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Abstract

We have shown in 2012 the existence of telocytes (TCs) in human dermis. TCs were described by transmission electron microscopy (TEM) as
interstitial cells located in non-epithelial spaces (stroma) of many organs (see www.telocytes.com). TCs have very long prolongations (tens to
hundreds micrometers) named Telopodes (Tps). These Tps have a special conformation with dilated portions named podoms (containing mito-
chondria, endoplasmic reticulum and caveolae) and very thin segments (below resolving power of light microscopy), called podomers. To show
the real 3D architecture of TC network, we used the most advanced available electron microscope technology: focused ion beam scanning elec-
tron microscopy (FIB-SEM) tomography. Generally, 3D reconstruction of dermal TCs by FIB-SEM tomography revealed the existence of Tps with
various conformations: (i) long, flattened irregular veils (ribbon-like segments) with knobs, corresponding to podoms, and (ii) tubular structures
(podomers) with uneven calibre because of irregular dilations (knobs) – the podoms. FIB-SEM tomography also showed numerous extracellular
vesicles (diameter 438.6 � 149.1 nm, n = 30) released by a human dermal TC. Our data might be useful for understanding the role(s) of TCs
in intercellular signalling and communication, as well as for comprehension of pathologies like scleroderma, multiple sclerosis, psoriasis, etc.
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Introduction

Telocytes (TCs) were described 5 years ago [1] as a new cell type
in the interstitial space of many organs [2–23] as well as in human
skin [24] (see www.telocytes.com). Their presence in human dermis
was confirmed [18, 25–27] and their importance for pathology was
revealed [28–35]. The main differential diagnosis of TCs in human
papillary dermis should be made with fibroblasts. Indeed, numerous
data suggested there are a lot of differences between TCs and fibro-
blasts: (i) the aspect of TCs and fibroblasts is not the same in tissue
culture [36, 37]; (ii) transmission electron microscopy (TEM) shows
completely different ultrastructure, e.g. [5, 18, 20, 38]; (iii) microR-
NA imprint is dissimilar, e.g. [39]; (iv) gene profile are not the same
[40–42] and (v) proteomics showed striking differences [43].

Focused ion beam scanning electron microscopy (FIB-SEM) is
now the election technique for three-dimensional (3D) visualization
of biological structures (cells) at nanoscale resolution [44–53]. FIB-
SEM tomography allows 3D imaging at the subcellular level and is
considered a breakthrough for ultrastructural volume reconstruction.

Here, we present FIB-SEM tomography of human papillary dermis
TCs showing their complex 3D architecture, as well as the budding
and shedding of extracellular vesicles. FIB-SEM tomography does
not contradict TEM, but provides additional important details.

Material and methods

Sample preparation

Biopsies of human skin were obtained from three patients (informed

written consent). Normal skin samples were obtained from a re-excision
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Fig. 1 (A and B) Telocytes in human papillary dermis. (A) Transmission electron microscopy shows a telocyte with 3 telopodes edging a Merkel cell.
(B) FIB-SEM backscattered electron imaging mode shows a telocyte with two telopodes in dermis.
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Fig. 2 (A–C) FIB-SEM backscattered electron images. Three non-consecutive serial images obtained at ~1.2 lm z-interval show the narrow emer-
gence (arrow) of a telopode from the cellular body of a telocyte.
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procedure after removing a local melanoma. The second excisions were
performed according to the Breslow index (tumoural depth), 14 days

after primary excision. The samples of normal skin were taken at 1-cm

distance from primary suture [24]. Experiments were performed accord-

ing to the Helsinki guidelines, in full compliance with the Bioethics
Committee of the ‘Victor Babes�’ National Institute of Pathology,

Bucharest regulations. The small samples of skin were processed as

described previously [12]. Briefly, the 1-mm-cube fragments were fixed
by immersion in 4% glutaraldehyde, and post-fixed in 1% OsO4 with

1.5% K4Fe(CN)6 (potassium ferrocyanide – reduced osmium) to

increase the membranes contrast. Subsequently, the samples were

dehydrated through increasing graded ethanol series and embedded in
epoxy resin (Agar 100 from Agar Scientific, Essex, UK) at 60°C for

48 hrs.

Fig. 3 FIB-SEM tomography of a 2270 lm3 volume from human papillary dermis encompasses a segment from a telocyte reconstructed in blue.

Three dimensional reconstruction of the stack containing the telocyte shows a ‘wing-like’ telopode (Tp1), a telopode (Tp2) with typical appearance
(details in Fig. 4) and a telopode (Tp3) with anfractuous contour. The arrow indicates the narrow emergence of Tp1 suggested by serial imaging in

Figure 2. A portion of the cell body (TC) is located in the centre. At least 10 extracellular vesicles appear reconstructed in purple.
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Fig. 4 (A–C) FIB-SEM tomography. Three dimensional reconstruction details of telopodes from Figure 3, from different viewing angles. (A) From this

angle, a fourth telopode (Tp4) can be seen. (B) Tp2 from Figure 3 has enlarged segments (podoms) alternating with slender segments. (C) Telopode
(Tp3 from Fig. 3) with anfractuous contour. Extracellular vesicles appear in purple.
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FIB/SEM image stack acquisition

Focused ion beam milling and SEM imaging were carried out with a ZE-

ISS Auriga Crossbeam system (from Carl Zeiss Microscopy, M€unchen,

Germany). FIB milling was performed with 600 pA to 20 nA for the

given samples. SEM-Imaging current was 220 pA. To achieve the best
signal contrast, the mixed Inlens and energy-selective backscattered

detector signals were used. FIB milling steps was 10 nm/slice and each

5th slice was imaged. Accordingly, each image represents 50 nm of the

stack, at 9k9 magnification. Image pixel size was 10.27 nm.

A B C

D E F

Fig. 5 FIB-SEM of extracellular vesicles dynamics around a telocyte. Scale bar is 0.5 lm.

A B C D

Fig. 6 FIB-SEM of a human dermal telocyte presenting an extracellular vesicle (purple) budding from a podom. Note the empty appearance of the

vesicle content. Scale bar is 0.5 lm.
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Image processing and analysis

Image stack was analyzed and processed using Adobe Photoshop CS5
Extended (Adobe Systems Incorporated, San Jose, CA, USA) for noise

detection and removal and luminance level adjustment. Output images

were then loaded into Amira 5.0.1 (Visage Imaging, Berlin, Germany)

software package. Structures of interest were manually segmented and
reconstructed. Stacks of images were also loaded in VirtualDub v1.10.4

(Lee A.) software as sequence of numbered JPEG files and converted to

video file. Adobe Photoshop CS5 Extended was also used for vesicles

2D morphometry. Measurements were then statistically analyzed using
Microsoft Excel 2013 Analysis ToolPak module.

Results and discussion

The specific morphological features of human dermal TCs are the
telopodes, as demonstrated previously using TEM [24]. Figure 1A
depicts a TC from the papillary dermis situated just beneath the base-
ment membrane of epidermis in close proximity with a Merkel cell.
This 2D image reveals the ‘classic’ morphology of a TC: a stellate
body and very thin and narrow TPs, some which appear discontinu-
ous because of the limitations of a single plane of section. For this
reason, FIB-SEM technology (ZEISS Auriga Crossbeam system) was
used, which allowed imaging of several hundred serial sections and
accurate reconstruction of the TC 3D volume. Automated serial sec-
tioning and imaging of human dermis provided a total of 350 micro-
graphs. Sixty-six images were serially removed from the block face.
A stack of 275 serial images (Fig. 2) were assembled to obtain a 3D
reconstruction, 360° orthogonal rotation and a 3D digitally- coloured
volume rendering of the TC in dermis. FIB-SEM images from Figure 2
revealed the presence of a typical TC in human dermis. The same cell
was clearly visible from section 67–342 allowing the reconstruction
of 2270 lm3 (Fig. 3). The TC appearance shows a cell with different
extensions: a ‘ribbon-like’ telopode, a telopode with classical mor-
phology and a telopode with anfractuous shape (details in Fig. 4).

The surface-to-volume ratio is increased several folds in flat Tps
compared to tubular Tps. This means, inter alia, a larger surface for
receiving signals from extracellular space or vice versa. Interestingly, the
dynamics of telopodes in cell culture depend on the extracellular type of
matrix proteins. The stronger adherence and spreading were noted for
TC seeded on fibronectin, while the lowest were on laminin [54]. More-
over, in cell cultures, low-level laser stimulation (using neodymium-
doped yttrium aluminium garnet laser) determines a maximum growth
rate of Tp lateral extensions of 10.3 � 1.0 lm/min. [55]. This raises the
possibility of using low-level laser stimulation for therapeutic purposes.

The 3D reconstruction by FIB-SEM tomography of human dermal
TCs allowed also the identification of extracellular vesicles (Figs. 3–6,
Video S1), as shown previously for cardiac TCs [56].

In fact, a rough estimation of the number of extracellular vesi-
cles (n = 30 for one cell) showed a vesicle diameter of 438.6 �
149.1 nm. Considering the international standards e.g. (i) dimen-
sions over 100 nm, (ii) origin by budding and shedding of plasma
membrane and (iii) the monovesicular ultrastructure) [57, 58], we
think that the extracellular vesicles we found by FIB-SEM are
microvesicles or ectovesicles or shed vesicles, rather than
exosomes.

As previously shown, TCs were found in human dermis having
a strategic position: around blood vessels, in the perifollicular
sheath, outside the glassy membrane and surrounding sebaceous
glands, arrector pili muscles and both the secretory and excretory
segments of eccrine sweat glands [24]. Moreover, TCs frequently
co-exist in close contacts with stem cells, for example, in skin
dermis [24], lungs [2], skeletal muscle [59], meninges and cho-
roid plexus [4] or liver [7]. Therefore, we consider that TCs
together stem cells form a structural and functional unit, a ‘tan-
dem’ [18]. This opinion is supported by the fact that TCs transfer
extracellular vesicles loaded with microRNAs to stem cells [21],
as well as the fact that extracellular vesicles have potential roles
in regenerative medicine [60].

Last but not least, very recent data suggest that TCs through their
Tps could be regarded as a primitive nervous system [61] or being
involved in morphogenetic bioelectrical signalling [62, 63]. Telocytes
are expected to contribute to age-intervention protocols [64].
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