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Abstract

Biphenyl and polychlorinated biphenyls (PCBs) are typical environmental pollutants. Howev-
er, these pollutants are hard to be totally mineralized by environmental microorganisms. One
reason for this is the accumulation of dead-end intermediates during biphenyl and PCBs bio-
degradation, especially benzoate and chlorobenzoates (CBAs). Until now, only a few micro-
organisms have been reported to have the ability to completely mineralize biphenyl and
PCBs. In this research, a novel bacterium HC3, which could degrade biphenyl and PCBs
without dead-end intermediates accumulation, was isolated from PCBs-contaminated soil
and identified as Sphingobium fuliginis. Benzoate and 3-chlorobenzoate (3-CBA) trans-
formed from biphenyl and 3-chlorobiphenyl (3-CB) could be rapidly degraded by HC3. This
strain has strong degradation ability of biphenyl, lower chlorinated (mono-, di- and tri-) PCBs
as well as mono-CBAs, and the biphenyl/PCBs catabolic genes of HC3 are cloned on its
plasmid. It could degrade 80.7% of 100 mg L~ biphenyl within 24 h and its biphenyl degra-
dation ability could be enhanced by adding readily available carbon sources such as tryptone
and yeast extract. As far as we know, HC3 is the first reported that can degrade biphenyl and
3-CB without accumulation of benzoate and 3-CBA in the genus Sphingobium, which indi-
cates the bacterium has the potential to totally mineralize biphenyl/PCBs and might be a
good candidate for restoring biphenyl/PCBs-polluted environments.
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Introduction

Biphenyl is a compound with two benzene rings [1]. It exists in natural gas, coal tar and crude
oil. As an important industrial chemical, it has multiple applications, such as in the synthesis of
plastics and crop protection products, in heat transfer fluids and as a parent compound of poly-
chlorinated biphenyls (PCBs) [2,3]. It has been reported that biphenyl is a possible mutagen,
and exposure to the compound can lead to toxic effects on nervous systems, can cause kidney
disorders and can reduce hemoglobin levels [4,5]. The chlorinated derivatives of biphenyl,
PCBs, are more toxic and cause serious effects on the nervous, immune and endocrine systems
[6-9], in addition to causing cancer in animals [10]. Tanabe estimated that 0.37 million tons of
PCBs had entered the environment [11]. Although the use of biphenyl and PCBs have been
greatly reduced recently, they still remain in the environment because of their low bioavailabili-
ty and stable structure. Thus, removal of these organic pollutants from contaminated environ-
ments are urgently needed to mitigate their damage to ecosystems.

Microorganisms appear to be more suitable for restoring contaminated environments be-
cause they are environmentally friendly and cost-effective [12]. A number of biphenyl-degrading
bacteria, such as Sphingobium yanoikuyae B1, Achromobacter sp. BP3, Dyella ginsengisoli LA-4,
Rhodococcus sp. R04 and so on, have been isolated from many environmental samples and deep-
ly studied [13-18]. Even though these strains are able to degrade biphenyl, the degradation
efficiency can still be limited by the strong hydrophobicity, low biodegradability and high bio-
toxicity of biphenyl [5,19]. Thus, improving biphenyl degradation by adding readily available
carbon sources to enhance the growth rates and metabolic activity of these organisms is feasible.
However, there are currently only a few studies that have explored this topic.

It is universally accepted that various PCB congeners can be cometabolized by biphenyl-de-
grading bacteria through the biphenyl catabolic pathway [17,20]. In fact, a complete biphenyl
catabolic pathway includes two parts: biphenyl upper pathway (transformation of biphenyl/
PCBs into benzoate/ chlorobenzoates and aliphatic acids) and biphenyl lower pathway (further
mineralization of benzoate/ chlorobenzoates and aliphatic acid) [21]. Many biphenyl-degrad-
ing bacteria do not contain a complete biphenyl catabolic pathway [22], which might lead to
accumulation of dead-end intermediates and cause potential damage during biphenyl/PCBs
biodegradation. The most easily accumulated dead-end intermediates are benzoate and chloro-
benzoates (CBAs) [23,24]. It has been proved benzoate and its derivatives can inhibit the
growth of microorganisms [25,26] and cause health and environmental problems [27]. And
the inhibition effects of CBAs on PCBs degradation have been also reported [23,28]. Thus, it is
necessary to screen excellent strains which have the ability to degrade biphenyl and PCBs with-
out dead-end intermediates accumulation, an area where related research is currently lacking.
Although only few natural isolates able to metabolize both PCBs and CBAs have been de-
scribed, many researchers have described bacterial recombinants able to express the enzymes
for the upper and lower PCBs degradation pathways through genetic exchange and completely
metabolize low chlorinated biphenyl [29,30]. However, they are easy to lose their ability to me-
tabolize both substrates when they are grown under non-selective conditions [30,31]. There-
fore, such study tried to find novel biphenyl- and PCBs-degrading bacteria without dead-end
intermediates accumulation and provide new microorganism resources for in situ removal of
persistent organic pollutants.

In our research, soil samples were collected from an electric and electronic waste (e-waste)
recycling area in Taizhou (28.5605°N 121.3852°E, PCBs concentration 3.60 mg/kg), Zhejiang
Province, China. Taizhou city has been involved in e-waste recycling for over 35 years [32]
and farmland nearby the recycling areas has been severely polluted by PCBs from e-waste [33].
Our group was permitted by Taizhou Municipal People’s Government to investigate the soil
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contamination status of this area. A biphenyl- and PCBs-degrading bacterium, S. fuliginis
HC3, was isolated and identified. Then, the effects of exogenous carbon sources on biphenyl
degradation efficiency of HC3 were studied. After that, the variation trends of benzoate and
3-CBA during biphenyl and 3-CB degradation were investigated. Finally, the degradation abili-
ty of PCBs and CBAs of HC3 and the location of biphenyl/PCBs catabolic genes (termed bph)
in HC3 were preliminarily studied.

Materials and Methods
Chemicals and samples

Biphenyl and benzoate were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai,
China). PCBs were purchased from Accustandard Co., Ltd (USA), including 2-chlorobiphenyl
(2-CB), 3-chlorobiphenyl (3-CB), 2,4'-dichlorobiphenyl (2,4'-DCB), 3,3'-dichlorobiphenyl (3,3'-
DCB), 2,44 -trichlorobiphenyl (2,4,4'-TrCB), 2,4',5-trichlorobiphenyl (2,4',5-TrCB), 2,2',3,3'-
tetrachlorobiphenyl (2,2,3,3'-TeCB), 2,2’ 4,5 -tetrachlorobiphenyl (2,2',4,5' - TeCB), 2,3’ ,4',5-
tetrachlorobiphenyl (2,3',4',5-TeCB) and 2,2',4,4,5,5'-hexachlorobiphenyl (2,2',4,4’,5,5 -HCB).
2-chlorobenzoate (2-CBA), 3-chlorobenzoate (3-CBA) and 4-chlorobenzoate (4-CBA) were
obtained from Aladdin Chemical Co., Ltd (Shanghai, China). A mixture of bis(trimethylsilyl)tri-
fluoroacetamide (BSTFA) and trimethylchlorosilane (TMCS) (99:1, v/v), obtained from Sigma-
Aldrich (Beijing, China), was used as the derivatization reagent. All other reagents and chemicals
were of the highest purity commercially available. Soil samples were collected from the surface
layer (0-30 cm) of a long-term e-waste recycling area in Taizhou, Zhejiang Province, China.

Media

The composition of the mineral salts medium (MSM, g L'!) was as follows: KH,PO, 1.0,
K,HPO,-3H,0 3.0, MgSO, 0.15, FeSO, 0.01, CaCl, 0.005, NaCl 1.0, (NH,),SO, 0.5, and trace
elements solution 0.1% (v/v) at pH 7.2. The trace elements solution contained the following
(gL™"): NayMoy-H,0 6.7, ZnSO,-5H,0 28.0, CuSO,-5H,0 2.0, H3BO, 4.0, MnSO4-5H,0 4.0
and CoSO4-7H,0 4.7 at pH 7.2. The Luria-Bertani (LB) medium contained (g L™"): NaCl 10.0,
tryptone 10.0 and yeast extract 5.0, pH 7.2. Both media were sterilized by autoclaving at 121°C
for 20 min.

Enrichment, isolation and identification of biphenyl-degrading bacteria

The soil samples (5 g) as well as MSM (100 mL) containing 200 mg L™ biphenyl were placed in
a flask and incubated on a shaker at 30°C and 180 rpm for 6 days. Then, 10 mL of enrichment
culture was transferred into fresh media. After 6 generation times, the enrichment culture was
diluted and spread on MSM agar plates and sprayed with biphenyl solution (dissolved in ace-
tone, 10 g L") as a carbon source. The plates were incubated at 30°C, and colonies with yellow
halos were selected and purified on LB agar plates. The yellow halos were caused by the forma-
tion of a kind of intermediate (2- hydroxy-6-oxo-6-phenylhex-2,4-dienoic acid, HOPDA) dur-
ing biphenyl degradation.

A biphenyl-degrading bacterial strain HC3 isolated from the soil was identified using the
Biolog GEN III system. In addition, the 16S rRNA gene of HC3 was amplified by PCR with a
pair of forward and reverse primers: 27f (5'-AGA GTT TGA TCC TGG CTC AG-3') and 1492r
(5'-TAC CTT GTT ACG ACT T-3') [34]. The 16S rRNA gene sequence and related sequences
acquired from GenBank were aligned by BIOEDIT version 7.0 software. A phylogenetic tree
was built by the neighbor-joining method [35] as implemented in MEGA version 4.0 software.
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The sample of HC3 for scanning electron microscopy (SEM) was hardened by 2.5% glutar-
aldehyde solution for 12 h. Then the sample was dehydrated in a series of acetone solution
(30%, 50%, 70%, 80%, 90%, 95% and 100%) for 30 min each. After that, the sample was sus-
pended in isoamyl acetate for 15 min and dried by a critical point drier (Hitachi HCP-2) for
2 h. Finally, the sample was fixed and scanned under a SEM (Hitachi S-3000N).

Biphenyl degradation and cell growth experiments

To obtain highly active cells, HC3 was grown in 30 mL of LB medium with 10 mg L' biphenyl
at 30°C and 180 rpm on a shaker for 24 h. Then, the cells were collected by centrifugation at
8000 rpm for 5 min and washed twice with phosphate buffers (0.05 M, pH 7.2). After that, the
cells were resuspended in MSM and adjusted to an ODg, of 1.0 for the following experiments.

The biodegradation of biphenyl by HC3 was conducted in 100 mL flasks at 30°C and 180
rpm. 2 mL of HC3 cells (ODgqq 1.0) was separately inoculated into 18 mL of MSM with 10, 50,
100, 200, 500 and 1000 mg L™ biphenyl. Residual biphenyl was extracted with the improved
method of Hong et al. [14] at 24 h. The test samples were mixed with equal volumes of ethyl
acetate, then moved to glass tubes, oscillated heavily on a vortex for 10 min and set statically
for 30 min. The organic phases were dried using anhydrous sodium sulfate and measured
by GC-MS.

To measure the growth of HC3 on biphenyl, 1 mL of HC3 cells (ODgq, 1.0) was inoculated
into 19 mL of MSM with 200 mg L™ biphenyl. The flasks were then cultured at 30°C and 180
rpm. LB medium and the spread plate method were used to enumerate HC3 cell number every
12 h and residual biphenyl was extracted at the same time. Because biphenyl is not easy to uti-
lize as a carbon source by microorganisms, readily available carbon sources were selected to
study their influence on biphenyl degradation. In this study, 1 g L' glucose, sodium acetate,
tryptone and yeast extract was added to MSM separately as carbon sources. 2 mL of HC3 cells
(ODggo 1.0) was inoculated into 18 mL of adjusted MSM with 100 mg L™ biphenyl. Both the
culture conditions and the detection methods were as previously described.

Identification and analysis of benzoate and 3-CBA by GC-MS

For benzoate analysis, 100 uL of biphenyl solution (dissolved in acetone, 300 mg L") was
added to sterile glass tubes. After the acetone evaporated, 2 mL of HC3 cells (ODgqg 1.0) was
added to the tubes. Then these tubes were sealed and cultured at 30°C and 180 rpm for 0, 40,
100 and 220 min. For 3-CBA analysis, 100 pL of 3-CB solution (dissolved in acetone, 200 mg
L ') was added to sterile glass tubes. Then 2 mL of HC3 cells (ODggp 1.0) was added to the
tubes after the acetone evaporated. These tubes were sealed and cultured at 30°C and 180 rpm
for 0,0.5,1, 1.5, 2, 2.5, 3,4 and 4.5 h. At each timepoint, the samples were taken out and acidi-
fied to pH 2.0 using HCI (3 M). Biphenyl, 3-CB and their intermediates were extracted using
an equal volume of ethyl acetate 2 times. Then, the organic phases were combined together and
dried using anhydrous sodium sulfate and N, flow. After that, the extracts were dissolved in
100 pL of hexane and 100 pL of BSTFA-TMCS (99:1, v/v) at 60°C for 15 min. Finally, the sam-
ples were diluted with hexane to 1 mL and analyzed by GC-MS.

PCBs and CBAs degradation experiments

Before 3 mL of MSM and 2 mL of HC3 cells (ODgqg 1.0) were added to sterile glass tubes, 10
PCB congeners (dissolved in hexane) were added to these tubes to a total concentration of 70
mg L', In control groups, HC3 cells were inactivated twice by autoclaving at 121°C for 30 min.
All of the tubes were sealed and cultured at 30°C and 180 rpm for 72 h. This treatment method
was also adopted to CBAs degradation experiment (including 2-CBA, 3-CBA, 4-CBA and
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benzoate). PCBs were extracted with the method described by Tu et al. [36], while CBAs were
extracted with the method described by Fave et al. [37].

Plasmid curing in strain HC3

The plasmid in HC3 was cured by growth in LB medium with sodium dodecyl sulfonate (SDS,
0. 005%, w/v). The wild type strain of HC3 (ODgg, 1.0) was inoculated in this medium and cul-
tured at 30°C and 180 rpm for 24 h. After 3 generation times the culture was spread on LB agar
plates and the colonies were selected to extract plasmid DNA by the alkaline lysis method [38].
For restriction enzyme digestion of plasmid DNA, 17 pL extracted plasmid DNA was incubat-
ed with 1 uL EcoR I/Hind IIT and 2 pL 10 x buffer at 37°C for 2 h. Plasmid DNA preparations
were electrophoresed in 1.0% agarose gels at 4.0 V min™" in 1 x TAE buffer for 1 h. The gel was
analyzed in a Bio-Rad universal hood II (Bio-Rad Laboratories, Segrate, Italy).

To analyze the stability of HC3, the wild type strain of HC3 was cultured in LB medium
overnight and spread on LB agar plates. Then the colonies in these plates were inoculated on
new LB agar plates and sprayed with biphenyl solution. Unsuccessful formation of yellow halos
around the new colonies in 24 h meant these colonies lost their ability to use biphenyl. Biphe-
nyl, benzoate, 3-CB and 3-CBA were used to study the degradation capacity of a plasmid-cured
strain of HC3. The degradation system was identical with that mentioned in the above section
(Identification and analysis of benzoate and 3-CBA by GC-MS) and all samples were cultured
at 30°C and 180 rpm for 12 h and analyzed by GC-MS.

Analytical methods

Biphenyl was measured using an Agilent 7890A gas chromatography connected with an Agi-
lent 5975C mass selective detector and a DB-5 capillary column (30 m x 0.25 mm, 0.25 um).
The initial column temperature was 80°C with a 1-min hold, a 25°C min™' increase to 140°C,
then an 8°C min " increase to 180°C and finally a 15°C min " increase to 280°C. The ion source,
injector and detector temperatures were 230°C, 290°C and 280°C, respectively. Highly pure

He was used as a carrier gas with a constant flow rate of 1.0 mL min"". The injecting volume
was 2 pL without splitting. The electron impact mode was 70 eV, and the mass scan scope ran-
ged from 50 to 550 amu. The derivatization reagents-treated samples were analyzed by the
same method.

PCBs were analyzed by an Agilent 7890A gas chromatography connected with ®*Ni electron
capture detector and a DB-5 capillary column (30 m x 0.25 mm, 0.25 pm). The GC program-
ming was initial temperature 150°C, 1 min; ramped at 10°C min" to 175°C; isothermal for 3.5
min; then ramped at 1.5°C min" to a final temperature of 250°C; isothermal for 3 min. The in-
jector and detector temperatures were 300°C and 325°C, respectively. The injecting volume
was 1 pL without splitting. Highly pure N, was used as the carrier gas with a constant flow rate
of 1.0 mL min™". Benzoate and CBAs were measured on an Agilent 1100 series HPLC system
equipped with a Zorbax Eclipse XDB-C18 column (4.6 mm x 250 mm, 5 um). The injecting
volume was 20 pL. Methanol and 0.25% acetic acid (v/v) in a 58:42 ratio (v/v) were used as the
mobile phase at a flow rate of 1.0 mL min™". Peaks were detected by UV absorption at 235 nm.

Data analysis

All of the statistical analysis was performed using SPSS version 16.0 software. One-way analysis
of variance was used for statistical comparisons. The significance level was P < 0.05.
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Fig 1. SEM image of HC3 at 10000 x magnification.

doi:10.1371/journal.pone.0122740.g001

Results
Isolation and identification of S. fuliginis HC3

A biphenyl-degrading bacterium, HC3, was isolated from the soil samples and could form
round, yellow-colored colonies with a smooth surface on LB agar plates. The bacterium was
rod-shaped (Fig 1), gram-negative, oxidase positive, catalase positive, and nitrate-reduction
positive, but the bacterium could not grow at 50°C and could not use starch, D-fructose and
o-lactose as sole sources of carbon and energy. The partial 16S rRNA gene sequence (1391 bp)
of HC3 was 99% similar to Sphingobium fuliginis TKP and 96% similar to Sphingobium
ummariense RL-3 and Sphingobium cloacae S-3 (Fig 2). Based on its 16S rRNA gene sequence,
morphological features, and physiological and biochemical characteristics (S1 Table), HC3 was
identified as S. fuliginis (accession number: KC747727).

97 [ Sphingobium cloacae S-3 (NR_027233)

Sphingobium ummariense RL-3 (NR_004171)
Sphingobium fuliginis TKP (NR_043537)
100 ! Sphingobium fuliginis HC3 (KC747727)
100 Sphingobium francense sp+ (NR_042944)
100 Lsphingobium japonicum UT26 (NR_041701)

LI:‘S}'JMngﬂ.’Jium sp. SYK-6 (NR_074396)
87 Sphingomonas yanoikuyae B1 (U37524)
100 | Ralstonia eutrophus H850 (DET106)

L Burkholderia xenovorans LBA0O (NR_029199)

BT—IT: e pseudoalcalig KF707 (AB109887)
100 Pseudomonas sp. Cam-1 (DQ777728)

r Rhodococcus jostii RHA1 (NR_074610)
100 Rhodococcus sp. P6 (XTT780)

76
89

0.02

Fig 2. The neighbour-joining method cladogram showing a phylogenetic relationship between
Sphingobium fuliginis HC3 and other related microorganisms in the genus Sphingobium and some
deeply studied biphenyl/PCBs-degrading bacteria in other genera based on the 16S rDNA gene
sequence analysis. Microorganisms’ names are followed by the accession numbers.

doi:10.1371/journal.pone.0122740.9002
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Degradation characteristics of biphenyl

To study the biphenyl tolerance ability of HC3, a series of biphenyl concentrations from 10 to
1000 mg L™ were adopted. The results are showed in Fig 3. With the increase of biphenyl con-
centration, the degradation percentage of biphenyl decreased, whereas the degradation amount
of biphenyl presented the trend of first increasing and then decreasing. At an initial concentra-
tion of 500 mg L™, 225.5 mg L' biphenyl was degraded within 24 h. Meanwhile, when the ini-
tial concentration of biphenyl was 1000 mg L™, only 165.5 mg L™* biphenyl was removed
within a similar period of time. These results indicated that HC3 could tolerate at least 1000
mg L™ biphenyl, but its biphenyl degradation ability could be inhibited at this concentration.
The degradation of biphenyl and cell growth indicated that HC3 could utilize biphenyl as
the sole carbon source (Fig 4). Four readily available carbon sources, namely glucose, sodium
acetate, tryptone and yeast extract were chosen to study their influence on biphenyl degrada-
tion efficiency of HC3. The data indicated that biphenyl degradation efficiency was obviously
improved by yeast extract and tryptone. Over 97% of biphenyl was degraded by HC3 within
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Fig 4. Time course of biphenyl degradation and cell growth of HC3.
doi:10.1371/journal.pone.0122740.g004
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Fig 5. Effects of carbon sources on degradation of biphenyl (100 mg L~") by HC3. Control group: active
cells 10% (v/v), no additional carbon source. Other groups: active cells 10% (v/v), glucose, sodium acetate,
yeast extract or tryptone 1 g L™'. Error bars represent mean + standard deviation (n = 3).

doi:10.1371/journal.pone.0122740.g005

24 h when yeast extract or tryptone was added to the media (Fig 5). Whereas in the other three
groups, more than 20% of biphenyl still remained in the media at 24 h.

Identification and analysis of metabolic intermediates: benzoate and
3-CBA

Biphenyl and its intermediates were extracted from the degradation system and analyzed by
GC-MS after derivatization with BSTFA-TMCS. Biphenyl (molecular weight 154.2) was eluted
at 6.583 min with a molecular-ion peak at m/z 154 (Fig 6a) and a new compound (molecule
weight 194) was also eluted at 5.198 min with a molecular-ion peak at m/z 195 (Fig 6b). Both
the retention time and the mass spectrogram of the new compound were identical with that of
the derivative from benzoate (derivatization with BSTFA-TMCS), which indicated that the pre-
cursor of the new compound was benzoate. On the basis of the peak areas of biphenyl and ben-
zoate, it was found that the content of benzoate initially increased and then decreased (Fig 6b)
in pace with the degradation of biphenyl (Fig 6a), though the exact benzoate was not quantified.

When 3-CB was used as the degradation substrate of HC3, the production of 3-CBA was
also found. GC-MS was used to identify and quantify 3-CB and 3-CBA in order to accurately
analyze their variation trends. In the experimental group 3-CB was totally degraded in the ini-
tial 2 h (Fig 7). Meanwhile the concentration of 3-CBA increased from 0 mg L™ to 2.94 mg L™
in the initial 1 h and then decreased to 0 mg L™ in the following 1 h. Therefore, biphenyl and
3-CB could be separately degraded into benzoate and 3-CBA and further transformed into
other substances by HC3.

Degradation characteristics of PCBs and CBAs

It is well known that various PCBs can be cometabolized by biphenyl-degrading bacteria in aer-
obic condition, especially PCB congeners with less than four chlorine substituents. The results
of PCBs degradation by HC3 are presented in Table 1. After 3 days of biodegradation, mono-,
di- and tri-PCBs were significantly degraded in comparing with the control group, while the
degradation percentage of tetra- and hex-PCBs were insignificant. Table 2 shows the results of
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qualitatively analyzed by GC-MS. a. Biphenyl. b. Benzoate. Initial concentration of biphenyl was 15mg L™
The derivatization reagent was BSTFA-TMCS (99:1, v/v).

doi:10.1371/journal.pone.0122740.g006

CBAs and benzoate degradation by HC3. 3-CBA, 4-CBA and benzoate were nearly totally de-
graded after 3 days of incubation. However, the degradation of 2-CBA was not remarkable.

Plasmid curing

Curing of the plasmid in HC3 was implemented with SDS. Compared with the wild type strain
of HC3, the plasmid-cured strain completely lost its power to degrade biphenyl, 3-CB, benzoate
and 3-CBA, which indicated that the bph genes of HC3 were cloned on its plasmid but not on
its chromosomes (Table 3). Agarose gel electrophoresis showed HC3 might contain one plas-
mid, but the plasmid had no restriction enzyme sites for EcoR I and Hind III (Fig 8). And 6%
of the colonies grown overnight in LB medium lost their capacity to degrade biphenyl, which
meant that biphenyl degradation characteristic of HC3 was unstable.
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Fig 7. The variation trends of 3-CBA in 3-CB degradation system at 0-5 h, quantitatively analyzed by
GC-MS. Initial concentration of 3-CB was 10 mg L™ In control groups, HC3 cells were inactivated twice by
autoclaving at 121°C for 30 min. The derivatization reagent was BSTFA-TMCS (99:1, v/v). Error bars
represent mean + standard deviation (n = 3).

doi:10.1371/journal.pone.0122740.g007

Discussion

S. fuliginis HC3 was isolated from PCBs-contaminated soil in an e-waste recycling region and
is able to degrade biphenyl and PCBs. It has been observed that many species in the genus
Sphingobium, such as Sphingobium sp. strain P2 [39], Sphingobium amiense sp. nov. strain
YT [40], Sphingobium fuliginis sp. nov. strain TKP" [41], Sphingobium fuliginis TIK-1 [42]
and Sphingobium yanoikuyae B1 (formerly Sphingomonas yanoikuyae B1) [43], have the ability
to degrade aromatic compounds, such as naphthalene, phenanthrene, nonylphenol, 4-tert-
butylphenol, toluene and biphenyl. Among the many members of the genus Sphingobium,
HC3 is the first discovered that is able to degrade biphenyl and PCBs without accumulation of
benzoate and CBAs.

It has been reported that Mycobacterium sp. PYR-1 was able to degrade over 98% of 80 mg
L™ biphenyl within 72 h [44], whereas Dyella ginsengisoli LA-4 could degrade 95% of 100 mg

Table 1. Degradation of 10 PCB congeners by HC3 in 72 hours.

PCB congener Initial

Concentration (mg L)

2-CB 5.57+0.26a
3-CB 6.41+0.31a
2,4-DCB 7.18+0.28a
3,3-DCB 7.93+0.19a
2,4,4'-TrCB 7.43+0.05a
2,4/ 5-TrCB 9.36+0.38a
2,2/,3,3-TeCB 16.73+0.62a
2,2',4,5-TeCB 4.53+0.18a
2,3,4',5-TeCB 2.44+0.12a

2,2,4,455-HCB  5.51+0.08a

Control group Experimental group

Concentration (mg L) Biodegradation (%) Concentration (mg L) Biodegradation (%)

3.44+0.40b 40.2+7.0 0.00+0.00c 100.0+0.0
5.96+0.41b 3.3+1.3 0.00+0.00c 100.0+0.0
6.37+0.24b 11.3+3.4 0.20+0.04c 97.2£0.5
7.36+0.16a 7.242.0 4.60+0.35b 42.0+4.4
6.92+0.32a 6.9+4.4 5.03x0.53b 32.3+7.1
7.56+0.32b 19.3+3.4 6.62+0.10c 29.3+1.0
14.98+0.72b 8.5+4.4 14.75+0.18b 9.9+1.1
3.82+0.23b 15.845.1 3.66+0.03b 19.3+0.2
2.28+0.09a 6.7+3.8 2.27+0.02a 7.1+1.0
4.97+0.04b 9.7+0.7 5.03+0.06b 8.7+1.1

Note: Control group, inactive cells 40% (v/v). Experimental group, active cells 40% (v/v). Date are presented as mean + standard deviation (n = 3). Data
followed by the same lowercase letter in each row are not significantly different (P > 0.05).

doi:10.1371/journal.pone.0122740.1001
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Table 2. Degradation of mono-CBAs and benzoate by HC3 in 72 hours.

Substrate Initial Control group Experimental group
Concentration (mg L") Concentration (mg L") Biodegradation (%) Concentration (mg L™) Biodegradation (%)

Benzoate 19.17+0.50a 17.70+0.37b 7.7£1.9 -0.06+0.10c 100.3+£0.5

2-CBA 19.55+1.50a 19.12+1.66a 2.2+8.5 17.49+2.28a 5.3+4.3

3-CBA 13.78+0.69a 11.57+£0.17b 16.0+1.3 0.09+0.00c 99.4+0.0

4-CBA 34.27+3.28a 28.06+1.05b 18.1£3.1 -0.19+0.41c 100.6+1.2

Note: Control group, inactive cells 40% (v/v). Experimental group, active cells 40% (v/v). Date are presented as mean + standard deviation (n = 3). Data
followed by the same lowercase letter in each row are not significantly different (P > 0.05).

doi:10.1371/journal.pone.0122740.1002

L! biphenyl within 72 h [16] and Achromobacter sp. BP3 could totally degrade 50 mg L™ bi-
phenyl within 28 h [14]. In this study, HC3 could degrade 80.7% of 100 mg L™ biphenyl within
24 h (Fig 3). However, when the concentration of biphenyl was over 500 mg L™, the degrada-
tion capacity of HC3 could be inhibited, even though it could grow on 1000 mg L™ biphenyl,
which was similar to Dyella ginsengisoli LA-4 [45].

Because of the strong hydrophobicity, low biodegradability and high biotoxicity of recalcitrant
organics, such as polycyclic aromatic hydrocarbons (PAHs), PCBs and biphenyl, the biodegrada-
tion efficiency of them can be greatly limited [5,19,46,47,48]. When biphenyl was used as the sole
carbon source, the lag phase of HC3 lasted for 24 h (Fig 4). After the lag phase, the biphenyl deg-
radation efficiency of HC3 began to increase in pace with the cell growth. This phenomenon has
also been found by Chang et al.[49] and Adebusoye et al.[50]. Thus, biodegradation of these
compounds could be possibly enhanced by stimulating the growth of microorganisms with read-
ily available carbon sources such as pyruvate and glucose, which has been proven by Lee et al.
[51] and Luo et al. [52]. In the current study, the biphenyl degradation efficiency of HC3 was ob-
viously improved by tryptone and yeast extract (Fig 5). One possible reason is that tryptone and
yeast extract contain abundant proteins, amino acids and vitamins, which serve as carbon
sources, nitrogen sources, energy sources as well as growth factors for HC3.

Removal of biphenyl or PCBs does not mean these compounds can be totally mineralized to
carbon dioxide and water. In fact, it is very easy to accumulate toxic intermediates during bi-
phenyl and PCBs biodegradation because many biphenyl/PCBs-degrading bacteria do not con-
tain a complete biphenyl catabolic pathway [22]. And the most easily accumulated dead-end
intermediates are benzoate and CBAs, which have been reported to have negative effects on mi-
croorganisms growth and biphenyl/PCBs biodegradation [23,25,28]. Until now, only a few bac-
teria have been reported to have the ability to degrade biphenyl and benzoate or PCBs and
CBAs simultaneously, including Dyella ginsengisoli LA-4 [16], Burkholderia xenovorans LB400

Table 3. Degradation capacity of a wild type strain and a plasmid-cured strain of HC3.

Substrate Initial Control group HC3 (plasmid-free) HC3 (plasmid-containing)
Concentration (mg L™) Biodegradation (%) Biodegradation(%) Biodegradation(%)

Biphenyl 9.45+0.85 6.2+2.5b 12.2+3.8b 94.0+2.2a

3-CB 8.49+0.51 14.1+5.5b 21.48+1.8b 78.1+1.0a

Benzoate 11.65+0.42 4.9+5.8b 4.6x2.0b 98.1+0.8a

3-CBA 10.68+0.44 2.4+4.0b 2.5¢1.2b 99.9+0.2a

Note: Control group, inactive cells (ODggo 1.0). Experimental group, active cells (ODgoo 1.0). Date are presented as mean * standard deviation (n = 3).
Data followed by the same lowercase letter in each row are not significantly different (P > 0.05).

doi:10.1371/journal.pone.0122740.1003
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Fig 8. Agarose electrophoresis showing plasmid profile of HC3. Line 1, DL2000 plus DNA Landder
Marker; Line 2, plasmid-free (SDS cured), Line 3, HC3 plasmid DNA (no digestion); Line 4, HC3 plasmid DNA
(EcoR I digestion); Line 5, HC3 plasmid DNA (Hind Il digestion).

doi:10.1371/journal.pone.0122740.g008

[53] and Rhodococcus sp. RHA1 [54]. LB400 and RHA1 have been proved to have relatively
complete bph genes [55,56], which make these two strains have the potential to degrade a wide
range of aromatic compounds. In our research, benzoate and 3-CBA transformed from biphe-
nyl and 3-CB could be rapidly degraded by HC3 (Figs 6 and 7), which revealed that HC3 might
contain a complete biphenyl catabolic pathway. Moreover, without the accumulation of benzo-
ate or CBAs, the toxicity of these compounds on HC3 cells could be alleviated. This is one of
the possible reasons why HC3 has high biphenyl degradation efficiency.

Although only a few bacteria have been reported to have the ability to degrade PCBs and
CBAs simultaneously, many researchers have proved that bacterial recombinants could express
the enzymes for the upper and lower PCBs degradation pathways through the assemblage of
plasmid encoded genes and completely metabolize low chlorinated biphenyl [29,30]. However,
plasmids are liable to be lost and bacteria will lose their ability to metabolize substrates when
they are grown under non-selective conditions [30,31]. The bph genes of HC3 are cloned on its
plasmid and thus its PCBs degradation capacity is unstable (Fig 8; Table 3). The loss rate of the
ability to utilize special substrates per generation in non-selective media is 6% in HC3, 4 to 8%
in Acinetobacter sp. strain P6 and Arthrobacter sp. strain M5 [57], 1% in Alcaligenes eutrophus
JMP298 [31] and 8% in Pseudomonas cepacia CSV90 [58], which are possibly caused by the loss
of plasmids in these strains. Since there are only a few bacteria like HC3 which is able to
completely metabolize low chlorinated biphenyl, it is still necessary to screen this kinds of iso-
lates from natural environments to enrich the bank of PCBs-degrading bacteria. In addition,
wide-type degrading-bacteria can be used safely in soil remediation while the application of
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genetic engineering bacteria in natural environment is still restricted at present. By the way;, it is
well known that PCB degradation process is more efficient when performs by a mix population
expressing both the upper and lower pathways [59,60]. Since a mix population usually contains
different microorganisms, its metabolic pathways are more diverse and thus its substrate range
is wider. In fact, the function of a mix population is also unstable. If the culture condition of a
mix population changes, its original functions will change or lose [61,62]. So PCBs degradation
capacity of both mix populations and pure cultures are still worth researching.

It has been reported that bph genes are not only present on plasmids but also present on
bacterial chromosomes and transposons [63,64]. And the typical bph gene cluster is composed
of bphR1bphA1A2(orf3)bphA3A4BCX0X1X2X3D, which is found in Burkholderia sp. strain
LB400 [65-67] and Pseudomonas pseudoalcaligenes KF707 [68,69]. Furukawa et al. [1] com-
pared the bph gene clusters of many bacteria and demonstrated that some are similar but some
are very different on the basis of the structure of each gene and gene organization. These results
indicated that certain bph gene clusters can transfer among soil bacteria and have evolved from
a common ancestor. Thus, in order to determine the type of bph gene cluster in HC3, the dif-
ferences of bph genes between HC3 and the ones that are already recorded in databank should
be studied in subsequent research.

Actually, a major bottleneck in the PCB degradation pathway is the substrate range of the
first enzyme (BphA) of the upper pathway. This enzyme is composed of a terminal dioxygenase
containing a large subunit (encoded by bphAI) and a small subunit (encoded bphA2), and a
ferredoxin (encoded by bphA3), and a ferredoxin reductase (encoded by bphA4) [68]. And it
has been reported that the large subunit (BphA1) and the small subunit (BphA2) are responsi-
ble for the substrate specificity [63]. The amion acid sequences of BphA between Pseudomonas
pseudoalcaligenes KF707 and Burkholderia cepacia LB400 are nearly identical (BphA1, 95.6%;
BphA2, 99.5%; BphA3,100%; BphA4, 100%) [68,70], but the substrate ranges of these two
strains are different [71,72]. In this research, the substrate range of HC3 is narrow compared to
LB400, but HC3 has an excellent capacity to degrade biphenyl and low chlorinated biphenyl.
Thus, it is significant to analyze BphA amion acid sequences of HC3. To obtain more informa-
tion of BphA amion acid sequences will help researchers find out the relationship between
BphA amion acid sequences and substrates specificity of PCBs-degrading bacteria.

In conclusion, an excellent biphenyl-degrading bacterial strain HC3, which could degrade
80.7% of 100 mg L' biphenyl within 24 h, was isolated from PCBs-contaminated soil. HC3 is
also able to degrade benzoate, 3-CBA, 4-CBA, and PCBs with three or fewer chlorine atoms.
The bph genes of HC3 are cloned on its plasmid. And the bacterium is the first reported that
can degrade biphenyl and 3-CB without accumulation of benzoate and 3-CBA in the genus
Sphingobium. All of these findings indicate that HC3 might contain relatively complete bph
genes and has the potential to totally mineralize biphenyl and PCBs. Therefore, the bacterium
might be a good candidate for restoring biphenyl/PCBs-contaminated environments.
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(DOC)
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