sparsity and the oracle property of the estimators are established in the 

following theorem:

Theorem 2

Denote , where β̂
1 ∈ ℝs+1 estimates β1 and β̂

2 ∈ ℝp−s estimates β2. Under 

Conditions A1–A4, if λn → 0 and , then limn→∞ P(β̂
2 = 0) = 1 and 

.

4. Simulation Studies

Zhao et al. (2012) compared the numerical performance of OWL and the L1 method in Qian 

& Murphy (2011), where OWL demonstrated better performance in value function 

estimation. Therefore in this section we focus on comparing the numerical performance of 

OWL and POWL in variable selection and value function estimation. We generated 50 
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dimensional vectors of prognostic variables X1,…, X50. They are independently uniformly 

distributed random variables on [−1, 1]. The treatment A takes values −1 and 1 and is 

independent of the covariates. The response variable R is normally distributed with mean Q0 

= 1 + 2X1 + X2 + 0.5X3 + T(X, A) and variance 1. The term T(X, A) represents the interaction 

between treatment and prognostic variables. The first s variables are relevant while the 

remaining p − s variables are noise variables. We consider the following two scenarios with 

different degrees of sparsity level:

1. Scenario 1: T(X, A) = (X1 + X2)A;

2. Scenario 2: T(X, A) = (X1 + X2 + X3 − X4 + X5 − X6)A.

Therefore the optimal rule for Scenario 1 is I(X1 + X2 > 0) and that for Scenario 2 is I(X1 + 

X2 + X3 − X4 + X5 − X6 > 0). Based on large scale Monte Carlo simulations, the optimal 

values for two scenarios are 1.66 and 2.13 respectively. We generated n training samples 

with n ranging over 30, 100, 200, 400 and 800. For each scenario we estimate the optimal 

ITR by applying OWL and POWL and repeated the procedure on 200 independent data sets. 

The BIC criteria is used to select the optimal values of the tuning parameters. The grid for 

the tuning parameter λn is {2−5, 2−4,…, 25}.

The performances of the methods are evaluated by the following four criteria. The first is to 

evaluate the value function using the estimated optimal individual treatment rule when 

applying to an independent validation data set with sample size 10000. We evaluate the 

estimated value function for any ITR with the method in Murphy et al. (2001). The second is 

to evaluate the misclassification rates of the estimated optimal ITR from the true optimal 

ITR using the validation data. The third is to evaluate the size of the selected model. The 

fourth is to evaluate the number of true positives in the selected model. Because the size of 

the selected model and the number of true positives are closely related with the choice of 

tuning parameter, we also record the minimal model sizes that are needed to cover the true 

model to gauge the difficulty of the problem. The simulation results are summarized in 

Tables 1 and 2.

We report the sample mean of both value functions and misclassification rates with the 

associated sample variance in parenthesis. The sample median of the minimum model size, 

the size of the selected model and the number of true positives are also recorded with the 

associated robust standard deviation in parenthesis. As the sample size increases, the 

performance of OWL and POWL increase in the sense that the value function estimates get 

closer and closer to the optimal value function and the misclassification rates continue 

decreasing. POWL provides bigger value function estimates and smaller misclassification 

rates in all simulation settings. In terms of the variable selection results, POWL can recover 

the true model better and better as the sample size grows. The number of true positives 

increases as the sample size increases.

5. Data Analysis

We apply the proposed method to the data from the Nefazodone-CBASP trial (Keller et al., 

2000). This trial was conducted to compare the efficacy of several alternative treatments for 

patients with chronic depression. In the study, 681 patients with nonpsychotic chronic major 
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depressive disorder (MDD) were randomized to either Nefazodone, cognitive behavioral-

analysis system of psychotherapy (CBASP), or to a combination of both treatments. The 

primary outcome was the score on the 24-item Hamilton Rating Scale for Depression 

(HRSD). Low HRSD scores are desirable.

We used a subset of the Nefazodone-CBASP data consisting of 647 patients, where 211, 216 

and 220 patients were assigned to the combined treatment, Nafazodone and CBASP group, 

respectively. Among the three treatments, pairwise comparisons showed that the 

combination treatment significantly lowered the HRSD scores compared to either of the 

single treatments. There was no overall difference between the two single treatments.

We used the proposed POWL to estimate the optimal individualized treatment rule with 50 

pretreatment variables. Pairwise comparisons were conducted among the three treatments. 

We calculated the value functions from a five-fold cross-validation analysis, where the 

estimated rules were obtained based on four folds of the data and the estimated value 

functions were obtained use the remaining fifth fold of the data. The value functions 

calculated this way should better represent expected value functions for future subjects, as 

compared to calculating value functions based on the training data. The averages of the 

cross-validation value functions from the POWL and the OWL approach are presented in 

Table 3.

As can be seen in Table 3, the POWL approach produced slightly larger value functions, 

corresponding to smaller HRSD values compared with the OWL approach. When 

comparing combination treatment with nefazodone only, both OWL and POWL 

recommended the combination treatment to all patients in the validation data in each round 

of the cross validation procedure. When the two single treatments are studied, there are only 

negligible differences in the estimated value functions for the two methods and the selection 

results also indicate an insignificant difference between them. Meanwhile, POWL needs less 

variables for decision making. In summery, POWL not only yields individualized treatment 

rules with the best clinical outcomes, but also enjoys more parsimonious decision rules.

6. Discussion

In this article, we proposed a new variable selection method for optimal treatment decision 

making, which does not need modeling of the value function. Our method can be applied to 

data with continuous outcomes and binary treatment options from a clinical trial or an 

observational study. Simulation studies demonstrate that our method can identify the most 

important variables under various settings and can provide a good estimated optimal 

treatment regime which has a small error rate and a high average outcome value.

Dynamic treatment regimes, which are sequential decision rules for individual patients that 

can adapt over time, are more useful than single-stage decision rules in some applications, 

see the discussion in Murphy (2003). There are great recent interests on developing 

statistical inference for dynamic treatment regimes (Robins, 2004; Moodie et al., 2007; Zhao 

et al., 2011; Song et al., 2014). It will be interesting and useful to generalize the proposal 

approach for variable selection in developing dynamic treatment regimes.
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Table 3

Mean depression scores from cross-validation procedure with OWL and POWL. "NVs" denotes the number of 

variables selected via POWL.

OWL POWL

HRSD HRSD NVs

Nefazodone vs CBASP 13.86 13.67 29

Combination vs Nefazodone 13.53 13.11 33

Combination vs CBASP 15.63 15.22 35
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