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Abstract

In this article, we propose a new method for principal component analysis (PCA), whose main 

objective is to capture natural “blocking” structures in the variables. Further, the method, beyond 

selecting different variables for different components, also encourages the loadings of highly 

correlated variables to have the same magnitude. These two features often help in interpreting the 

principal components. To achieve these goals, a fusion penalty is introduced and the resulting 

optimization problem solved by an alternating block optimization algorithm. The method is 

applied to a number of simulated and real datasets and it is shown that it achieves the stated 

objectives. The supplemental materials for this article are available online.
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1. Introduction

Principal component analysis (PCA) is a widely used data analytic technique that aims to 

reduce the dimensionality of the data for simplifying further analysis and visualization. It 

achieves its goal by constructing a sequence of orthogonal linear combinations of the 

original variables, called the principal components (PC), that have maximum variance. The 

technique is often used in exploratory mode and hence good interpretability of the resulting 

principal components is an important goal. However, it is often hard to achieve this in 

practice, since PCA tends to produce principal components that involve all the variables. 

Further, the orthogonality requirement often determines the signs of the variable loadings 

(coefficients) beyond the first few components, which makes meaningful interpretation 

challenging.

Various alternatives to ordinary PCA have been proposed in the literature to aid 

interpretation, including rotations of the components (Jollife 1995), restrictions for their 

loadings to take values in the set {—1,0,1} (Vines 2000), and construction of components 

based on a subset of the original variables (McCabe 1984). More recently, variants of PCA 

that attempt to select different variables for different components have been proposed and 

are based on a regularization framework that penalizes some norm of the PC vectors. Such 

variants include SCoTLASS (Jollife, Trendafilov, and Uddin 2003) that imposes an ℓ1 

penalty on the ordinary PCA loadings and a recent sparse PCA technique (Zou, Hastie, and 

Tibshirani 2006) that extends the elastic net (Zou and Hastie 2005) procedure by relaxing 

the PC's orthogonality requirement.

In this article, we propose another version of PCA with sparse components motivated by the 

following empirical considerations. In many application areas, some variables are highly 

correlated and form natural “blocks.” For example, in the meat spectra example discussed in 

Section 4, the spectra exhibit high correlations within the high- and low-frequency regions, 

thus giving rise to such a block structure. Something analogous occurs in the image data, 

where the background forms one natural block, and the foreground one or more such blocks. 

In such cases, the loadings of the block tend to be of similar magnitude. The proposed 

technique is geared toward exploring such block structures and producing sparse principal 

components whose loadings are of the same sign and magnitude, thus significantly aiding 

interpretation of the results. We call this property fusion and introduce a penalty that forces 

“fusing” of loadings of highly correlated variables in addition to forcing small loadings to 

zero. We refer to this method as sparse fused PCA (SFPCA).

The remainder of the article is organized as follows. The technical development and 

computing algorithm for our method are presented in Section 2. An illustration of the 

method based on simulated data is given in Section 3. In Section 4, we apply the new 

method to several real datasets. Finally, some concluding remarks are drawn in Section 5.
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2. The Model and Its Estimation

2.1 Preliminaries and Sparse Variants of PCA

Let X = (xi,j)n×p be a data matrix composed of n observations and p variables, whose 

columns are assumed to be centered. As noted above, PCA reduces the dimensionality of the 

data by constructing linear combinations of the original variables that have maximum 

variance; that is, for k = 1,…, p, define

(2.1)

where αk is a p-dimensional vector called factor loadings (PC vectors). The projection of the 

data Zk = Xαk is called the kth principal component. The technique proves most successful if 

one can use a small number k ≪ p of components to account for most of the variance and 

thus provide a relatively simple explanation of the underlying data structure. Some algebra 

shows that the factor loadings can be obtained by solving the following optimization 

problem:

(2.2)

where ∑^ = 1/n(XTX denotes the sample covariance of the data. The solution of (2.2) is given 

by the eigenvector corresponding to the kth largest eigenvalue of ∑^. An alternative way to 

derive the PC vectors, which proves useful in subsequent developments, is to solve the 

following constrained least squares problem:

(2.3)

where IK denotes a K × K identity matrix, ║M║F is the Frobenius norm of a matrix M 

, and A = [α1,…,αK] is a p × K matrix with orthogonal columns. The 

estimate Â contains the first K PC vectors, and Ẑ = XÂ the first K principal components.

To impose sparsity on the PC vectors, Jollife, Trendafilov, and Uddin (2003) proposed 

SCoTLASS, which adds an ℓ1-norm constraint to objective function (2.2), that is, for any 1 

≤ k ≤ K, solve

(2.4)

where  is the ℓ1 norm of the vector α. Due to the singularity property of 

the ℓ1 norm, the constraint ║α║1 ≤ t shrinks some components of α to zero for small 

enough values of t. Therefore, objective function (2.2) produces sparse PC vectors. 

However, Zou, Hastie, and Tibshirani (2006) noted that in many cases, SCoTLASS fails to 

achieve sufficient sparsity, thus complicating the interpretation of the results. One possible 
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explanation stems from the orthogonality constraint of the PC vectors that is not fully 

compatible with the desired sparsity condition. Hence, Zou, Hastie, and Tibshirani (2006) 

proposed an alternative way to estimate sparse PC vectors, by relaxing the orthogonality 

requirement. Their procedure amounts to solving the following regularized regression 

problem:

(2.5)

where βk is a p-dimensional column vector and B = [β1, β2,, …, βk]. The l2 penalty 

 regularizes the loss function to avoid singular solutions, whenever n < p. If λ1 

= 0, objective function (2.5) reduces to the ordinary PCA problem and the columns of B^ are 

proportional to the first K ordinary PC vectors (Zou, Hastie, and Tibshirani 2006); 

otherwise, the ℓ1 penalty ║βk║1 imposes sparsity on the elements of B^, that is, it shrinks 

some loadings exactly to zero. In addition, the first term in (2.5) can be written as

(2.6)

where A⊥ is any orthonormal matrix such that [A, A⊥] is a p × p orthonormal matrix. The 

quantity (αk − βk)T ∑^(αk− βk), 1 ≤ k ≤ p, measures the difference between αk and βk. 

Therefore, although there is no direct constraint on the column orthogonality in B, the loss 

function shrinks the difference between A and B and this results in the columns of B 

becoming closer to orthogonal. Numerical examples in the article by Zou, Hastie, and 

Tibshirani (2006) indicate that sparse PCA produces more zero loadings than SCoTLASS. 

However, both techniques cannot accommodate block structures in the variables, as the 

numerical results in Section 3 suggest. Next, we introduce a variant of sparse PCA called 

sparse fused PCA (SFPCA) that addresses this issue.

2.2 Sparse Fused Loadings

Our proposal is based on solving the following optimization problem:

(2.7)

where ; ρs,t denotes the sample correlation 

between variables Xs and Xt, and sign(•) is the sign function. The first penalty in (2.7) is the 

sum of l1 norms of the K PC vectors. It aims to shrink the elements of the PC vectors to 

zero, thus ensuring sparsity of the resulting solution. The second penalty is a linear 
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combination of K generalized fusion penalties. This penalty shrinks the difference between 

βs,k and βt,k, if the correlation between variables Xs and Xt is positive; the higher the 

correlation, the heavier the penalty for the difference of coefficients. If the correlation is 

negative, the penalty encourages βs,k and βt,k to have similar magnitudes, but different signs. 

It is natural to encourage the loadings of highly correlated variables to be close, since two 

perfectly correlated variables with the same variance have equal loadings. First, highly 

correlated variables on the same scale pushing the loadings to the same value has the same 

effect as setting small regression coefficients to 0 in lasso: fitted model accuracy is not 

affected much, but interpretation is improved and overfitting avoided. Second, by definition 

of principal components, the kth PC vector maximizes the variance of  subject 

to the orthogonality constraint. Since Xj's are centered, one can show that this variance 

equals to . Thus, in order to maximize the 

variance, we need the sign of βs,kβt,k to match the sign of cor(XS, Xt) (as far as the 

orthogonality constraint will allow). Finally, note that if two variables are highly correlated 

but have substantially different variances, their loadings will have different scales and will 

not be fused to the same value, which is the correct behavior for PCA on unscaled data. If 

this behavior is undesirable in a particular application, data should be standardized first (just 

like in regular PCA, it is the user's decision whether to standardize the data).

The effect of the fusion penalty, due to the singularity property of the ℓ1 norm, is that some 

terms in the sum are shrunken exactly to zero, resulting in some loadings having identical 

magnitudes. Therefore, the penalty aims at blocking the loadings into groups and “fusing” 

similar variables together for ease of interpretation. Finally, if ρs,t = 0 for any |t—s | > 1 and 

ρs,s+1 is a constant for all s, then the generalized fusion penalty reduces to the fusion penalty 

(Land and Friedman 1996; Tibshirani et al. 2005).

Note that one can use other types of weights in the generalized fusion penalty, including 

partial correlations or other similarity measures (Li and Li 2008).

2.3 Optimization of the Objective Function

We discuss next how to optimize the posited objective function. It is achieved through 

alternating optimization over A and B, analogously to the sparse PCA algorithm. Overall, the 

algorithm proceeds as follows.

Algorithm—Step 1. Initialize Â by setting it to the ordinary PCA solution.

Step 2. Given A, minimizing the objective function (2.7) over B is equivalent to solving the 

following K separate problems:

(2.8)

where . The solution to (2.8) is nontrivial, and is discussed in Section 2.4. This step 

updates the estimate B^
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Step 3. Given the value of B, minimizing (2.7) over A is equivalent to solving

(2.9)

The solution can be derived by a reduced rank Procrustes rotation (Zou, Hastie, and 

Tibshirani 2006). Specifically, we compute the singular value decomposition (SVD) of 

XTXB = UDVT and the solution to (2.9) is given by Â = UVT. This step updates the estimate 

Â.

Step 4. Repeat Steps 2–3 until convergence.

2.4 Estimation of B Given A

Objective function (2.8) can be solved by quadratic programming. However, this approach 

can be inefficient in practice; thus, we propose a more efficient algorithm—local quadratic 

approximation (LQA) (Fan and Li 2001). This method has been employed in a number of 

variable selection procedures for regression and its convergence properties have been 

studied by Fan and Li (2001) and Hunter and Li (2005). The LQA method approximates the 

objective function locally via a quadratic form. Notice that

(2.10)

where  and consequently sign .

After some algebra, one can show that (2.10) can be written as βTL(k)β, where L(k) = D(k) − 

W(k), W(k) = (ωS,t)p×p with diagonal elements equal to zero, and D(k)=diag(Σt≠1|ω1,t|,…,Σt≠p|

ωp,t|).

Similarly, we have , where 

and . Then, (2.8) can be written as

(2.11)

Notice that (2.11) takes the form of a least squares problem involving two generalized ridge 

penalties; hence, its closed form solution is given by

(2.12)

Notice that both Ω(k) and L(k) depend on the unknown parameter βk. Specifically, LQA 

iteratively updates βk, L(k) and Ω(k) as follows, which constitute Step 2 of the Algorithm.
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Step 2(a). Given β^k from the previous iteration, update Ω^(k) and L^(k).

Step 2(b). Given Ω^(k) and L^(k), update β^k by formula (2.12).

Step 2(c). Repeat Steps 2(a) and (b) until convergence.

Step 2(d). Scale β^k to have unit l2 norm.

Note that to calculate L(k) in Step 2(a), we need to calculate ωs,t = ρs,t/|βk,s—sign(ρs,t)βk,t|. 

When the values of βk,s and sign(ρs,t)βk,t are extremely close, ωs,t is numerically singular. In 

this case, we replace |βk,s−sign(ρs,t)βk,t | by a very small positive number (e.g., 10−10); 

similarly, we replace |βj,k| by a very small positive number if its value is extremely close to 

0.

With the new Step 2, the Algorithm has two nested loops. However, the inner loop in Step 2 

can be effectively approximated by a one-step update (Hunter and Li 2005), that is, by 

removing Step 2(c). In our numerical experiments, we found that this one-step update can 

lead to significant computational savings with minor sacrifices in terms of numerical 

accuracy.

2.5 Selection of Tuning Parameters

The proposed procedure involves two tuning parameters. One can always use cross-

validation to select the optimal values, but it can be computationally expensive. We discuss 

next an alternative approach for tuning parameter selection based on the Bayesian 

information criterion (BIC), which we use in simulations in Section 3. In general, we found 

solutions from cross-validation and BIC to be comparable, but BIC solutions tend to be 

sparser.

Let  and  be the estimates of A and 

B in (2.7), obtained using tuning parameters λ1 and λ2. Let , 

where the columns of Â contain the first K ordinary PC vectors of X. We define the BIC for 

sparse PCA as follows:

(2.13)

and analogously for SFPCA:

where dfSPCA and dfSFPCA denote the degrees of freedom of sparse and sparse-fused PCA 

defined as the number of all nonzero/nonzero-distinct elements in Bλ1,λ2, respectively. These 

definitions are similar to df defined for Lasso and fused Lasso (Tibshirani et al. 2005; Zou, 

Hastie, and Tibshirani 2007).
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2.6 Computational Complexity and Convergence

Since XT X only depends on the data, it is calculated once and requires np2 operations. The 

estimation of A by solving an SVD takes O(pK2). Calculation of Ω and L in (2.11) requires 

O(p2) operations, while the inverse in (2.12) is of order O(p3). Therefore, each update in 

LQA is of order O(p3K), and the total computational cost is O(np2) + O(p3K).

The convergence of the algorithm essentially follows from standard results. Note that the 

loss function is strictly convex in both A and B, and the penalties are convex in B, and thus 

the objective function is strictly convex and has a unique global minimum. The integrations 

between Steps 2 and 3 of the Algorithm amount to block coordinate descent, which is 

guaranteed to converge for differentiable convex functions (see, e.g., Bazaraa, Sherali, and 

Shetty 1993). The original objective function has singularities, but the objective function 

(2.10) obtained from the local quadratic approximation that we are actually optimizing is 

differentiable everywhere, and thus the convergence of coordinate descent is guaranteed. 

Thus, we only need to make sure that each step of the coordinate descent is guaranteed to 

converge. In Step 3, we are optimizing the objective function (2.9) exactly and obtain the 

solution in closed form. In Step 2, the optimization is iterative, but convergence follows 

easily by adapting the arguments of Hunter and Li (2005) for local quadratic approximation 

obtained from general results for minorization-maximization algorithms.

3. Numerical Illustration of SFPCA

First, we illustrate the performance of the proposed SFPCA method on a number of 

synthetic datasets described next.

Simulation 1

This simulation scenario is adopted from the work of Zou, Hastie, and Tibshirani (2006). 

Three latent variables are generated as follows:

where V1, V2, and ε; are independent, and ε; ∼ N(0,1). Next, ten observable variables are 

constructed as follows:

where ε;j, 1 ≤ j ≤ 10, are iid N(0,1). The variances of the three latent variables are 290, 300, 

and 38, respectively. Notice that by construction, variables X1 through X4 form a block with 

a constant within-block pairwise correlation of 0.997 (“block 1”), while variables X5 through 

X8 and X9, X10 form another two blocks (“block 2” and “block 3,” respectively). Ideally, a 
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sparse first PC should pick up block-2 variables with equal loadings, while a sparse second 

PC should consist of block-1 variables with equal loadings, since the variance of V2 is larger 

than that of V1.

Zou, Hastie, and Tibshirani (2006) compared sparse PCA with ordinary PCA and SCoT-

LASS using the true covariance matrix. In our simulation, we opted for the more realistic 

procedure of generating 20 samples according to the above description and repeated the 

simulation 50 times. PC vectors from ordinary PCA, sparse PCA, and SFPCA were 

computed from these simulated datasets and the results are shown in Table 1, along with the 

ordinary PC vectors computed from the true covariance matrix. The table entries correspond 

to the median and the median absolute deviation (in parentheses) of the loadings over 50 

replications. To measure the variation of the loadings within blocks 1 and 2, we also 

calculated the standard deviation among the loadings within these blocks and record their 

medians and median absolute deviations in rows “Block 1” and “Block 2,” respectively. The 

proportions of adjusted variance and adjusted cumulative variance are reported as “AV (%)” 

and “ACV (%).” Adjusted variance was defined by Zou, Hastie, and Tibshirani (2006) as 

follows: let B^ be the first K modified PC vectors. Using the QR decomposition, we have 

XB^ =QR, where Q is orthonormal and R is upper triangular. Then the adjusted variance of 

the kth PC equals .

The tuning parameters were selected by minimizing the Bayesian information criterion 

(BIC) defined in Section 2.5, using a grid search over {2−10,2−9,…, 210} for λ1 and {10−3,

…, 103} for λ2, respectively.

Table 1 shows that both SFPCA and sparse PCA recover the correct sparse structure of the 

loadings in the first two PC vectors. The median standard deviations within block 2 in PC 1 

and block 1 in PC 2 equal to zero, which implies that SFPCA accurately recovers the 

loadings within the block. In contrast, the median standard deviations within block 2 in PC 1 

and within block 1 in PC 2 reveal that the loadings estimated by sparse PCA exhibit 

significant variation.

As discussed in Section 2, the PC vectors from both sparse PCA and SFPCA are not exactly 

orthogonal due to the penalties employed. To study the deviation from orthogonality, the 

histogram of pairwise angles between the first four PC vectors obtained from SFPCA was 

obtained (available as supplemental material). It can be seen that the first two PCs are 

always orthogonal, while the fourth PC is essentially always orthogonal to the remaining 

three. The third component is the most variable, sometimes being close to the first, and at 

other times close to the second PC. This distribution of angles is consistent with the 

structure of the simulation and in general will be dependent on the underlying structure of 

the data.

Simulation 2

This example is a high-dimensional version (p > n) of Simulation 1. We define
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where ε;j, 1 ≤ j ≤ 50, are iid N(0,1). Then 20 samples were generated in each of the 50 

repetitions. The factor loadings estimated from this simulation are illustrated in Figure 1. 

Sparse PCA and SFPCA produce similar sparse structures in the loadings. However, 

compared with the “jumpy” loadings from sparse PCA, the loadings estimated by SFPCA 

are smooth and easier for interpretation.

4. Application of SFPCA to Real Datasets

4.1 Drivers Dataset

This dataset provides information about the physical size and age of 38 drivers along with a 

response variable, seat position in a car (Faraway 2004). For the purposes of PCA, the 

response variable was excluded from the analysis. The eight available variables on driver 

characteristics are age, weight, height in shoes, height in bare feet, seated height, lower arm 

length, thigh length, and lower leg length. All height/length variables are highly correlated 

(average correlation among these variables is about 0.8) and form a natural block (Figure 2); 

hence, we expect them to have similar loadings. SFPCA was applied to this dataset and its 

results compared with those obtained from ordinary PCA and sparse PCA (Table 2).

It can be seen that ordinary PCA captures the block structure in the first PC, but the factor 

loadings exhibit significant variation. Interestingly, the factor loadings from sparse PCA 

exhibit even greater variability, while the percentage of total variance explained by the first 

PC is only 55%, as opposed to 70% by ordinary PCA. On the other hand, SPFCA exhibits 

good performance in terms of goodness of fit (68.7%) and clearly reveals a single block 

structure in the “size” variables.

4.2 Pitprops Dataset

The pitprops dataset, introduced by Jeffers (1967), has become a classic example of the 

difficulties in interpretation of principal components. In this dataset, the sizes and properties 

of 180 pitprops (lumbers used to support the roofs of tunnels in coal mines) are recorded. 

The available variables are: the top diameter of the prop (topdiam), the length of the prop 

(length), the moisture content of the prop (moist), the specific gravity of the timber at the 

time of the test (testsg), the oven-dry specific gravity of the timber (ovensg), the number of 

annual rings at the top of the prop (ringtop), the number of annual rings at the base of the 

prop (ringbut), the maximum bow (bowmax), the distance of the point of maximum bow 

from the top of the prop (bowdist), the number of knot whorls (whorls), the length of clear 

prop from the top of the prop (clear), the average number of knots per whorl (knots), and the 

average diameter of the knots (diaknot). The first six PCs from regular PCA account for 

87% of the total variability (measured by cumulative proportion of total variance explained).
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We applied SPFCA and sparse PCA to the dataset and the results are given in Table 3. The 

loadings from SFPCA show a sparse structure similar to that of sparse PCA, but the first 

three PCs from SFPCA involve fewer variables than those of SPCA. The equal loadings 

within blocks assigned by SFPCA produce a clear picture for interpretation purposes. 

Referring to the interpretation of Jeffers (1967), the first PC gives the same loadings to 

“topdiam,” “length,” “ringbut,” “bowmax,” “bowdist,” and “whorls” and provides a general 

measure of size; the second PC assigns equal loadings to “moist” and “testsg” and measures 

the degree of seasoning; the third PC, giving equal loadings to “ovensg” and “ringtop,” 

accounts for the rate of the growth and the strength of the timber; the following three PCs 

represent “clear,” “knots,” and “diaknot,” respectively.

4.3 Meat Spectrum Data

In this section, we apply SFPCA to a dataset involving spectra obtained from meat analysis 

(Borggaard and Thodberg 1992; Thodberg 1996). In recent decades, spectrometry 

techniques have been widely used to identify the fat content in pork, because it has proved 

significantly cheaper and more efficient than traditional analytical chemistry methods. In 

this dataset, 215 samples were analyzed by a Tecator near-infrared spectrometer which 

measured the spectrum of light transmitted through a sample of minced pork meat. The 

spectrum gives the absorbance at 100 wavelength channels in the range of 850 to 1050 nm.

The adjusted cumulative total variances explained by the first two PCs from ordinary PCA, 

sparse PCA, and SFPCA are 99.6%, 98.9%, and 98.4%, respectively. Since wavelengths are 

naturally ordered, a natural way to display the loadings is to plot them against the 

wavelength. The plot of the first two PCs for the 100 wavelength channels is shown in 

Figure 3.

SFPCA smooths the ordinary PC vectors producing piecewise linear curves which are easier 

to interpret. The SFPCA results show clearly that the first PC represents the overall mean 

over different wavelengths while the second PC represents a contrast between the low and 

high frequencies. On the other hand, the high variability in the loadings produced by sparse 

PCA makes the PC curves difficult to interpret.

4.4 USPS Handwritten Digit Data

In this example, the three PCA methods are compared on the USPS handwritten digit dataset 

(Hull 1994). This dataset was collected by the U.S. Postal Service (USPS) and contains 

11,000 gray scale digital images of the ten digits at 16 × 16 pixel resolution. We focused on 

the digit “3” and sampled 20 images at random, thus operating in a large p, small n setting. 

While BIC gave good results for most datasets we examined, for the USPS data it tended to 

undershrink the coefficient estimates. However, we found that cross-validation produced 

good results and was computationally feasible, so we used 5-fold cross-validation to select 

the optimal tuning parameters for SPCA and SFPCA. The optimal tuning parameter for 

SPCA turned out to be equal to zero, so here SPCA coincides with ordinary PCA. The 

reconstructed images by the first and second principal components (“eigenimages”) 

arranged in the original spatial order are shown in Figure 4. It can be seen that SFPCA 

achieves a fairly strong fusing effect for the background pixels, thus producing a smoother, 
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cleaner background image. This is confirmed by the results in Table 4 that give the 

proportion of distinct elements in the first two principal components for PCA and SFPCA. 

Notice that since PCA does not impose any sparsity or fusion, the resulting proportion is 

100%, compared to those for SFPCA (35.5% and 22.7% for the first and second PCs, 

respectively).

5. Concluding Remarks

In this article, a method is developed to estimate principal components that capture block 

structures in the variables, which aids in the interpretation of the data analysis results. To 

achieve this goal, the orthogonality requirement is relaxed and an ℓ1 penalty is imposed on 

the norm of the PC vectors, as well as a “fusion” penalty driven by variable correlations. 

Application of the method to both synthetic and real datasets illustrates its advantages when 

it comes to interpretation.

The idea of sparse fused loadings is also applicable in a number of other unsupervised 

learning techniques, including canonical correlation and factor analysis, as well as 

regression analysis, classification techniques (e.g., LDA and SVM), and survival analysis 

(e.g., Cox model and Buckley–James model). We note that Daye and Jeng (2009) proposed 

a weighted fusion penalty for variable selection in a regression model. Unlike the 

generalized fusion penalty which penalizes the pairwise Manhattan distances between the 

variables, their method penalizes the pairwise Euclidean distances, and thus would not 

necessarily shrink the coefficients of highly correlated variables to identical values. 

Similarly, Tutz and Ulbricht (2009) proposed a BlockBoost method, whose penalty also 

tends to fuse the pairwise difference between the regression coefficients. In particular, when 

these pairwise correlations are close to ±1, the solution of BlockBoost is close to that of 

Daye and Jeng (2009).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Factor loadings of the first (left column) and second (right column) PC vectors estimated by 

ordinary PCA from the true covariance (first row), ordinary PCA from the sample 

covariance (second row), sparse PCA (third row), and SFPCA (fourth row). The horizontal 

axis is the variables and the vertical axis is the value of the loadings. Each colored curve 

represents the PC vector in one replication. The median loadings over 50 repetitions are 

represented by the black bold lines. The online version of this figure is in color.
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Figure 2. 
The histogram of the pairwise correlations between the height/length variables: weight, 

height in shoes, height in bare feet, seated height, lower arm length, thigh length, and lower 

leg length.
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Figure 3. 
Comparison of the first (left panel) and second (right panel) PC vectors from ordinary PC A 

(dashed line), sparse PCA (dotted line), and SFPCA (solid line). The online version of this 

figure is in color.
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Figure 4. 
The first two eigenimages of digit “3” estimated by PCA and SFPCA, respectively.
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Table 4

The proportion of distinct elements in the eigenimages of digit “3” estimated by PCA and SFPCA, 

respectively.

PC PCA (%) SFPCA (%)

1 100 35.5

2 100 22.7
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