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Abstract

Mutator phenotypes accelerate the evolutionary process of neoplastic transformation. His-
torically, the measurement of mutation rates has relied on scoring the occurrence of rare
mutations in target genes in large populations of cells. Averaging mutation rates over large
cell populations assumes that new mutations arise at a constant rate during each cell
division. If the mutation rate is not constant, an expanding mutator population may contain
subclones with widely divergent rates of evolution. Here, we report mutation rate measure-
ments of individual cell divisions of mutator yeast deficient in DNA polymerase ¢ proofread-
ing and base-base mismatch repair. Our data are best fit by a model in which cells can
assume one of two distinct mutator states, with mutation rates that differ by an order of mag-
nitude. In error-prone cell divisions, mutations occurred on the same chromosome more
frequently than expected by chance, often in DNA with similar predicted replication timing,
consistent with a spatiotemporal dimension to the hypermutator state. Mapping of mutations
onto predicted replicons revealed that mutations were enriched in the first half of the repli-
con as well as near termination zones. Taken together, our findings show that individual ge-
nome replication events exhibit an unexpected volatility that may deepen our understanding
of the evolution of mutator-driven malignancies.

Author Summary

Mutations fuel microbial evolution and cancer. Cells with an increased rate of mutation
are said to have a “mutator phenotype” and adapt more rapidly than non-mutator cells.
Our study utilizes a novel way of measuring mutation rates of individual cell divisions to
show that mutator cells can adopt one of two mutation rates that differ tenfold in magni-
tude. This mutator volatility suggests that the rates of mutation accumulation may vary
widely within the same clone of mutator cells. Understanding how to modulate the muta-
tor state may provide an avenue to treat certain cancers.

PLOS Genetics | DOI:10.1371/journal.pgen.1005151

April 13,2015 1/21


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1005151&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@'PLOS | GENETICS

Mutator Volatility

Environmental Health Sciences, the National Institute
on Aging, the National Institutes of Health, or the
Burroughs Wellcome Fund. The funders had no role
in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

Introduction

A network of DNA metabolic activities maintains genomic integrity during each cell division
[1], ensuring that eukaryotic mutation rates remain less than one mutation per billion base-
pairs synthesized. Defects to these activities can lead to mutator phenotypes that increase the
rate of mutation [2]. As the mutator population expands, genetic diversity increases, fueling
evolution. In multi-cellular organisms, mutator phenotypes accelerate tumorigenesis by gener-
ating mutations that overcome the genetic and environmental barriers to unrestrained prolifer-
ation [3,4]. In tumors that are not initially mutator-driven, chemotherapeutic treatment
provides selection pressure for sub-clonal mutator cell lineages to emerge, which more easily
evolve drug-resistance. Thus, mutator phenotypes may pose substantial challenges to cancer
therapy, necessitating a greater understanding of their inherent vulnerabilities.

The most abundant source of potential mutations in dividing cells are polymerase errors,
which are corrected by the synergistic activities of polymerase proofreading and mismatch re-
pair (MMR) [2]. Pol € and Pol 8 perform the bulk of leading and lagging strand DNA replica-
tion in eukaryotes, respectively [5], and contain intrinsic proofreading exonucleases that excise
the vast majority of polymerase errors. Mismatches that escape proofreading are recognized by
Msh2eMsh6 (base-base mismatches, insertion/deletion mispairs) or Msh2eMsh3 (primarily in-
sertion/deletion mispairs) [2]. These complexes recruit the endonucleases Mlh1lePms1(Pms2
in mammals) or Mlh1eMlh3, which initiate processing and re-synthesis of the DNA [2]. De-
fects to proofreading or MMR increase mutation rates in microbes and mammalian cells [2].
In humans, mutations that compromise Pol € or Pol 8 proofreading or MMR lead to colorectal
(CRC) and endometrial cancers (EC) [6-11], supporting the hypothesis that maintenance of
DNA replication fidelity restrains neoplasia [3,4,12-14]. Synergistic defects in both MMR and
proofreading greatly accelerate tumorigenesis [15]. Since proofreading and MMR act in series
on the same pool of errors, concomitant defects in these activities elevate mutation rates
10,000-fold in diploid yeast [16-18]. In haploid yeast, this level of mutagenesis causes error-
induced extinction [16,17,19,20]. Not all proofreading and MMR defects are synthetically le-
thal to haploids. Yeast cells with mutant alleles for Pol € proofreading deficiency (pol2-4) and
Msh6 (msh6A) exhibit mutation rates of only 1000-fold greater than background [21,22], just
below the critical level at which haploid colony forming capacity declines [20].

Strong mutator phenotypes may be more volatile than commonly appreciated. The first
hints of hypermutability came from differences observed between haploid and diploid yeast in
the rates of base-analogue 6-hydroxylaminopurine (HAP) induced mutagenesis [23,24]. Subse-
quent studies revealed a wide variability in the mutagenesis induced in diploids by HAP or
AID/APOBEC cytosine deaminase expression: clones selected for a mutant phenotype had
much higher genome-wide mutational loads than unselected clones exposed to the same muta-
genic treatment [25]. A similar hypermutable state has been advanced to explain why diploid
strains deficient in Pol 8 proofreading display mutation rates 3 to 20-fold greater than isogenic
haploid yeast strains [26]. These results are consistent with the hypothesis that some Pol &
proofreading-deficient cells enter a “hypermutator” state, which is lethal to haploids but toler-
ated by diploids [26]. If mutational processes are similarly volatile during tumorigenesis, they
may influence the rate of tumor evolution and the nature of genetic diversity present in the
growing tumor clone.

Testing for mutator volatility has proven technically challenging. Historically, mutator phe-
notypes have been measured by scoring the frequency of rare mutations in selectable genes in
thousands or even millions of cells. Analysis of the fluctuation in mutation frequencies in mul-
tiple independent cultures yields the mutation rate of the target gene during clonal expansion
[27]. In an alternative approach, individual cell lines are propagated through bottlenecks over
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hundreds or thousands of generations and then analyzed by whole genome sequencing to de-
rive the generational mutation rate [28,29]. Both of these methods can only report the average
mutation rate of the entire population, which obscures the actual mutation rate for any given
replication event. Overcoming this limitation requires the measurement of mutation rates at
single cell resolution. As an experimental approach, single cell DNA sequencing holds promise,
but current methods require in vitro enzymatic amplification of the genome [30,31]. Because
DNA polymerases are used to amplify the DNA, base misincorporation events can lead to the
scoring of thousands of false mutations. Additionally, the spatial and temporal relationship be-
tween cells is lost in these experiments; thus, it is impossible to know precisely how many cell
divisions occurred between any two related cells. We devised an alternative approach, which is
to sequence clones of cells derived from sequential cell divisions of the same cell lineage. Each
clone contains the mutational history of the replication event, as well as all previous genome
replications. By comparing clones derived from sequential cell divisions, it is possible to deter-
mine precisely when each mutation arose. Here, we apply this strategy to determine the fidelity
of individual genome replication events of pol2-4 msh60A mutator yeast cells.

Results

We used budding yeast cells to investigate mutation rates of individual cell divisions because
they divide asymmetrically into “mother” and “daughter” cells that are easily separated by
micromanipulation. The daughter cells readily expand into clones, which can then be subjected
to whole genome sequencing to ascertain mutations. During the first division of the mother
cell (My—M,), new DNA replication errors retained by the mother (M;) in the form of mis-
matches become mutations in the next round of replication and segregate to the daughter (D,)
or are retained by the mother (M,) (Fig 1A). Mutations and mismatches segregated to the
daughter will be unique to her clone of cells, whereas mutations retained by the mother cell
(maternal mutations) will appear in the third daughter (D3) clone and all subsequent daughter
clones (e.g. Dy, Ds, etc). The number of new maternal mutations in each daughter clone can be
used to determine the mutation rates of individual maternal cell divisions.

As a source of mother cells, we used haploid spores freshly dissected from tetrads derived
from meiosis of a diploid strain that was heterozygous for both alleles (POL2/URA3::pol2-4
MSH6/msh6A::LEU2). The four haploid genotypes from this strain are: 1) wild-type (WT) with
respect to replication fidelity (POL2 MSH6), 2) proofreading defective (pol2-4 MSH6), 3)
MMR defective (POL2 msh6A), or 4) proofreading and MMR defective (pol2-4 msh6A). Cana-
vanine-resistance (Can") mutation rates determined by fluctuation analysis [32-34] revealed
that the pol2-4 and msh6A alleles individually increased mutation rates 3 and 10 times above
background, respectively (SIA Fig) [21,22]. The pol2-4 msh6A cells have mutation rates of 1.7 x
10" Can" mutants per cell division (S1A Fig), which corresponds to 4.3 x 10”7 mutations/bp/
cell division using the method of Drake [35] that we employed previously [20]. Assuming at
least 80% sequencing coverage of the haploid yeast genome (1.2 x 10” bp) and that the mutabil-
ity of CANI is representative of other genes, we estimated we would observe an average of 4 to
5 mutations for each division of pol2-4 msh6A cells [(4.3 x 10-7 mutations/bp/cell division) x
(1.2 x 107 bp) x 0.8 = 4 mutations].

To establish single cell lineages, we randomly chose spores to serve as mother cells and
moved them to a defined location on an agar plate. When the mother cells began dividing, we
moved all daughters to unique positions on the plate where they formed colonies (S1B Fig).
We then sequenced the genomes of the viable daughter clones, scoring only mutations at geno-
mic positions accurately called in all members of a lineage. In all lineages, we assessed greater
than 80% of the yeast genome (1.05 (£0.05) x 107 base-pairs; Table 1). We then compared the
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Fig 1. Mutation rate of po/2-4 msh6A mother yeast cells at single cell resolution. (A) Polymerase errors
(orange, green, and blue boxes) arising in maternal double-stranded DNA (dsDNA) as mismatches become
mutations during S-phase DNA replication (see rectangle) and segregate to the mother (M) or daughter (D)
cells. Subscript numbers following M or D indicate the division number that produced the cell (e.g. M, is the
mother cell after one division). Red arrows indicate only one of several segregation scenarios. Single cell
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mutation rates (M, M2 u, M3 1) are defined as the number of new mutations fixed in the maternal lineage at
each cell division divided by the total number of nucleotides sequenced in all members of a lineage. (B)
Genomic distribution of the 237 mutations observed in individual cell divisions (blue lines) among the 16
yeast chromosomes (gray lines). Red lines, centromeres. (C) Mutation spectra of pol2-4 msh6A cells from
whole genome sequencing (blue) compared to published spectra (red).

doi:10.1371/journal.pgen.1005151.g001

sequence of the last viable daughter clone to the sequences of all earlier daughter clones to de-
fine mutations fixed in the maternal lineage at each cell division. We observed no mutations in
three WT control lineages, while two mutations were fixed during 9 cell divisions of an msh6A
mother cell (Lineage A in S1 Dataset). In contrast, we observed an average of 30+7 mutations
during 11+3 divisions of pol2-4 msh6A mother cells (Lineages B-H in S1 Dataset, summarized
in S1 Table). All told, 237 mutations accumulated over 87 divisions of pol2-4 msh6A cells
(Table 1). The average mutation rate was 2.6 x 10”7 mutations/bp/cell division, determined by
dividing the total number of mutations in all lineages by the total base-pairs scored (Table 1).
The mutations were distributed across all 16 chromosomes (Fig 1B), although mutation rates
for individual chromosomes varied six-fold (S1C Fig). The mutation spectra, characterized by
high numbers of GC—AT and GC—TA mutations, corresponded well with the combined
published ura3 and canl mutation spectra of pol2-4 mshé6 cells (Fig 1C, S2 Table), as well as
with spectra obtained with purified proofreading-deficient Pol € [21,22]. AT—TA mutations,
also frequently observed in vitro, were relatively less abundant in the whole genome spectra,
but this can be explained by the preferential repair of these mismatches by the Msh2eMsh3
complex [36], which remains active in pol2-4 msh6A cells.

Individual cell divisions exhibited considerable variation in mutation counts (Fig 2A) that
did not correlate with the replicative age of the mother cell (r = 0.1, p = 0.4, Pearson). We mod-
eled mutagenesis in pol2-4 msh6A cells as a Poisson process to test whether this variation could

Table 1. Genome sizes and mutation rates of po/2-4 msh6A sequenced lineages.

Lineages? Sequenced Genome Size® Mutations Divisions Mutation Rate® Total Base-Pairs Scored”
SC media

C 10034503 41 13 3.1 130448539

F 11040018 31 12 2.3 132480216

G1 9684038 32 11 3.0 106524418

G2 10209723 18 5 35 51048615

H 10826564 30 12 2.3 129918768
SC-Ura-Leu

B 10926041 19 9 1.9 98334369

D 10099122 36 15 24 151486830

E 10889177 30 10 2.8 108891770
Sum 237 87 909133525
average 1.02E+07 30 11 2.7 average mutation rate®
stdev + 4.98E+05 7 3 0.5 2.6

8Lineages C, F, G1, G2, and H were grown on synthetic complete (SC) media. Lineages B, D, and E were grown on synthetic complete media without
uracil and leucine (SC-Ura-Leu) to select for double mutant spores containing the URA3 and LEU2 transgenes linked to the mutator alleles.

®The sequenced genome size equals the number of base-pairs of the genome confidently scored in all members of a lineage.

“Values below this heading should be multiplied by 10”7 mutations/base-pair/cell division.

90btained by multiplying the sequenced genome size by the number of cell divisions scored.

®The value below this heading was determined by dividing the total number of mutations by the number of cell divisions and the total base-pairs
confidently scored. It should be multiplied by 107 mutations/base-pair/cell division.

doi:10.1371/journal.pgen.1005151.t001
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Fig 2. Distribution of single cell mutation counts in mother cells. (A) Mutation counts of mutator cells
during yeast aging. Each lineage is plotted separately, except Lineage G, whose mother cell became multi-
budded, producing two distinct lineages: G1 (blue) and G2 (light blue). The gap in Lineage F is due to
sequencing failure of one of the daughter clones. Bottom right, all lineages are plotted together, each
represented by a different line color. (B) The observed distribution (blue bars, combined data) of mutation
counts is plotted against the predicted Poisson distribution based on the average genome-wide mutation rate
(2.6 x 107 mutations/bp/cell division) (orange bars, Poisson Model) and a composite distribution resulting
from two overlapping Poisson distributions with mutation rates of 4 x 10 (contributing 35%) and 4 x 10”7
(contributing 65%) mutations/bp/cell division (green bars, Two-Poisson Model).

doi:10.1371/journal.pgen.1005151.g002
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be explained by a single overall mutation rate. Long used to model random mutagenesis
[27,37], the Poisson function calculates the probability of a defined number of rare events (k)
occurring within a fixed interval of time at a given rate parameter (A). In Eq 1, Py is the proba-
bility of cells fixing k mutations in a single cell division. For our purposes, A is defined as , the
average per-base-pair mutation rate (2.6 x 10”7 mutations/bp/cell division from Table 1), times
G, the size of the sequenced genome in base pairs; e is the base of the natural logarithm.

G ke*(HG)
po= e (1)

The resulting probability for each value k, multiplied by the number of cell divisions scored,
gives the expected number of divisions with k mutations. We separately modeled Poisson dis-
tributions to the data of each lineage to account for differences in the number of base-pairs
sequenced and cell divisions scored (S2A Fig) and then summed the Poisson distributions to-
gether. The resulting “Summed-Poisson model” poorly fit the combined observations from all
lineages due to overdispersion of the data (Fig 2B, S2B Fig). We considered the possibility that
overdispersion could be due to zero-inflation from under-sampling of genomic sites in lineages
with the smallest sequenced genome sizes (Lineages C, D, G1, G2, Table 1). However, we found
no correlation between the number of samples in a lineage with 0 mutations and the size of
the sequenced genome, suggesting that under-sampling is not the source of the overdispersion
(S3 Fig).

We reasoned that overdispersion could result from a mixture of underlying distributions
generated by two or more mutation rates. To test this hypothesis, we first generated a simpli-
fied model of the data that grouped all cell divisions into one set, utilizing the average genome
size (1.02 x 10” bp, Table 1). The Simplified and Summed Poisson distributions were virtually
identical (S2C Fig), suggesting that the data could indeed be modeled as a single set. To com-
pare how well single-distribution and distribution-mixture models fit the data, we used finite
mixture modeling (FMM), which is a computational approach that fits mixtures of parametric
distributions to data [38]. Because the Poisson distribution is described by the single parameter
A (UG in eq 1), the number of parameters in each model is equal to the number of Poisson dis-
tributions underlying the composite probability mass function. Fitted models included one to
five parameters (i.e., mutator states). Because parameter dimensionality increases by one be-
tween each of the five fitted models, a best-fit model was selected by comparison using maxi-
mum-likelihood-ratio tests of nested hypotheses with one degree of freedom for each test. The
best-fit model described the data significantly better than models with fewer parameters, and
not significantly worse than models with more parameters. The best fit model by maximum
likelihood estimation was a Two-Poisson distribution with values for A of 0.402 and 3.897. The
difference between the Poisson and Two-Poisson distributions by the likelihood ratio test was
highly significant (Likelihood Ratio, Chi-Square Test = 40.58, Degrees of Freedom =1, p < 1.9
x 10-10). The difference between the best Two-Poisson and Three-Poisson models was insig-
nificant (Likelihood Ratio, Chi-Square Test = 0.80, Degrees of Freedom = 1, p = 0.37), indicat-
ing that increasing the number of Poisson distributions in the mixture does not improve the fit
to the data. Thus, the best-fit model was a mixture of two Poisson distributions.

To study the relative contribution of these two distributions to the observed mutation count,
we constructed a “Summed Two-Poisson” model that took into account differences between the
lineages (S2 Dataset). We calculated the expected single Poisson distributions of mutation counts
for each lineage assuming a hypo- (0.4 x 10”7 mutations/bp/cell division) or hypermutator state
(4 x 10”7 mutations/bp/cell division). We summed the Poisson distributions from all lineages to
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obtain the expected distribution of mutation counts across the entire experiment for cells with

a hypo- or hypermutator state. We then combined the hypo- and hypermutator Poisson distri-
butions, with each contributing 50% to the final mixture. After comparing this mixture to the
observed distribution of the data, we adjusted the contribution of each mixture component, ulti-
mately finding that a model with 35% hypomutator divisions and 65% hypermutator divisions
provided the best fit (Fig 2B). Thus, on the strength of the above hypothesis testing and model-
ing, we propose pol2-4 msh6A mutator mother cells assume either a hypomutator state or a
hypermutator state as they pass through S-phase, with mutation rates that differ by an order

of magnitude.

In the Two-Poisson model, the bulk of observed mutations would arise in cell divisions with
a hypermutator state. Only 13 of the 237 mutations would arise during hypomutator cell divi-
sions. Close examination of the mutations in error prone cell divisions revealed numerous in-
stances in which pairs or trios of mutations occurred on the same chromosome. To determine
the significance of this pattern, we computationally simulated the experiment 10,000 times, as-
suming random mutagenesis. Each round of the simulation returned a value for the number of
random co-occurrences of 2 or 3 mutations on the same chromosome. Plotting the values from
all 10,000 iterations gave 95% confidence intervals of 18 to 33 observations of 2 or more muta-
tions on the same chromosome in the same cell division and 0 to 6 observations of 3 mutations.
We observed 39 instances of 2 or more mutations and 8 observations of 3 or more mutations
(Fig 3), suggesting that the hypermutator state may be expressed in only a portion of the ge-
nome in a given cell cycle.

To explore the relationship between mutagenesis and replication dynamics, we mapped mu-
tations onto the yeast DNA replication profiles from Raghuraman and colleagues [39] (54 Fig).
These replication profiles, generated using isotopic labeling time-course experiments and high
density microarrays, report the timing (t,c,) of 50% DNA replication within a sliding 10kb win-
dow, quantified every 500 base-pairs across the genome. Local maxima and minima represent
putative locations for origins and termination zones and the line between the two denotes repli-
cons. We found the chromosomal positions of mutation pairs occurring in the same chromo-
some and cell division were not correlated (r = 0.24, p = 0.2, S5A Fig, S3 Dataset). Only five
sets of co-occurring mutations reside in the same replicon (54 Fig, see Chrs. 4, 12, 13, and 16),
with two pairs affecting the same replicon on chromosome 12 (see purple and teal triangles).
The remaining co-occurring mutation pairs were separated by multiple replicons, consistent
with the hypothesis that they arose from independent Pol € complexes.

Intriguingly, co-occurring mutation pairs frequently reside in DNA on the same chromo-
some with similar t,, values (r = 0.47, p = 0.006, 2-tailed, Pearson, S5B Fig, S3 Dataset) [39],
suggesting that the polymerase errors may have been committed at a similar time during S-
phase. The same correlation is not apparent when all pairwise combinations of co-occurring
mutation trios are considered; however, in 6 out of 8 trios, two of the three mutations did occur
in DNA with similar t..,, values, consistent with a temporal relationship. We also examined the
predicted replication timing of mutations occurring on different chromosomes in the same cell
division. As with the mutation trios, no correlation is observed when all pair-wise combina-
tions are considered. These observations suggest that while the hypermutator state may have
periods of increased mutagenesis affecting a fraction of the genome, it may not be
temporally constrained.

Mapping the mutations onto the replication profiles revealed an enrichment of mutations
near origins and termination zones (Fig 4). To examine the overall distribution of mutations
within replicons, we determined the distance of each mutation to the nearest origin and termi-
nation zone [39], and binned mutations by their fractional distance to the origin in 0.1 incre-
ments (Fig 4). More mutations occurred in bins closer to the origin (130) than in bins closer to
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occurrences with 3 mutations; black histogram, co-occurrences with 2 or more mutations on the same
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doi:10.1371/journal.pgen.1005151.g003

the termination zone (107). The disparity would have been even greater were it not for a dra-
matic increase in the number of mutations in the bin closest to the termination zone (Fig 4).
This distribution of mutations significantly deviated from that expected by chance (Chi-Square
Test, p = 0.005), suggesting that mutagenesis in pol2-4 msh6A cells may be influenced by the
dynamics of replication.

Discussion

Our work demonstrates that strong mutator phenotypes can be studied at single cell resolution
through whole genome sequencing of sequential daughter cell clones. This strategy could in
principle be adapted to any cell type amenable to single cell cloning. In yeast this approach is
currently limited to strains with very high mutation rates. Expanding this method to organisms
with much larger genomes, while not currently feasible, would permit the measurement of mu-
tation rates much lower than what we describe here. Fluctuation analyses and mutation accu-
mulation lines will continue to be valuable tools for the study of mutagenesis; however, our
new approach reveals what these classic techniques cannot—whether mutator phenotypes are
constant in every cell division. The pol2-4 msh6A cells we analyzed exhibited a strong mutator
phenotype and mutation spectrum consistent with high levels of unrepaired Pol € errors (Fig
1C, S1A Fig). Since the mutations in pol2-4 msh6A cells depend on the synergy between pol2-4
and msh6A (S1A Fig) they almost certainly derive from Pol € replication errors during leading
strand DNA synthesis. The mutation accumulation observed in individual cell divisions, as
well as our subsequent modeling, indicates that individual pol2-4 msh6A cells can exhibit both
hypo- and hypermutator states (Fig 2B). These mutator states appear to be transient, as some
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mother cells exhibited alternatingly low and high mutation rates in consecutive cell divisions.
The idea of multiple mutator states is supported by the surprising finding that mutations co-
occur on the same chromosome more frequently than expected by chance (Fig 3). The muta-
tion pairs usually reside in different replicons and often in genomic regions with similar repli-
cation timing, suggesting that the hypermutator state may alter the fidelity of distinct
replication complexes copying the same chromosome at the same time (S4 Fig and S5B Fig).
The predicted replication timing of mutations arising on other chromosomes in the same cell
division is not correlated, suggesting that the hypermutator state is not temporally constrained.
Finally, examination of the locations of mutations within predicted replicons reveals an unex-
pected increase in mutation frequency near termination zones (Fig 4). In what follows, we dis-
cuss the hypothesis of multiple mutator states and alternative models, the connection between
replication dynamics and mutagenesis, and the implications of our findings for understanding
the evolution of mutator populations in cancer.

Multiple mutator states and alternative models

Mutagenesis has long been modeled as a Poisson process under the assumption that mutations
occur independently in each cell division with a constant mutation rate parameter [27,37]. We
set out to test the hypothesis that mutation accumulation in pol2-4 msh6A cells results from a
single Poisson process guided by a constant mutation rate. Using finite mixture modeling and
likelihood ratio tests we found that a Two-Poisson model fit the mutation count data signifi-
cantly better than a single Poisson model. Thus, a single mutation rate does not appear to un-
derlie the generation of mutations in pol2-4 msh6A cells. As an alternative to the simple idea of
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two mutator states, we also considered a negative binomial model in which each cell division
adopts a different mutation rate, with the rates being gamma distributed. This scenario pro-
duces a Poisson model. We compared the negative binomial and Two-Poisson models using
Akaike’s Information Criterion (AIC) [40], which distinguishes between classes of models on
the basis of both goodness-of-fit and parsimony. The AIC for the negative binomial model is
368.49, whereas the AIC for the Two-Poisson model is 363.93 (lower is better). The relative
likelihood ratio of the negative binomial model over the Two-Poisson model is 0.102, indicat-
ing that the Two-Poisson model provides a better fit to the data.

In the Two-Poisson model, we have proposed that the distribution of mutation counts is
caused by two underlying mutation rates. However, a second statistical process determines
how many new mutations appear in a mother cell besides mutation rate: namely the segrega-
tion of mutations between mother and daughter cells. It is conceivable that there is a single
underlying mutation rate, but two types of biased segregation patterns. In one segregation pat-
tern, the mother cell would retain the mutations with a high probability. In the other pattern,
the mother would have a low probability of retaining the mutations. By varying the frequency
of the two segregation patterns and the degree of segregation bias, it is possible to produce two
overlapping Poisson distributions identical to the two-state mutator model. While we cannot
formally distinguish between the two models, we find it easier to imagine how the error rates of
mutator polymerases may be modulated than how there would be two distinct unequal segre-
gation patterns of mutations.

The distinct mutator states proposed for pol2-4 msh6A cells could derive from a process
that influences the mutator activity of proofreading-defective Pol €. The modeled per-genome
mutation rate of the hypomutator state (0.4) matches the rates recently described for MMR-
deficient haploid (0.71) and diploid (0.38) yeast mutation accumulation lines [41]. This corre-
spondence suggests that cell divisions with a hypomutator state do not appreciably express the
Pol € proofreading-deficient phenotype. There may be a regulatory switch that influences Pol €
rates of misincorporation or mispair extension, the action of alternative repair mechanisms
that edit Pol € errors, or the extent to which proofreading-deficient Pol € contributes to the
overall replication of the genome.

Our proposal for two distinct mutation rates in mutator cells contrasts previous work with
Escherichia coli, which found that mutation count data in individual mutator cells conforms to
a single Poisson distribution [42]. This work elegantly followed the occurrence of likely muta-
tions by the formation of persistent, fluorescently labeled MMR foci that form when there is a
failure to repair a mismatch. The contrasting results between the two studies could stem from
either technical or biological differences between the two experimental systems. A notable limi-
tation of counting fluorescent foci is the potential for undercounting. Specifically, it may be
difficult to resolve high numbers of foci in cells with a hypermutator state, especially if the
mutations occur in close proximity. In addition, if the hyper-mutator state saturates MMR,
not all mismatches would lead to fluorescent foci. Genetically, we relied on tandem deficiencies
in MMR and polymerase proofreading to raise mutation rates to an appreciable level, whereas
the work in bacteria used strains deficient in either MMR (mutH) or proofreading. Of course,
intrinsic differences between prokaryotic and eukaryotic DNA replication and repair could
also explain the contrasting data sets. In particular, prokaryotes utilize a single replicative
polymerase (Pol III) for both leading and lagging strand bulk DNA synthesis whereas eukary-
otes divide the labor between Pol & and Pol €. As discussed below, Pol § may replace Pol € at
some point during leading strand replication, providing a potential avenue by which the contri-
bution of proofreading-deficient Pol € to genome replication and mutagenesis may
be modulated.
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Replication dynamics and mutagenesis

An important clue to the mutator volatility of pol2-4 msh6A cells lies in the observation that
pairs of mutations occurred on the same chromosome more frequently than expected by
chance (Fig 3). The correlation in predicted replication timing of co-occurring mutation pairs
suggests that the hypermutator state may be linked to replication dynamics of individual chro-
mosomes. Chromosomes occupy distinct regions within the nucleus [43] and evidence exists
for replication factories consisting of multiple active replisomes acting on distinct origins with
similar replication timing [44]. Thus, changes in replication fidelity could be factory-specific,
restricting the mutator phenotype to limited regions of the genome in a given cell cycle. If the
phenomenon that underlies focal expression of the hypermutator state were to extend to the
entire genome, much higher genome-wide mutation rates may result. Our ability to detect
much higher genome-wide mutation rates in the current study is limited by the likelihood that
extreme mutator states would result in haploid lethality. Future studies with diploid cells,
which are buffered against recessive deleterious mutation accumulation, will be required to ex-
plore the full extent of mutator volatility.

We investigated the link between replication dynamics and mutagenesis by mapping muta-
tions onto published replication profiles [39]. This approach has some limitations worth not-
ing. Replication profiles average the replication timing of large numbers of cells, yet replication
initiation events are probabilistic phenomena that vary between cells [45]. Variation in origin
firing likely leads to variation in the termination of DNA replication as most termination oc-
curs independently of sequence context within zones located between adjacent firing origins
[46]. Since no two cells follow the same temporal order of origin firing, there may be substan-
tial variation in replicons. Someday it may be possible to monitor replication fidelity and dy-
namics simultaneously. Until then, we feel the best approach is to map mutations onto
replicons that incorporate the probability of origin firing, recognizing that in some cases, these
“probabilistic” replicons may differ from the actual replicons in which the mutations occurred.
In our study, we normalized the positions of mutations within the probabilistic replicons using
fractional distances (Fig 4). In cases where the probabilistic and actual replicons differ, the frac-
tional distances would be inaccurate and likely diminish any signal for the enrichment of muta-
tions near termination zones. In our view, this makes evidence for enrichment even
more compelling.

Ample evidence supports the hypothesis that Pol € performs leading strand DNA replica-
tion near origins of replication [5,47]. Whether Pol € remains the leading strand polymerase
through the end of each replicon continues to be debated [48]. Replacement of Pol € with Pol §
may be important for joining the leading strand with the downstream Okazaki fragment [49].
We found more mutations in the first half of the replicon than in the second half. This uneven
distribution is consistent with a model in which proofreading-deficient Pol € is replaced by Pol
& with increasing probability as replication proceeds [48]. If replacement of Pol € with Pol 5
after initiation is subject to regulation, the hypomutator state could be explained by hyper-
activation of a mechanism that replaces proofreading-deficient Pol & with Pol 8. We also
found an unexpected concentration of mutations near the termination zones, suggesting that
proofreading-deficient Pol € replisomes that do make it to the termination zone may become
especially error prone.

The relationship between mutagenesis and replication dynamics has also been explored in a
recent mutation accumulation study that utilized MMR-deficient strains expressing either WT
Pol € or a mutant variant with the M644G substitution in the polymerase active site [50]. In
this case, replicons were defined as the distance between origins and the inter-origin midpoints,
which serve as proxies for termination zones [50]. Mutation frequency was constant across the
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defined replicons for Pol e-M644G-expressing MMR-deficient cells, but increased significantly
near the inter-origin midpoints in WT Pol e MMR-deficient controls.

The nature of each Pol € variant may account for these distinct patterns of mutagenesis. Pol
€-M644G retains proofreading activity, but elevates the rates of both misinsertion and mispair
extension [47]. Whereas polymerase pausing at mispaired primer termini may trigger the re-
placement of proofreading-deficient Pol € with Pol 3, the propensity of Pol e-M644G to extend
mispairs may limit this exchange, ensuring mutagenesis extends to the end of the replicon. The
enrichment of mutations near termination zones in MMR-deficient cells with either WT or
proofreading-deficient Pol € suggests that replication fork convergence is an error-prone pro-
cess, monitored by MMR. The absence of a signal in the Pol e-M644G data may indicate Pol &-
M644G does not become any more error-prone near termination zones. However, a subtle but
significant enrichment of mutations near termination zones may lie hidden within the Pol e-
M644G data—probabilistic differences in the firing of adjacent origins mean that termination
zones are not always at the inter-origin midpoint. Consistent with this, when we analyze our
data using inter-origin midpoints rather than the defined termination zones, we find only a
muted enrichment of mutations near the midpoint (S6 Fig).

Implications of mutator volatility

The ability of mutator cells to assume distinct mutagenic states may have important implica-
tions for understanding the remarkable mutation accumulation observed in tumors with Pol &
proofreading defects [7-11,51]. POLE tumors are often microsatellite-stable, suggesting that
the high mutation burden of POLE cells does not simply result from synergy between proof-
reading and MMR defects [7,51] The POLE cancer alleles are usually heterozygous in the
tumor clones [51]. Modeling of the most common allele (POLE-P286R) in diploid yeast
(pol2-P301R) reveals a strong semi-dominant mutator phenotype [52] that contrasts the weak
semi-dominant mutator phenotype of pol2-4 (pol2-D290A, E292A) [52]. It is conceivable that
if the POLE cancer alleles confer volatile mutator phenotypes, the spread between the highest
and lowest mutator states may be much larger than we observed with pol2-4. POLE cells that
pass through a hypermutator state would acquire adaptive mutations more readily. Over multi-
ple rounds of selection during tumor evolution this would lead to an extremely rapid accumu-
lation of mutations within the dominant tumor clone. The average mutation frequency in the
exomes of POLE tumors (235 x 10 mutations/bp) [11] appear to be near the lethal limit for
diploids [15,53]. Thus, once a POLE tumor clone escapes the restraints on growth, there may
be strong selection pressure to limit mutation accumulation, giving an advantage to cells in a
hypo-mutator state. Single cell resolution replication studies of human POLE mutant cells are
needed to test the hypothesis of mutator volatility in cancer. Understanding the source of vola-
tility may lead to treatments that directly target the mutator phenotype for cancer therapy.

Materials and Methods
Media and growth conditions

Yeast were grown at 30°C using YPD, synthetic complete (SC) media or SC “drop-out” media
deficient in defined amino acids to select for prototrophic genetic markers [54]. Premade nutri-
ent supplements for SC and SC lacking uracil (SC-Ura) and leucine (SC-Leu) were purchased
from Bufferad. Other drop-out nutrient supplements were made as described [54] from indi-
vidual components purchased from Sigma-Aldrich or Fisher Scientific. Canavanine-resistant
(Can") mutants for mutation rate assays were selected on SC plates lacking arginine that con-
tained 60 pg/ml canavanine (Sigma-Aldrich).
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Strain construction

To construct AH2801, the POL2/URA3::pol2-4 MSH6/msh6A::LEU2 diploid used in these ex-
periments, we first deleted one of the two copies of MSH6 in AH0401 [53] to obtain AH0604.
We transformed [55] AH0401 with a LEU2 DNA fragment amplified from pRS415 [56] with
the MSH6GU (TTTAATTGGAGCAACTAGTTAATTTTGACAAAGCCAATTTGAACTC
CAAAAGATTGTACTGAG AGTGCAC) and MSH6GD (ACTTTAAAAAAAATAAG
TAAAAATCTTACATACATCGTAAATGAA AATACCTGTGCGGTATTTCACACCG)
primers and Phusion Polymerase (New England Biolabs) [98°C for 1 minute followed by 30 cy-
cles of (98°C, 10 sec.; 54°C, 30 sec.; 72°C, 90 sec.)]. We then integrated the pol2-4 allele into
AHO0604 using a URA3::pol2-4 chimeric DNA fragment. To generate the URA3::pol2-4 chimeric
DNA fragment we first amplified three overlapping DNA fragments. Using the same amplifica-
tion conditions as above, we amplified URA3 from pRS416-POL2 [21] with the YIF1KIrp
(AGTAAATAGAAAATTTATGACGTAGGAATAAAAGTATATAAGTATTTAACAAA
TTGGAACAA CACTCAACCCTATCTCGGTCTA) and YIF1KIfp (GAAGAGATCAAAGA
GAGGATTTAAT TTCATGCGCATTATTATTATCTACGGTCCAGAGCAGATTGTACT
GAGAGTGCACCA) primers, the POL2 promoter from genomic DNA with the pol2-6376
(GACCGTAGATAATAATAATGCGCATG) and pol2-S3 (CTCAGGAGTTTCCTGGC
CTCQ) primers, and the pol2-4 fragment from pRS415pol2-4 [21] with the pol2-seqlF
(GGTGGGAGCT TCAAGTCG) and pol2-8752rp (CTCCGGTTTCGGTGTATA CTCAA
AGTC) primers. The three fragments were combined in equal-molar ratios and subjected to
chimeric PCR [98°C for 1 minute followed by 15 cycles of (98°C, 10 sec.; 72°C, 30 sec.; 58°C, 20
sec.; 72°C, 3 min.)] using YIFKIrp and pol2-8752rp. The entire POL2 sequence was confirmed
by Sanger and Illumina whole genome sequencing.

Sporulation of AH2801

To isolate haploid mutator mother cells, we first sporulated AH2801 by diluting an overnight
culture of the strain 1:50 in YPD and growing the cells until they reached a concentration of
1-2 x 107 cells/ml. The cells were recovered by centrifugation, washed with sterile water, re-
suspended in sporulation media (1% potassium acetate, 0.1% yeast extract (Difco), 0.05% Dex-
trose) at a concentration of 1.5-3 x 10’ cell/ml, and then grown for four days at 30°C with shak-
ing. For tetrad dissection, 50 pl of sporulated culture were spun down and re-suspended in 1 M
sorbitol with 5 pls of Zymolyase 20T (25ug/ul) (MP Biomedicals) and then incubated for 10
minutes at 30°C to digest the asci walls. Ice-cold sterile water (0.8 ml) was added to suspension
and 5 pls were pipetted onto agar plates.

Fluctuation analysis

For Can" mutation rate measurements, 40 AH2801 tetrads were dissected on SC media.
After ~2.5 days of growth, individual colonies (2-3 x 10° cells) were scrapped from the plates
and re-suspended in 100 pl of sterile water. 90ul was plated on canavanine-selection plates.
The remaining suspension was used for 10-fold serial dilutions, which were plated on SC to
determine the total number of cells in each colony (Nt) as well as on canavanine selection
plates to accurately count the number of Can" mutants in pol2-4 msh6A colonies. Since we
were blind to the genotypes of the spore clones, at the same time we plated cells on SC-Leu
to identify those that carried the msh6A::LEU2 allele and on SC-Ura to identify cells carrying
URA3:pol2-4. The AH0401 strain from which AH2801 is derived was designed to facilitate
mutation rate measurements in diploids and is heterozygous at the CAN1I locus (CANI::
natMX/canlA::HIS3) [53]. Thus, we also assessed the ability of AH2801 spore clones to
grow on SC-His. Clones unable to grow on SC-His carried the CANI::natMX allele and were
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sensitive to canavanine. Mutation counts from these clones were used for mutation rate calcu-
lations. After 3 days of growth, colonies on SC and canavanine selection plates were counted
and the data grouped according to genotype. Each spore clone was treated as an independent
replica culture for fluctuation analyses [27]. Mutation rates were calculated from the mutant
counts in each replica culture by estimating the likely number of mutational events (m) by
maximum likelihood using newtonLDplating in Salvador 2.3 with Mathematica 8.0 and then
divided by the average number of cell divisions inferred from the Nt counts [33,34,57]. Confi-
dence intervals (95%) were calculated with CILDplating in Salvador 2.3.

We estimated the per-base-pair mutation rate from the Can" mutation rate of pol2-4 msh6A
cells using the approach of Drake [35,58,59] as previously described [20].

Isolation of lineages

In all lineage experiments, cells were grown during the day and stored overnight at 4°C as de-
scribed [60]. During all incubation steps the plates were wrapped in parafilm. In the first exper-
iments (Lineages A, C, F, G1, G2, and H), tetrads were dissected on non-selective SC media in
order to monitor fixation of mutations in WT and msh6A control cells as well as pol2-4 msh6A
mother cells. One tetrad was dissected per plate and two spores were chosen at random for
lineage analysis. Genotyping assays for pol2-4 and msh6A alleles were performed as described
[21] and verified during whole genome sequencing analysis. During the lineage isolation,
mother cells were incubated at 30°C and examined every two hours using a Zeiss Axioskop 40
Tetrad Dissection microscope fitted with a 50pum fiber optic needle. After each cell division, the
mother and daughter cells were manually separated using the micromanipulator as previously
described [54]. The daughter cells, distinguished by a smaller diameter, were moved to a de-
fined coordinate on the agar plate. In later experiments (Lineages B, D, and E), we focused sole-
ly on double mutant spores by dissecting tetrads on media lacking leucine (to select for msh6A::
LEU?2) and uracil (to select for URA3::pol2-4). Several tetrads were dissected per plate and a sin-
gle double mutant spore per plate was selected for analysis by its ability to divide in the absence
of leucine and uracil. As before, all daughter cells were moved to a defined coordinate on the
agar surface. In addition, the first granddaughter cell born to each daughter cell was also
moved to a defined coordinate to serve as a back-up in case the daughter cell died. Dissection
continued until double mutant mother cells ceased dividing, whereupon all daughter and
granddaughter clones were allowed to form colonies.

Genome sequencing, data processing and normalization

For sequencing, the entire daughter colony was used to inoculate overnight YPD cultures.
Glycerol stocks of each daughter culture were archived and genomic DNA was purified with a
ZR Fungal/bacterial purification kit (Zymo Research). The purified DNA was simultaneously
fragmented and ligated to Illumina DNA adapters using the Nextera V2 Kit (Illumina), post-
indexed by PCR (primer sequences available upon request), and sequenced using 101 bp,
paired-end reads on an Illumina 2500 platform. Once all members of a lineage had been se-
quenced, we used the Burrows-Wheeler Aligner (v0.6.2) [61] to align the reads against a copy
of the S288C S. cerevisiae genome (Assembly R64-1-1) in which low complexity and highly re-
petitive sequences have been removed (<0.5% of the genome) with RepeatMasker. After the
initial alignment, unmapped and ambiguously mapped reads were filtered out. PCR duplicates
were evaluated using the MarkDuplicates option in the Picard suite of programs (http://picard.
sourceforge.net). To further reduce false variant calls, the Genome Analysis Tool Kit (GATK)
suite of programs was used for local realignment and base quality score recalibration [62]. We
used VarScan2 [63] for variant calling with a minimum read depth of 15, a minimum variant
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frequency of 0.8, and a quality score of 15. We then filtered the resulting variants to remove
strain-specific single nucleotide polymorphisms segregating in our genetic background using a
database of putative SNPs segregating in the BY4743 strain background that we previously com-
piled [53]. We normalized coverage to ensure that we only scored mutations in sequences shared
by all members of a lineage. Finally, to determine maternal and daughter specific variants, we
compared the mutations found in the last daughter to those found in all preceding daughters.
Variants found in the last daughter and shared by one or more of the preceding daughters were
designated maternally fixed mutations (See S1 Dataset). Those not found in the maternal lineage
were designated daughter-specific mutations and were not evaluated further for this study.
Called mutations were then visually confirmed using the Integrated Genome Browser.

Poisson distributions and finite mixture modeling

Models of expected mutation count data from different Poisson distributions were calculated
in Excel. We also used the finite mixture modeling (FMM) procedure of the SAS system

(v. 9.4) to compute and compare single-distribution and distribution-mixture models of the
mutation count data. A Poisson response distribution and log link function were specified, and
parameter estimation was by maximum likelihood. To investigate whether the data could be
described better by a negative binomial distribution than by a mixture of two Poisson distribu-
tions, we compared the fit of a single negative binomial distribution against the fit of the two-
Poisson mixture. Because this comparison cannot be treated as a nested set of hypotheses, we
used information theory to characterize the fit, choosing Akaike’s Information Criterion (AIC)
for assessment. We again used the FMM procedure of the SAS system (v. 9.4), specifying a
Poisson or negative binomial response distribution, and a log link function, for model fitting.
Quantification of relative likelihood was after Burnham and Anderson (2002).

Simulation of the frequency of multiple mutations on the same
chromosome

We used 10,000 iterations of a simulation to determine the likelihood that multiple mutations
would occur on the same chromosome. To simulate the random distribution of 237 mutations
over 87 cell divisions, we generated a sequence file of 87 yeast genomes—each chromosome
with a unique identifier. In each iteration of the simulation we randomly selected 237 bases
within these 87 yeast genomes and then counted the frequency at which the same chromosome
was “mutated” two or three times. From the resulting histogram, we determined the 95%
confidence intervals.

Mutations and replication timing

The locations of all mutations were mapped onto the replication profiles from Raghuraman
etal. [39]. The positions of all putative replication origins and termination zones in the replica-
tion profiles were identified by noting chromosomal positions where t,.,, values were at a local
maxima or minima. Segments between adjacent maxima and minima were used to define prob-
abilistic replicons to which all mutations were then assigned. The fractional distance of a muta-
tion between any origin/termination pair was calculated by dividing the distance of a mutation
to the closest origin by the total distance between the origin and termination zone. The resulting
fractional distances were then grouped into bins corresponding to fractional distances of 0.1. To
test the significance of the observed distribution, we assumed that random mutagenesis would
produce bins of equal size (23.7 mutations/bin). We then compared the observed and expected
distributions using a Chi-Squared test. We also performed a similar analysis using a different
way of defining replicons outlined by Lujan et al. [50]. In this approach, a replicon is defined as
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the DNA segment between a confirmed origin (see OriDB, [64]) and halfway to the adjacent
confirmed origin (inter-origin midpoint). After assigning mutations to these DNA segments,
we then determined the fractional distance of each mutation to the closest origin by dividing the
distance of the mutation to the origin by the total distance between the origin and the inter-
origin mid-point. As above, we binned mutations by their fractional distance to the origin and
determined the significance of the distribution using a Chi-Squared test.

Supporting Information

$1 Table. Summary of mutation accumulation in maternal lineages.
(DOCX)

$2 Table. Mutation spectra from pol2-4 msh6A cells.
(DOCX)

$3 Table. Mutation pairs that co-occur in the same chromosome and cell division.
(DOCX)

S1 Fig. Can" mutation rates, sample lineage plate, and chromosomal mutation rates. (A)
Mutation rates of haploid spore clones determined by fluctuation analysis of canavanine resis-
tance (Can") mutants. 2-4, pol2-4; m6, msh6A4; error bars, 95% confidence intervals. (B) Repre-
sentative pedigrees for single cell mutation rates. Two spores from the same tetrad were selected
for each lineage. One spore was pol2-4 msh6A and divided 16 times (yellow d12, d13, and d16 in-
dicate locations of daughters). The other spore was POL2 MSH6 and divided 24 times (orange
d12, d13, and d24 indicate locations of daughters). (C) Mutation rate of all 16 chromosomes de-
termined by dividing the number of mutations for each chromosome by the chromosome size.
(EPS)

S2 Fig. Poisson models. (A) Observed and modeled Poisson distributions for each lineage.
The observed distribution of k mutation counts (blue bars, Data) for each lineage is plotted
alongside the predicted distribution of k mutation counts determined with a single Poisson
Model (red bars, Poisson Model) calculated using the average mutation rate of 2.6 x 10”7 muta-
tions/bp/cell division, the size of the sequenced genome of each lineage, and the number of cell
divisions scored in each lineage (see S1 Dataset). (B) Combined lineage data and model. The
observed and predicted distributions of k mutation counts from each lineage were summed to
produce combined distributions of the data (Combined Data) and predicted mutation counts
(Summed Poisson Model). (C) The Summed Poisson Model was compared to a less complicat-
ed Poisson Model (Simplified Poisson model), which utilized the average mutation rate, the av-
erage genome size (1.02 x 107 base-pairs), and the total number of scorable cell divisions across
all lineages (85, note that 2 cell divisions in lineage F were not scorable).

(EPS)

S$3 Fig. Correlation test for zero-inflation. Data that are undercounted have too many obser-
vations with zero events (zero-inflation). If undercounting was a problem in our data, smaller
lineages would have a disproportionately high number of cell divisions with 0 mutations. The
plot shows the number of divisions with zero mutations in each lineage versus the size of the
sequenced genome. No correlation is observed.

(EPS)

$4 Fig. Locations of mutations within the replication profiles of all 16 yeast chromosomes.
Chromosome number is given to the right of each trace. peaks, origins of replication; valleys,
termination zones where replication forks from adjacent origins collide; darker green triangles,
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mutations that occurred by themselves on the given chromosome in distinct cell divisions;
light green triangles and all other colors, mutation pairs or trios that co-occurred in the same
cell division; red circles, centromeres.

(EPS)

S5 Fig. Correlation tests related to the co-occurrence of mutations on the same chromo-
some in the same cell division. All Pearson correlation values (r) were calculated in Microsoft
Excel assuming a linear correlation. (A) Chromosomal Position. The chromosomal locations of
each mutation in a pair (relative to the centromere) serve as X and Y coordinates of each co-oc-
currence. (B) Replication timing. The predicted replication timing values (t.ep) (see Raghuraman
etal. [39]) of each mutation in a pair serve as the X and Y coordinates of each co-occurrence.
(EPS)

S6 Fig. Distribution of mutations relative to origins and the inter-origin midpoints. Top.
Histogram of the fractional distances of mutations to the nearest origin. Bottom. Schematic
shows how fractional distances are determined. Replicons were defined as the distance between
an origin and halfway to the adjacent origin (inter-origin midpoint).

(EPS)

S1 Dataset. Cell lineage data. The data for each lineage are found in separate tabs. The variant
calls for each cell division are tabulated in the upper table. The genomic coordinates for each
mutation are reported as the NCBI reference number and position of the mutated base, which
are separated by a colon. New variants in each daughter clone are highlighted in orange. Muta-
tions co-occurring in the same chromosome and cell division are outlined with a black box.
(XLSX)

$2 Dataset. Poisson distribution calculations. We show the tables used to model the experi-
mental data to either a single- or double-Poisson models. The top table summarizes the results
found in Lineages B-H in S1 Dataset. The second table reports the predicted number of cell di-
visions with k number of mutations using a single-Poisson as a model. Three different muta-
tion rates are tabulated (0.4x107, 2.6x107, and 4x107). The third set of tables compares the
actual data to the summed Poisson models from each lineage (See S1 Dataset) and simplified
Poisson models. These data were used in the production of Fig 2, and S2 Fig’

(XLSX)

S3 Dataset. Fractional distances of mutations to origins and termination zones. We show
both the physical and fractional distances of all reported mutations to the closest origins and
termination zones, as defined by Raghuraman et al [39]. The fractional distance was calculated
as described in the Materials and Methods. Data are sorted by fractional distance from the ori-
gin to the nearest termination zone and grouped into bins corresponding to fractional dis-
tances of 0.1. The counts from each bin were used in making Fig 4.

(XLSX)
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