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ABSTRACT
....................................................................................................................................................

Objective To describe HARVEST, a novel point-of-care patient summarization and visualization tool, and to conduct a
formative evaluation study to assess its effectiveness and gather feedback for iterative improvements.
Materials and methods HARVEST is a problem-based, interactive, temporal visualization of longitudinal patient records.
Using scalable, distributed natural language processing and problem salience computation, the system extracts content
from the patient notes and aggregates and presents information from multiple care settings. Clinical usability was
assessed with physician participants using a timed, task-based chart review and questionnaire, with performance differ-
ences recorded between conditions (standard data review system and HARVEST).
Results HARVEST displays patient information longitudinally using a timeline, a problem cloud as extracted from notes,
and focused access to clinical documentation. Despite lack of familiarity with HARVEST, when using a task-based evalu-
ation, performance and time-to-task completion was maintained in patient review scenarios using HARVEST alone or
the standard clinical information system at our institution. Subjects reported very high satisfaction with HARVEST and
interest in using the system in their daily practice.
Discussion HARVEST is available for wide deployment at our institution. Evaluation provided informative feedback and
directions for future improvements.
Conclusions HARVEST was designed to address the unmet need for clinicians at the point of care, facilitating review of
essential patient information. The deployment of HARVEST in our institution allows us to study patient record summari-
zation as an informatics intervention in a real-world setting. It also provides an opportunity to learn how clinicians use
the summarizer, enabling informed interface and content iteration and optimization to improve patient care.
....................................................................................................................................................
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BACKGROUND AND SIGNIFICANCE
With increasing numbers of observations recorded about
patients in their records, providers are faced with an over-
whelming amount of complex, raw data points, with little time
for making sense of them all.1 This phenomenon of information
overload has been observed in several care settings, from out-
patient clinics to hospital admissions and the emergency
department (ED).2–4 With the advent of health information
exchange, review of patient data will only become more com-
plex and time consuming.5,6 One of the promises of the elec-
tronic health record (EHR) is to support clinicians at the point of
patient care. Clinical information systems, unfortunately, sel-
dom provide effective cognitive support—that is, they do not
present information in an optimal format to clinicians when and
where it is needed.7 The lack of usable and effective patient

review capability in the EHR forces clinicians into spending pre-
cious time resources reviewing low-level, unrelated data points
trying to construct a mental model of the patient that may
result in delayed care and diagnostic and treatment errors.4,7

The need for better health information management and visu-
alization tools has long been recognized. Powsner and Tufte,8 in
the early 1990s, proposed the graphical representation of moni-
toring data combined with essential information about a patient
in intensive care as a way to relieve information overload.
Summarization of individual longitudinal medical records, ‘the act
of collecting, distilling, and synthesizing patient information for
the purpose of facilitating any of a wide range of clinical tasks’ is
an open and active field of research in informatics.9 Important
research has been undertaken on visualization of patient histor-
ies, such as the LifeLine and the KNAVE projects.10,11
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Summaries constructed as dashboards, collecting information
from the structured part of the EHR, have also been investigated.
In specific cases, studies have shown that access to summaries
had a positive impact on care, ranging from disease manage-
ment to new problem detection,12–15 further motivating the need
for robust summarization integrated into the EHR.

To understand how physicians make sense of a patient
record, we conducted an informative study asking physicians to
summarize longitudinal patient records.16 Analysis of the physi-
cians’ summarization processes and additional interviews con-
ducted with physicians: (i) discovered that identifying and
synthesizing information is a cognitively complex and time-
consuming task, even for expert users of EHRs; (ii) showed that
critical summary content is conveyed in the notes, and, as such,
notes are a primary source of information when creating a sum-
mary; and (iii) indicated that, while there was no established
standard for organizing summary content, a problem-oriented
view of the patient was a successful summary organization strat-
egy. These findings particularly resonate with the vision of the
problem-oriented record.17–19 In this framework, these problems
go beyond billing codes and existing problem lists in the EHR,
and, as such, parsing of notes is a critical aspect of the summari-
zation process. There has been much research on visualizing
document content in a collection,20,21 on which this work builds.

OBJECTIVE
We describe HARVEST, a longitudinal patient record summari-
zation system. HARVEST is an interactive, problem-oriented
temporal visualization, as extracted from a patient’s record.
The summarizer differs from previous work in three critical
ways: (i) it extracts content from the patient notes, where key
clinical information resides; (ii) it aggregates and presents
information from multiple care settings, including inpatient,
ambulatory, and ED encounters; and (iii) it operates on top of
commercial EHR systems, and is available for all patients in our
institution, not just a curated dataset or for specific patient
cohorts. We followed a user-centered, iterative design, by
developing an initial design, implementing and deploying it into
the EHR at New York Presbyterian Hospital (NYPH), and gather-
ing feedback in order to improve the system. We also report on
a formative evaluation carried out to assess the ability of
HARVEST to support physicians when reviewing patient infor-
mation and to gather user feedback for future iterations.

MATERIALS AND METHODS
In this section, we describe the clinical environment, HARVEST’s
architecture, back-end and front-end processing, and the setup
for the first of a series of evaluation studies of HARVEST.

Clinical environment and deployment sites
NYPH has six primary inpatient facilities, including two aca-
demic medical centers, and several outpatient facilities in its
Ambulatory Care Network. Together they account for 127 000
hospital discharges, 1 650 000 outpatient visits and 311 000
emergency visits annually. All NYPH providers rely on iNYP (on
average, 9600 unique users per month).

iNYP is a web-based results review application focusing pri-
marily on the display of textual rather than graphical data. The
core display is based on the institution’s legacy WebCIS results
review application.22,23 A left-hand panel contains links to
components of the chart (eg, laboratory data, clinician notes,
radiology reports, and pathology reports), and detailed data are
displayed in a large central panel (figure 1). A rudimentary
search function exists based on document type, document
author, or laboratory test type. A summary tab displays
grouped laboratory data (eg, basic metabolic panel) over time
in tabular format.

HARVEST was deployed into the clinical information review
system at NYPH as a b release in September 2013. It is avail-
able for all patients in the institution, but clinician access has
been restricted to internal medicine and emergency medicine
departments thus far.

HARVEST architecture
The HARVEST architecture consists of two online processing
modules: online distributed HL7 message and visit parsing for
all patients as they are generated by the EHR and web-based
visualization for a specific patient (figure 2). Both the back-end
and front-end processing are independent of the clinical infor-
mation system and rely on an HL7 feed as input and a web
server as output. As such, HARVEST can function on top of any
clinical system, provided that an HL7 feed is available. User
authentication and patient selection is handled by the clinical
information system.

Back-end scalable, distributed visit and note processing
HARVEST’s back-end processing consists of the distributed
parsing of visit information and indexing of clinical notes as
they are generated, as well as the salience computation for
problems to be visualized in the cloud.

Natural language processing (NLP) of notes
All note types in the institution, as written by all provider types
(ie, physicians, students, nurses, social workers, nutritionists,
etc), are processed. For each note, document structure (section
boundaries and section headers, lists and paragraph bounda-
ries, and sentence boundary detection) and mentions of prob-
lems are identified with our in-house named-entity recognizer,
HealthTermFinder.24,25 HealthTermFinder identifies concept
mentions and normalizes them to semantic concepts in a given
terminology. Since HARVEST is a problem-oriented visualiza-
tion, we restrict the terminology to the concepts appearing in
the Unified Medical Language System (UMLS) semantic group,
‘Disorder’,26 and filtered to the Core Problem List Subset of
Systematized Nomenclature of Medicine–Clinical Terms
(SNOMED CT).27 In this version of HARVEST, attribute identifi-
cation was skipped; thus, negated and uncertain terms were
still indexed.

Problem salience computation
Salience weights of problems extracted from the notes are
computed dynamically to reflect both the frequency of the
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concept in the patient notes in a given time slice of the record
and the prevalence of the concept across all patients in the
institution. Salience weights are based on the established term
frequency inverse to document frequency (TF*IDF) framework
for scoring importance of terms in a document collection.28

Scalable, distributed processing
To enable parsing and salience computation at scale, we cre-
ated a distributed computing infrastructure using Apache
Hadoop and implemented a map-reduce version of our NLP
system to parse the notes from HL7 messages as they are gen-
erated, as well as to parse the visits from the visit information
feed in the EHR (ie, visit dates and primary International
Classification of Diseases (ICD)9 billing codes). This infrastruc-
ture enables us to accommodate the large volume of

documentation generated at NYPH (650 000 notes per month).
A small four-node cluster processes 20 000 notes per second
compared with 500 notes per second in a non-distributed com-
puting environment. Processed notes, extracted problems, sali-
ence weights and meta-data are stored on Apache HBase, a
distributed database, such that new content is added and inte-
grated smoothly and without downtime in the system.

Front-end visualization
The front-end processing for HARVEST is a web-based visual-
ization. When an authenticated user invokes the summarizer
for a particular patient, the database is queried for summary
content and returns a JSON message containing all visit, note,
and problem information. The interface visualizes the JSON
messages into three panels—a timeline, a problem cloud, and

Figure 1: Screenshot of iNYP, the standard clinical information review system at New York Presbyterian Hospital (NYPH) for
a deidentified patient. The left frame displays the contents of the patient chart. Selecting a category opens that section in
the main frame. In this example, the main frame displays the notes in chronological order with the author names, and
selected note contents appear in the bottom frame.
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a note display panel—through HTML5 and Javascript code.
The problems’ salience weights determine the problems’ size
in the cloud. The timeline was implemented using HTML5 can-
vas, and the cloud and note panels were implemented with
JQuery.

Formative evaluation of HARVEST functionality
The goal of this formative study was to assess the ability of
HARVEST to support clinicians in reviewing patient information
and to gather feedback for iterative design.

Study subjects and patient selection
This study was approved by the Columbia University
Institutional Review Board. Subjects were recruited via invita-
tion email sent to all nephrology fellows and internal medicine
residents. Participation was voluntary and compensated. All
subjects were experienced users of iNYP, the institution’s
standard data review system, but had never seen HARVEST
before.

Cases for patient review were selected from the NYPH pop-
ulation, and selection focused on complex patients with multi-
ple comorbidities, frequent interactions with the healthcare
system, and a combination of outpatient, inpatient, and ED vis-
its. Patients had a mean of 48.5 months of clinical follow-up at
NYPH (range 9–62 months) with several medical providers,

numerous visits, and copious documentation with a sizeable
number of problems and unique problems, as extracted by our
NLP system (table 1). All records were checked to ensure that
the physician participant had not cared for the patient at any
time previously.

Study protocol
Each study subject saw four individual patient cases, two with
just the use of iNYP and two with HARVEST. When in the
HARVEST condition, subjects were asked to rely solely on
HARVEST, but were allowed to access other iNYP sections.
Subjects in groups of four were evaluated on the same four
patient cases, with the order of the patients and condition alter-
nated (figure 3). Fellows were evaluated in their own cohort of
four cases and were not examined on the same cases as
residents.

Each case scenario lasted 20 min, during which subjects
completed a 35-item questionnaire. This time limit allowed suf-
ficient time for questionnaire completion yet applied some ele-
ment of time pressure mimicking real-world conditions
(although participants were not explicitly asked to complete the
questionnaires as quickly as possible).

Task items focused on date finding (eg, ‘How soon after
[hospital] discharge did the patient have outpatient clinical fol-
low up?’), clinical fact or event finding (eg, ‘Does this patient

Figure 2: HARVEST system architecture. The distributed online module parses and indexes notes and visits as they are
generated from the electronic health record, so that, for all patients in the institution, the HBase database stores informa-
tion about visits, notes, and problems extracted from the notes. An authenticated user can invoke the online web-based
visualization for a particular medical record number, as part of the clinical information review system. CUI, concept unique
identifier; MRN, medical record number.
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have a history of rash?’), clinical comparisons (eg, ‘What
accounted for the change [in clinical problems over a period of
time]?’), and clinical synthesis (eg, ‘What were the five most
prominent or important problems [over a period of time]?’). The
questionnaire was identical for every patient case except for
three questions, which asked specifically about a chronic medi-
cal condition for the given patient (eg, hypertension, congestive
heart failure, diabetes mellitus). The final question, which was
solicited once the patient record was closed, asked for a
patient ‘one-liner,’ a summary sentence encompassing items
such as age, gender, relevant or important comorbidities, and
significant medical details. Overall, the task assessed ability to

extract, compare, synthesize, and recall clinical facts about a
patient. At the conclusion of the study, participants were asked
to complete a post-study questionnaire, with Likert-type and
free text questions to ascertain perceived usability and experi-
ence with HARVEST.

Data collection
This study used Morae Recorder, V.3.3.3, data capture soft-
ware, which included video, audio, and mouse and keyboard
tracking. Study subjects were asked to follow a think-aloud
protocol. All participants used the same computer, and had
access only to iNYP/HARVEST and a Microsoft Word document

Figure 3: Study protocol for groups of four subjects tested with four patient cases. This study consisted of a total of three
groups of four subjects each (total 12 subjects and 12 patient cases). Light gray boxes indicate study condition with the
use of HARVEST and dark gray boxes indicates use of iNYP alone. Overall, the study had 12 subjects and 12 patient cases.

Table 1: Electronic health record representation of the 12 study patients

Mean Median Range

Total clinical follow-up in the hospital system (months) 48.5 57.5 9–62

In 2 years preceding study, number of:

Healthcare visits 65.7 57.5 20–133

Provider types 12.75 11.5 4–20

Documents 266.25 226.5 75–874

Document types 62.25 56.5 12–137

Document authors 111 90.5 22–379

Problem concepts 5129.5 3877 1001–16 502

Unique problem concepts 253.75 271 94–462
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with the questionnaire. All answers were entered on the Word
document, after which it was transformed into a read-only ver-
sion to prevent error.

Statistical analysis
Two authors with medical knowledge independently completed
an answer key for each patient case, with differences adjudi-
cated in an open setting in order to arrive at a final consensus
reference answer key. Each completed questionnaire was then
compared with the reference standard for scoring. All but two
questions were given a maximum of one point (and were nor-
malized to one if there were subcomponents). The two synthe-
sis questions were weighted more (two points each). For the
sake of computing an overall score, unanswered questions
were scored as incorrect. The final score for a given question-
naire was normalized to the maximum number of answerable
questions for that scenario.

Sensitivity analysis was conducted by variably excluding
outlier scores (defined as any value below the third quartile or
above the first quartile 1.5 times the inner quartile range) and
unfinished questions (due to time constraints). The one-liner
question was not included as part of the overall score, but was
scored separately (on a scale of one to three, with one being
inadequate and three being comprehensive) and analyzed.
Overall time to completion (in seconds) of each questionnaire
was captured with Morae Recorder; the one-liner was not
included in the timing.

Given the overall sample size and uncertain distribution,
non-parametric statistical analyses were performed. Because
of the repeated measurements of each subject, Wilcoxon
signed-rank test was performed for comparison between two
study conditions. Study participants were exposed to the iNYP
and the HARVEST conditions twice, and analysis was con-
ducted with collapse of scores (by averaging) for each study
condition, allowing direct comparison between a single iNYP
score and a single HARVEST score for each participant. As a
loss of power occurs with collapse of features, sensitivity anal-
ysis was performed, comparing all scores from the iNYP and
HARVEST conditions without any averaging. Correlations were
assessed using Spearman’s rank correlation, and Fisher’s
exact test was used for analysis of categorical outcomes.

All analyses were conducted using the R language and envi-
ronment for statistical computing, V.3.1.0.

RESULTS
HARVEST summarization and visualization
HARVEST is a web-based interactive, problem-oriented, tempo-
ral visualization of a patient record. It renders patient data
through a timeline, a problem cloud, and two note panels
(figure 4).

The timeline expands and contracts, and a slider facilitates
focus on specific time periods. Marks on the timeline indicate
different types of visit—including outpatient, ED, and inpatient
admissions—and information bubbles above visits provide
meta-information, including visit date, attending physician, and
primary billing code. The timeline enables users to assess the

visit patterns of a patient (eg, a patient with frequent ED or
clinic visits).

The problem cloud displays concepts extracted from the
notes in the patient record for the selected time range in the
timeline, advancing beyond simple billing codes or problem
lists. Problems are ordered in the cloud by their salience weight
for a given range. Normalization of problems goes beyond tra-
ditional word-cloud capabilities: synonyms and lexical variants
of a given problem are all aggregated into each problem (see
for instance, the problem ‘dyspnea’ and its synonym ‘SOB,’ or
‘shortness of breath,’ in figure 4). When a problem is selected,
the timeline displays the different occurrences of the problem
throughout the record, allowing users to assess the patterns of
documentation for that particular problem.

The note panel consists of a list of notes in the patient
record for the selected time range in the timeline. If a problem
in the cloud is selected, the list is filtered to display only the
notes that mention the selected problem. Individual notes can
be viewed as well, with a selected problem highlighted
throughout. This functionality enables users to access the
actual context in which problems were mentioned and gather
full information about the problem from existing
documentation.

Formative evaluation
Twelve physicians partook in the evaluation, eight internal
medicine residents (4 senior residents, 2 junior residents, and
2 interns) and four nephrology fellows (1 senior fellow and 3
junior fellows). Subjects completed four patient cases, for a
total of 48 completed task questionnaires covering 12 unique
patient cases across two testing conditions. Multiple exposures
to the same testing condition did not improve scores, as no
statistically significant intrasubject difference was seen
between trial one and two for each condition (iNYP p¼ 0.923
and HARVEST p¼ 0.615) or between conditions (p¼ 0.850).
The scores for each of the two conditions were then collapsed
by averaging for each participant, yielding a total of 12 scores
each for iNYP and HARVEST comparisons.

In comparison, between the two study conditions, no statis-
tically significant difference was observed in the overall scores
on the task questionnaires (p¼ 0.569; table 2 and figure 5).
These findings did not change in various sensitivity analyses
comparing all 24 scores in each condition (p¼ 0.546).

Additional analyses were conducted examining the effect of
excluding outlier cases, incomplete questions, patient case
order, and physician type (ie, fellow vs resident), as well as
considering fact-finding questions only, all with no difference
between study conditions. The patient summary statement
(‘one-liner’) was analyzed separately from the remaining ques-
tions, also with no difference noted between the two groups.

Given the importance of efficiency in clinical care, the time
to completion for each scenario was recorded. Timing
improved significantly between first and second attempts using
both iNYP (p¼ 0.009) and HARVEST (p¼ 0.014), but there
was no difference in improvement between the two conditions
from attempt one to two (p¼ 0.959). There was also no
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statistically significant difference in time to completion between
iNYP and HARVEST conditions during the first attempt
(p¼ 0.151), the second attempt (p¼ 0.092), and overall
(p¼ 0.333), although the HARVEST condition tended to take
longer (iNYP median/IQR 1015.0/239.0 s; HARVEST median/IQR
1098.0/102.6 s). Participants ran out of time in four iNYP- and
six HARVEST-based scenarios (p¼ 0.724), although both
groups had only a single incomplete questionnaire in the sec-
ond trial (table 3).

Participant feedback
At the conclusion of the study, participants were asked a series
of questions regarding their overall impression of HARVEST,
including significant benefits or flaws in the tool.

Despite the novelty of the visualization, participants felt that
it would be helpful in identifying subjective data not captured
in objective, laboratory reports, and that HARVEST could help
discover items that may otherwise be missed (table 4A). In par-
ticular, participants noted that the representation of a patient’s

Figure 4: Screenshot of HARVEST for the same deidentified patient as in the iNYP screenshot in figure 1. For the selected
time range (3 months), stable angina, pulmonary hypertension, end-stage renal disease, and dyspnea are the most promi-
nently documented problems. HARVEST also identified diabetes mellitus, hypertension, and dyslipidemia as important
problems. The problem ‘dyspnea’ was selected. The Notes panel lists all notes in the selected time range that mention this
problem. Out of these, a cardiology consult note is selected and displayed in the lower right panel, with all mentions of
dyspnea (and synonyms) highlighted. On the timeline, documentation of dyspnea is highlighted by purple bars, indicating
that dyspnea was a particularly salient issue at that time as well as 6 months later.
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longitudinal medical history is particularly useful when seeing a
new patient in the clinic, admitting a patient to the hospital, or
rapidly evaluating a patient in the ED (table 4B).

Three-quarters of participants said they would definitely use
HARVEST again, while the remainder said they might access it.
Using Likert-type questions, most participants found all three
components of HARVEST somewhat or extremely helpful (83%
for the timeline, 75% for the problem cloud, and 83% for note
access) (figure 6). Those who found HARVEST components
unhelpful commented on the lack of integration with other
aspects of the health record, such as review of laboratory tests,
as well as the inability to see all notes for a specific visit with-
out selecting a problem (in the testing version of HARVEST, it
was not possible to see all the notes for a given time period as
only notes related to a selected problem appeared).

No correlation was present between overall satisfaction with
HARVEST as evidenced by mean score on the three Likert-type
post-task questions and overall mean score on all four patient

cases (r¼ 0.316, p¼ 0.318) or mean score on patient cases
with HARVEST (r¼ 0.379, p¼ 0.224).

Several consistent concerns regarding the tool emerged
from study participants. The timeline in the HARVEST version
used in the study extends back 2 years only, forcing partici-
pants to enter the iNYP interface to find older information. The
extraction of problems from notes without regard to clinical
relevance frequently populated the problem cloud. For exam-
ple, negated terms (eg, ‘no history of asthma’) and early clinical
thoughts (differential diagnoses) that do not ultimately pan out
(eg, ‘may have pneumonia’) are stationed within the problem
cloud alongside actual patient problems. While two-thirds of
participants found no content redundant or unnecessary in
HARVEST, the remainder remarked on the high number of
problems related to review of systems in the cloud. Finally,
each time a participant went from iNYP to HARVEST, the latter
interface required reloading, causing a delay.

DISCUSSION
This paper reports on the development, implementation, and
formative evaluation of a novel data summarization and visual-
ization tool embedded directly on top of the EHR. With an
appreciation of the growing complexity of EHR data across care
settings and the increasing use of electronic documentation,
HARVEST was designed as a point-of-care tool to support

Table 2: Summary statistics for overall scores (normalized to 1) in the two testing scenarios

Condition Minimum 1st quartile Median Mean 3rd quartile Maximum

iNYP 0.57 0.67 0.72 0.74 0.80 0.91

HARVEST 0.35 0.70 0.72 0.71 0.75 0.84

Figure 5: Boxplot of overall questionnaire scores
between the two scenarios (iNYP vs HARVEST). There
were no statistically significant differences in scores
between the two conditions.

Table 3: Completion of task questionnaires in
time allotted, by study condition and trial
number

Condition Task
complete
(number
of trials)

Task
incomplete
(number
of trials)

iNYP Overall 20 4

iNYP Trial 1 9 3

iNYP Trial 2 11 1

HARVEST Overall 18 6

HARVEST Trial 1 7 5

HARVEST Trial 2 11 1
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clinician workflow by leveraging the unstructured part of the
record. As a summarization tool, HARVEST is not intended to
replace other components of a medical record system, but
rather to be used within and alongside the EHR. It may prove to

be an extremely valuable adjunct to traditional clinical data
review systems.

While there are established visualization principles to con-
vey discrete and continuous numerical information, visualizing
textual information in a useful fashion remains an open
research question. The interactive time- and problem-oriented
visualization of HARVEST, along with its easy and focused
access to relevant documentation in the record is a contribution
to this discipline. The use of scalable, distributed NLP for
all patients in the institution and for a very wide range of prob-
lems is another contribution to informatics research. In con-
trast, traditional clinical NLP has been used for specific tasks
and types of data to extract along with specific types of
documents.29,30

New tools have the potential to disrupt ingrained workflows,
and therefore have the potential to worsen performance ini-
tially. Using a task-based evaluation setup requiring examina-
tion of patient records, we found that physicians did equally
well with HARVEST or iNYP, regardless of physician type,
patient case, individual subject, or order of scenario. The same
was observed for the recall task of the patient one-liner. The
study subjects had never interacted with HARVEST before and
were moreover power users of iNYP. Several subjects com-
mented that, given time to interact with HARVEST, task
performance and efficiency would likely improve. Despite its
novelty and learning curve, which may have biased perform-
ance against HARVEST, physicians performed equally well
with and without HARVEST without any statistically significant
difference in efficiency (notably, while the task was timed with
a maximum of 20 min, participants were not specifically
instructed to attempt completion quickly). Future studies will

Table 4: Subject feedback on the overall use of Harvest (A) and applicable usage in the clinical work-
flow (B)

A. " “It’s a great adjunctive tool to visually represent the patient’s chart history”
" “Good visual representation of the patient’s clinic and [ED] visits and admissions, and gives a good overall

sense of the patient’s medical problems”
" “[Allows for] review [of] the medical record to find specific instances when things were diagnosed or managed”
" “Useful tool to quickly tell burden of disease”
" “Made me more confident that I wasn’t missing information that can sometimes be buried in the list of

[past medical history]”
" “[I]t helped pick up on diagnoses within the chart that I otherwise would’ve had a lot of difficulty finding”
" “The tool was very helpful in quickly getting a sense of how many (and what type of) encounters a patient had”

B. " “[T]he Harvest tool would be most helpful when taking care of new patients and patient not already well-known
" “I would use it in pre-scrolling patients prior to seeing them both in the outpatient and inpatient setting”
" “[Harvest] would allow me to better become acquainted with other people’s patients in the event I was covering

for them in clinic”
" “[When] admitting a patient to the hospital, I feel like it would allow me to gather information to write a

pertinent admission note in less time
" “[I]n the emergency department this tool would allow me to get a rapid view of the important terms in the

patient’s medical record”

ED, emergency department.

Figure 6: Responses to Likert-type questions in the
post-task questionnaire regarding helpfulness of the
three features of HARVEST: access to the notes, the
timeline, and the problem cloud. Most participants
found the three features somewhat or very helpful (blue
highlighted region to right of vertical bar), whereas
fewer found the features somewhat or very unhelpful
(pink and red highlighted region to left of vertical bar).
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examine performance following real-world HARVEST use for
several months.

The post-task questionnaire indicates high satisfaction with
HARVEST. Physicians were enthusiastic about the tool and indi-
cated they would be very likely to use it in their future daily
activities. The tool made them more confident that they were
not missing crucial information. They noted that HARVEST
would be particularly useful when evaluating a new patient, as
it provides a quick and reliable overview of a patient through
time.

HARVEST design limitations and future work
Users provided feedback that fell into two broad categories:
general tool functionality, which is amenable to relatively sim-
ple revisions, and purposeful design decisions, which have
inherent tradeoffs.

As (nearly all) subjects noted, the ability to click on a visit in
the timeline and automatically filter the problem cloud and
notes within that particular visit was missing. Furthermore, in
the case of complex patients, lack of a quick visit filter made
the timeline sometimes too cluttered. Subjects mentioned that
customization of the visualization either based on physician
type or even individual physicians would be welcome. For
instance, particular note types could be given a higher weight
for computing individual problem’s saliences (eg, for a nephrol-
ogist, problems mentioned in nephrology notes would be
boosted). These functional criticisms are already being
addressed in newer versions of HARVEST.

Some other criticisms, however, are more complex and rely
on tradeoffs in information presentation and accessibility.
Some participants remarked that the salience weights of prob-
lems rely heavily on their note frequency, without taking into
account any a priori clinical importance of a problem. Some
may have overly focused on prominent terms in the cloud, or in
some cases on the contrary, ignored the prominence because
they disagreed with frequency as an indication of importance.
This criticism is taken into account. As a first proxy for sali-
ence, frequency is useful, but does not capture entirely clinical
salience, and might even be misleading sometimes.

One participant raised the question that the timeline reflects
the timing of documentation of problems, rather than a chro-
nology of the problems themselves. Both types of timelines
have their merits in a clinical support tool and it is an open
question which timeline is preferable for patient record sum-
marization. Recent advances in clinical NLP are promising to
generate chronological timelines for longitudinal records,31,32

but the time to produce them in a dynamic fashion is an impor-
tant consideration for future work.

Currently, problems extracted from the notes are displayed
independently of one another. Thus semantically related prob-
lems may be conveyed far away from each other in the cloud.
We are exploring visualization techniques to either merge such
problems or convey distance in the cloud to represent related-
ness. Such functionality would not only convey a higher level of
synthesis of the patient record, it might also address the feed-
back of some subjects about the overly large amount of

problems in some patient cases. How to gather the semantic
relatedness of the problems in a robust, automated fashion is
an open question of much interest to our research.

Finally, subjects commented on the lack of negation and
uncertainty detection when extracting problems from the notes.
It is still an open question whether these should be considered.
In our experiments, we have not yet found any tools for nega-
tion detection that is robust enough for the large number of
note types (and sublanguages) in our institution. More impor-
tantly, the fact that a clinician mentions a problem, even if
negated, might be more informative than if not mentioned at
all. Under this assumption, including negated problems is an
acceptable summarization strategy.

Formative evaluation limitations
The task-based study had several limitations. First, this study
compared a well-known interface against an entirely novel tool,
without allowing significant time for familiarization. The study
did not observe physicians during real-world workflow,
although tried to mimic this setting with real patient cases,
clinically relevant questions and tasks, and time pressure.
Despite our prototyping the study, the first two questions
proved ambiguous to some subjects, as ‘the most prominent or
important’ conditions or complaints were asked. Some subjects
understood importance along the acute versus chronic dimen-
sion, while others focused on the severity of disease diagnosis
independent of its activity. Finally, because HARVEST is
deployed into NYPH only thus far, our evaluation focused on
patients from a single institution. As HARVEST was designed in
an EHR agnostic fashion, relying only on an HL7 feed, porting
to another EHR is feasible. We are eager to experiment with
HARVEST in other institutions and assess reproducibility of our
research.33

CONCLUSION
The amount of data in the EHR is growing rapidly, and innova-
tions in data visualization and display have not kept up. Indeed,
there is a real concern that information may be missed or lost,
or that clinicians may have difficulty retrieving crucial data at
the point of care. Whereas structured laboratory data can be
more easily manipulated and displayed in tables, charts, and
graphs, unstructured clinical documentation remains largely
inaccessible and yet contains critical information. By facilitating
access to a patient timeline, clinical problems extracted directly
from notes, and the clinical documentation, HARVEST was
designed to address the unmet need for clinicians at the point
of care, facilitating review of essential patient information. In a
formative study comparing the standard EHR with HARVEST,
clinician performance and efficiency on clinically relevant tasks
remain unchanged compared with the standard EHR, and users
have provided considerable favorable and positive feedback on
the tool. The deployment of HARVEST in our institution allows
us to study patient record summarization as an informatics
intervention in a real-world setting. It also provides an opportu-
nity to learn how clinicians use the summarizer, enabling
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informed interface and content iteration and optimization to
improve patient care.
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