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The precise and coordinated production of myelin is essential for proper development and function of the 
nervous system. Diseases that disrupt myelin, including multiple sclerosis, cause significant functional 
disability. Current treatment aims to reduce the inflammatory component of the disease, thereby preventing 
damage resulting from demyelination. However, therapies are not yet available to improve natural repair 
processes after damage has already occurred. A thorough understanding of the signaling mechanisms that 
regulate myelin generation will improve our ability to enhance repair. in this review, we summarize the positive 
and negative regulators of myelination, focusing primarily on central nervous system myelination. Axon-derived 
signals, extracellular signals from both diffusible factors and the extracellular matrix, and intracellular signaling 
pathways within myelinating oligodendrocytes are discussed. Much is known about the positive regulators 
that drive myelination, while less is known about the negative regulators that shift active myelination to myelin 
maintenance at the appropriate time. Therefore, we also provide new data on potential negative regulators of 
CNS myelination. 
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Introduction

Myelin is the specialized, lipid-rich membrane that forms an 
insulating sheath around axons. Traditionally considered 
an evolutionary adaptation resulting in rapid and efficient 
transduction of action potentials via ‘saltatory’ impulse 
propagation[1], it is also essential for the proper develop-
ment of the vertebrate nervous system. While optimizing 
the electrical activity of axons, myelin also clearly provides 
trophic and metabolic support to ensheathed axons[2,3]. My-
elin is produced by oligodendrocytes in the central nervous 
system (CNS) and Schwann cells in the peripheral nervous 
system (PNS). The process of myelination involves enor-
mous energy expenditure for massive membrane biogen-
esis to generate concentric, spiral wraps of myelin around 
axons. in mammals, this process occurs in large part dur-
ing postnatal development[4,5] and is modulated by electrical 
activity[6,7] as well as axon-derived molecular signals[8]. 

it is well-established that myelin thickness is directly 
related to axon diameter[9,10]. Extensive bidirectional sig-
naling between axons and myelinating glia regulates this 
relationship. The maturation of axons and their long-term 
survival both depend on the presence of myelin[11]. in turn, 
the proliferation, migration, survival, and differentiation of 
myelinating glia require axon-derived signals[12], and the 
long-term maintenance of the myelin sheath also depends 
on axonal signals[13].

Disruption of this axon-myelin relationship is seen in 
many congenital and acquired neurological diseases, in-
cluding the leukodystrophies and multiple sclerosis (MS). 
MS is the most common cause of neurological disability in 
young adults and is characterized by CNS demyelination 
induced by inflammation and immune responses.  Acute 
demyelinating episodes result in neurological impairment 
that is generally followed by functional recovery as the 
inflammation resolves. However, permanent disability is 
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eventually seen in MS, resulting primarily from axonal 
transection after chronic demyelination or other patholo-
gies[14]; however axonal damage can occur at the same 
time as demyelination[15]. Clearly, investigating the mecha-
nisms regulating axon-myelin interactions is pivotal in order 
to improve treatment for myelin disorders.

Currently, the only FDA-approved medications for 
treating MS are immunomodulating agents, which help 
to prevent immune and inflammatory attacks during the 
relapsing-remitting stage of MS. However, none of these 
agents is effective in treating the progressive phase of the 
disease that results from accumulated axon damage. An 
additional approach to treating this disease would be to 
enhance the endogenous repair processes that occur natu-
rally after acute demyelination. Remyelination occurs dur-
ing early stages of MS and, while rarely complete, allows 
for some functional recovery[16,17]. However, after multiple 
episodes of demyelination, repair fails, resulting in progres-
sive neurodegeneration[18]. The process of remyelination 
shares many features with developmental myelination[19]. 
Therefore, a thorough understanding of the mechanisms 
regulating developmental myelination may help target re-
myelination therapeutically, promoting functional recovery 
and preventing MS progression. 

in this review, we summarize the current state of 
knowledge of the signaling mechanisms regulating myeli-
nation, focusing primarily on CNS myelination, although 
studies elucidating important mechanisms in the PNS are 
also described. CNS myelination is discussed in terms of (1) 
axon-derived signals; (2) extracellular matrix and soluble 
signals; and (3) intracellular signaling cascades within 
myelinating oligodendrocytes. Both positive and negative 
influences on myelination are discussed. The precise coor-
dination of positive and negative regulators of myelination 
is crucial in producing and maintaining the correct amount 
of myelin in order to optimize neural function. Many signaling 
pathways are known to be positive regulators, but much 
less is currently known about the negative regulators of my-
elination. We therefore also provide new data on potential 
negative regulators of CNS myelination.

Control of Myelination at the Axolemma: Neureg-

ulin/ErbB Signaling and the Secretases

The neuregulins belong to the superfamily of epidermal 

growth factor (EGF)-like ligands. Four genes encode the 
neuregulins, of which neuregulin i (NRG1) has been stud-
ied most extensively[20,21]. The NRG1 gene is large and 
complex, contributing to at least 15 different NRG1 iso-
forms by alternative promoter usage and RNA splicing[22]. 

NRG1 signals through ErbB receptors, a family of 
receptor tyrosine kinases that modulate numerous intracel-
lular signaling pathways[23,24]. Both ErbB3, which has no 
kinase domain, and ErbB4 bind NRG1 directly[24,25]. ErbB2, 
which does not bind NRG1, also participates in signal 
transduction by heterodimerizing with ErbB3[26]. 

NRG1 and ErbB receptors are expressed widely 
in the CNS and PNS and play major roles in neuronal 
development[23,27,28]. NRG1 type-iii is a transmembrane pro-
tein with a cytosolic N-terminus that influences the amount 
of neuregulin that is targeted to the membrane[29]. its ex-
pression is restricted mainly to neurons[30,31]. in the PNS, 
axonal NRG1 type-iii expression can influence whether 
an axon is myelinated[32], and the amount of axonal NRG1 
type-iii regulates Schwann cell myelin sheath thickness[33]. 
Axonal NRG1 signaling acts through ErbB receptors on 
Schwann cells to regulate PNS myelination[34], and the 
peripheral hypermyelination disorder Charcot-Marie-tooth 
disease type 1A results from mutations leading to overex-
pression of ErbB2 and ErbB3 receptors[35]. 

The role of NRG/ErbB signaling in the CNS is still un-
der debate. Neuregulins mediate survival and differentia-
tion of cultured oligodendrocyte progenitor cells (oPCs)[36,37], 
and spinal cord explant studies demonstrate the require-
ment for NRG signaling in oligodendrocyte development[38]. 
other studies suggest that, while axonal NRG1 does not 
direct initial oligodendrocyte differentiation, it promotes my-
elination in some CNS areas[39]. ErbB2 signaling has also 
been shown to positively regulate terminal oligodendrocyte 
differentiation and myelination in vivo[40,41]. ErbB4 signaling 
in oligodendrocytes is quite complex. The complete loss of 
ErbB4 signaling in neural tube explants increases the num-
ber of differentiated oligodendrocytes[42], whereas expres-
sion of a dominant negative ErbB4 that binds NRG1, but 
cannot signal in oligodendrocytes in vivo, results in fewer 
oligodendrocytes and reduced myelin thickness of CNS 
axons[43]. While these studies suggest at least regional CNS 
regulation of oligodendrocyte development or myelination 
by NRG1, mice with complete NRG1 knockout or elimina-
tion of both ErbB3 and ErbB4 receptors in oligodendrocytes 
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have normal CNS myelination, indicating that these factors 
are not required for normal CNS myelination[44]. on the 
other hand, that same study demonstrated that overexpres-
sion of either NRG1 type-i or type-iii could induce CNS hy-
permyelination. Thus, it clearly can impact some elements 
of CNS myelination.

Alterations in CNS white matter and NRG1/ErbB sig-
naling have been implicated in several psychiatric disor-
ders, including schizophrenia[45,46], obsessive-compulsive 
disorder[47,48] and bipolar disorder[49]. NRG1 in particular is 
a schizophrenia susceptibility gene[50]. Social isolation of 
juvenile mice alters the expression level of NRG1 in the 
prefrontal cortex, and causes hypomyelination that re-
sembles ErbB3 knockout[51]. Furthermore, social isolation of 
adult mice also influences myelin thickness in the prefrontal 
cortex and is reversed by social reintegration[52]. A direct 
connection between altered myelin structure or function 
and psychiatric disease remains to be identified, but these 
observations are suggestive of a potential impact of subtle 
myelin changes. 

Regulation of the NRG/ErbB system is achieved by 
proteolytic cleavage of membrane-bound neuregulins by 
secretase enzymes. β-secretase (BACE1) is able to cleave 
NRG1 type-iii[53], a process regulated by the metalloen-
dopeptidase nardilysin[54]. Both BACE1- and nardilysin-
deficient mice are hypomyelinated in both the PNS and 
CNS[54,55]. However, the effects of BACE1 may be region-
specific, since while optic nerve and hippocampus are 
hypomyelinated[55], myelin in the corpus callosum of 
BACE1-null mice is indistinguishable from that of wild-type 
mice[56]. other secretases, including ‘a disintegrin and met-
alloprotease’ (ADAM) and γ-secretase, are also involved in 
regulating NRG1 signaling and myelination. For example, 
knockdown of ADAM17 inhibits PNS myelination[57]. in pri-
mary culture, γ-secretase, which cleaves both NRG1[58] and 
the intracellular domain of the ErbB4 receptor[59] induces 
oligodendrocyte maturation[59]. By contrast, in myelinating 
co-cultures, it likely blocks myelination, since its inhibition 
accelerates and enhances myelination [60].

These studies suggest that distinct mechanisms may 
regulate myelination in the PNS and CNS. Whereas Schwann 
cells maintain a one-to-one relationship with axons, oligo-
dendrocytes can myelinate as many as 40 axons[61,62], and it 
may be that more diverse environmental input is needed 
to regulate CNS myelination. Thus, multiple axolemmal/ex-

tracellular cues directing parallel signaling pathways likely 
regulate the somewhat more complex CNS myelination.

Control of Myelination by the Extracellular Matrix 

and Soluble Factors

in addition to membrane-derived juxtacrine signals from 
axons, elements in the extracellular matrix (ECM) and 
other soluble factors also modulate myelination. Numer-
ous components in both the PNS and CNS have important 
effects on the development and function of myelinating 
glia[63]. of particular interest with respect to CNS myelina-
tion is the effect of laminin. Laminin receptors on oligoden-
drocyte lineage cells, including integrin and dystroglycan, 
mediate a variety of effects including oligodendrocyte 
survival, differentiation, and spatio-temporal targeting 
during development[64]. Laminin binding to dystroglycan 
is necessary for oligodendrocyte process dynamics, in-
cluding process outgrowth and branching, and it could 
regulate the myelinating capacity of individual cells[65]. 
The cellular origin of laminin in the developing brain is un-
known, and laminin is virtually absent from fully myelinated 
white matter tracts[64,66]; although it is re-expressed during 
remyelination[67]. Laminin-deficient mice have dysmyeli-
nated axons and reduced myelin sheath thickness[68]. in 
addition to signaling through integrins and dystroglycan, 
laminin also signals through oligodendrocyte-expressed 
integrin-linked kinase (iLK), and the expression of a domi-
nant negative form of iLK inhibits laminin-induced myelin-
like membrane formation[68]. Thus, extracellular laminin cre-
ates an environment that facilitates myelin production and 
could provide instructional cues through several signaling 
pathways to myelinating oligodendrocytes. 

in addition to ECM molecules, which provide a sub-
strate structure for the developing cell, a variety of diffusible 
factors influence CNS myelination, including insulin growth 
factor 1 (iGF-i)[69,70], and fibroblast growth factor (FGF)[71]. 
other soluble factors have been implicated in regulating 
CNS myelination, including ciliary neurotrophic factor[72], 
brain-derived neurotrophic factor[73,74], and neurotrophin-
3[75]; however, these factors seem to affect oligodendrocyte 
differentiation more than myelination. 

iGF-i exerts effects on all major cell types in the CNS 
and acts primarily through the type 1 iGF receptor (iGF1R)[70]. 
overexpression of iGF-i in mice results in increased brain 
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growth and myelination[76], and induces both increased 
myelin protein gene expression and increased oligoden-
drocyte number[77,78]. By contrast, iGF-i knockout mice have 
decreased amounts of myelin proteins and reduced num-
bers of oligodendrocytes and their precursors, and iGF-ii 
can only partially compensate[79]. The source of iGF-i in the 
CNS is unclear, since increased myelination can be driven 
by either oligodendrocyte- or astrocyte-produced iGF-i[80,81]. 
iGF-i likely acts directly through iGF1R on the surface of 
oligodendrocyte lineage cells, since iGF1R conditional 
knockout from this lineage decreases oPC proliferation, 
increases apoptosis, and results in reduced numbers of oli-
godendrocytes[82]. iGF-i signaling is transduced via insulin 
receptor substrate (iRS)[83]. However, the hypermyelination 
effects of iGF-i overexpression are not eliminated by iRS-
1 deficiency[84]. in iRS-2 knockout mice, however, myelin 
protein expression is delayed, suggesting that iRS-2 may 
be the major mediator of iGF-i responses to control the 
proper timing of myelination[85]. iGF-i is capable of protect-
ing oligodendrocytes and myelin from hypoxia-ischemia[86], 
TNF-α-induced damage[87], and glutamate toxicity[88], and 
these and other data have led to the suggestion that iGF-i 
treatment may be an effective therapy to enhance myelina-
tion or remyelination in humans[89]. on the other hand, iGF-i 
impacts many cells, not only protecting oligodendrocytes 
during injury, but also enhancing astrogliosis, which would 
limit remyelination[90].

FGFs are a family of growth factors that, like iGF and 
neuregulin, serve diverse functions. FGF-1 and FGF-2 
are produced by neurons and astrocytes[91,92], and are up-
regulated during active myelination[93]. FGF is even found 
in purified axolemma from adult myelinated axons[94]. Al-
though FGF-2 increases the formation of myelin-like sheets 
in vitro[95], FGF-2 treatment of myelinating mixed brain 
cultures actually reduces myelin formation[96]. Moreover, 
intracerebral injection of FGF-2 increases the number of 
promyelinating oligodendrocytes in rats, but reduces, rather 
than promotes, myelination[78,97]. 

FGF receptor 1 (FGFR1), FGFR2 and FGFR3 are 
expressed by oligodendrocyte lineage cells[98,99] and influ-
ence oligodendrocyte specification and differentiation[100]. 
Their differential expression at multiple stages of oligoden-
drocyte development suggests that they may have differ-
ent roles. For example, FGFR2 is specifically expressed 
in differentiated oligodendrocytes, is enriched in lipid-raft 

microdomains, and is localized within paranodal myelin[101], 
suggesting a potentially positive role in myelination. on 
the other hand, expression of a dominant-negative FGFR1 
under control of the MBP promoter shows a slight but sig-
nificant increase in myelin thickness of optic nerve axons, 
suggesting a potentially negative role for FGFR1 signaling 
in myelin production[102]. Unfortunately, FGF signaling was 
not completely blocked in these mice, and compensation 
by FGFR2 may have occurred. in more recent work, Furusho 
and colleagues demonstrated the impact of FGF/FGFR 
signaling during myelination in mice lacking both FGFR1 
and FGFR2 in oligodendrocyte lineage cells. in these ani-
mals, oPC proliferation and differentiation were unaffected 
and the initiation of myelination was normal. However, the 
overall degree of CNS myelination was severely reduced, 
suggesting a role for FGFR1/2 in regulating CNS myelin 
thickness[71]. These results parallel studies in the PNS, but 
further work is needed to establish whether FGF signaling 
is both necessary and sufficient to regulate myelin sheath 
thickness in the CNS. These results also highlight that a 
given molecule (e.g. FGF) can have quite dissimilar effects 
during different stages of oligodendrocyte differentiation.

Control of Myelination by Intracellular Signaling 

Cascades

Pathways Impacting the Cytoskeleton
oligodendrocytes must integrate the vast array of extracel-

lular signals not only to properly differentiate into mature, 

myelin-producing cells, but also to determine when active 

myelination should cease and the cell should transit into 

a state of myelin maintenance. Signaling molecules within 

oligodendrocytes that have gained attention for their role in 

regulating myelination include Fyn, FAK, MAPK/ERK, and 

Pi3K/Akt/mToR[8,12,63,103,104].

Fyn kinase belongs to the Src family of non-receptor 
tyrosine kinases. it is expressed throughout the brain and 
is highly expressed in oligodendrocytes[105]. Fyn likely 
integrates signals from ECM molecules[63] and axonal 
ligands[106] in order to induce widespread changes in cy-
toskeletal dynamics leading to differentiation and myelina-
tion[103,107,108]. Fyn-deficient mice display severe hypomyeli-
nation in patterns consistent with a role in the initial stages 
of myelination process[109,110], in stimulating MBP gene 
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transcription[111], and in regulating local translation of MBP 
mRNA[112-114]. Activation of Fyn depends on both phospho-
rylation and dephosphorylation events at different sites on 
the molecule, and the necessary signals are provided at 
least in part by integrin-contactin complexes[115]. Loss of 
either of the protein tyrosine phosphatases CD45 or PTPα, 
both positive regulators of Fyn activity, causes dysmyelina-
tion[116,117].

Fyn is negatively regulated by several signaling sys-
tems. in laminin-deficient brains, increased repression of 
Fyn is accompanied by elevated levels of Csk, another Src-
family kinase that negatively regulates Fyn[118]. Likewise, 
tenascin C blocks Fyn activation, thereby inhibiting MBP 
expression and myelination[119]. in addition, protein ty-
rosine phosphatase receptor type Z (PTPRZ) was recently 
identified as the counterpart phosphatase to Fyn kinase, 
and loss of PTPRZ from oligodendrocytes was shown to 
enhance myelination during development[120]. Given the 
variety of positive and negative regulators of Fyn function, 
further studies are required in order to fully assess its role 
in CNS myelination.

Focal adhesion kinase (FAK) is a non-receptor pro-
tein tyrosine kinase that is also expressed ubiquitously in 
the CNS. FAK is present in cells of the oligodendrocyte 
lineage[121] and in myelin[122]. FAK is activated in post-
migratory, differentiating oPCs[123] and like Fyn, FAK also 
seems to integrate signals from the ECM in order to induce 
cytoskeletal changes within oligodendrocytes necessary 
for myelination[63]. in mature oligodendrocytes, FAK co-
localizes with dystroglycan-enriched structures, potentially 
involved in remodeling oligodendrocyte process extensions 
based on ECM input[65]. in Schwann cells, FAK is found in 
complex with ErbB2/ErbB3 heterodimers[38,124]. Both FAK 
and Fyn are necessary mediators of laminin-induced oli-
godendrocyte process formation along with downstream 
mediators Rac1 and Cdc42[123]. FAK promotes morpho-
logical maturation of oligodendrocytes in response to 
laminin-2, and restricts process extension in the presence 
of fibronectin[125]. Conditional knockout of FAK in oligoden-
drocytes reduces process outgrowth, suggesting a posi-
tive role for FAK in the initial stages of myelination[126]. FAK 
signaling often feeds into other signaling networks, such as 
the Akt/mToR pathway (see below). 
Pathways Integrating Multiple Signaling Systems
The mitogen-activated protein kinase (MAPK)/extracellular-

related kinase (ERK) pathway is a point of convergence 
of many external signals in oligodendrocytes, including 
NRG1[53], BDNF[127], iGF-i[128], and FGF[129,130]. Conditional 
ablation of B-Raf, an upstream activator of MAPK/ERK sig-
naling, results in dysmyelination, defective differentiation, 
and reduced ERK activation[131]. Double mutants lacking 
both FGFR1 and FGFR2 have reduced ERK activation, 
which results in normal oligodendrocyte differentiation 
and initial myelin wrapping, but significant myelination 
deficits[71]. ERK1 and ERK2 signaling promotes oligoden-
drocyte myelination in an in vitro myelination assay[132] and 
in vivo double knockout of ERK1 and ERK2 from oligoden-
drocytes results in dysmyelination[133].  p38MAPK has been 
shown to positively regulate oligodendrocyte differentiation 
and the expression of myelin genes[134,136]. p38MAPK activ-
ity in oligodendrocytes involves cross-talk with the ERK 
and c-Jun N-terminal kinase (JNK) pathways that blocks 
c-Jun-mediated inhibition of myelin gene expression[137]. 
Collectively, these studies suggest that FGF signaling 
through FGFR1/2 in oligodendrocytes activates the MAPK/
ERK signaling pathway and may regulate CNS myelination, 
and that cross-talk between the ERK, p38MAPK, and JNK 
pathways is important for this process. The MAPK/ERK 
pathway needs to be explored further, using pharmacologi-
cal inhibitors and gain-of-function experiments, in order to 
fully elucidate its role in regulating the timing and extent of 
myelination.

Akt is a serine/threonine protein kinase that is acti-
vated upstream by lipid second messengers generated 
by PI3-kinase. Loss of the p85α regulator subunit of PI3-
kinase results in decreased numbers of myelinated ax-
ons in several CNS regions[138]. Akt activates a variety of 
downstream targets, including the mammalian target of 
rapamycin (mToR). Like the MAPK/ERK pathway, the 
Pi3K/Akt/mToR pathway is a powerful integrator of multiple 
extracellular signals that influence oligodendrocyte devel-
opment. Akt signaling in oligodendrocytes is activated by 
neuregulins[37,53,55], integrins[139,140], iGF-i[141,142], NT-3[143,144], 
and leukemia inhibitory factor[145,146]. Akt is also activated 
downstream of both Fyn and FAK[63]. Furthermore, signal-
ing through FGFR2 activates Akt in oligodendrocytes[101], 
suggesting a cross-talk between the Akt and ERK signal-
ing pathways. our lab, among others, has shown that Akt/
mToR signaling could be a master regulator of myelination 
in the CNS. The expression of constitutively active Akt in 
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oligodendrocytes (Akt-DD) causes CNS hypermyelination, 
without affecting oligodendrocyte differentiation, prolifera-
tion, or survival[147]. Hypermyelination in these animals is 
driven by Akt signaling through mToR, and is reversible 
upon treatment with the mToR inhibitor rapamycin[148]. in 
other studies, conditional expression of the mToR activator 
Rheb (a downstream effector of Akt) in neural progenitors 
has been shown to promote myelination in the brain, while 
conditional Rheb knockout from the same cells inhibits 
myelination[149]. mToR in oligodendrocytes is required for 
the developmentally regulated expression of several myelin 
proteins and lipid biogenesis enzymes such as those driving 
cholesterol and fatty acid synthesis[150]. Together, these 
results provide strong evidence that Akt signaling through 
mTOR is both necessary and sufficient to regulate myelina-
tion in the CNS. 

Regulation of Akt signaling is complex and multifaceted 
(Fig. 1). The classic regulator of Akt signaling, phosphatase 
and tensin homolog (PTEN), reduces the production of up-
stream lipid second messengers that activate Akt[151,152]. in 
the PNS, PTEN is stabilized by the scaffolding protein Dlg1 
in order to downregulate Akt and thereby prevent peripheral 
nerve hypermyelination[153]. These results suggest that, at 
least in the PNS, PTEN serves to terminate the myelination 
process and allows for long-term protection against abnor-
mal membrane outgrowth[154].

The conditional knockout of PTEN from oligodendro-
cytes causes dramatic hypermyelination in the CNS, but 
is insufficient to enhance remyelination after injury in the 
adult CNS[155]. This suggests that there may be additional 
negative regulators of myelination in the adult, although 
the induced knockout of PTEN from adult glia, after nor-
mal myelination has ceased, can reactivate active myelin 
accumulation in both the CNS and PNS[154,156]. Based on 
these data, we began to investigate whether additional 
signaling molecules might be involved in cessation of ac-
tive myelination in the CNS. We examined the expression 
profiles of mRNA and protein levels of PTEN and other pu-
tative negative regulators of Akt signaling during postnatal 
development in isolated corpus callosum from wild-type 
(WT) and hypermyelinating Akt-DD mice. We hypothesized 
that expression of a potential ‘myelination brake’, i.e., the 
signaling system that shifts the oligodendrocyte from active 
myelination to myelin maintenance, would peak in WT mice 
as active myelination comes to an end and would likely 

decrease to steady-state levels during adulthood, when 
myelin maintenance is the predominant oligodendrocyte 
phenotype. in Akt-DD mice, in which active myelination 
continues throughout the animal’s lifetime[147,148], the myelin 
brake seems to have been overridden. Therefore, in Akt-
DD mice, we expected a continual increase in expression 
of proteins that might act as a myelin brake throughout 
development, in an effort to curb the continuous myelin pro-
duction in these mice. However, the expression profile of 
PTEN did not fit either of these expectations (Fig. 2). PTEN 
mRNA expression in white matter samples from WT and 
Akt-DD mice remained relatively unchanged throughout 
development and into adulthood, and did not differ between 
WT and Akt-DD mice (Fig. 2A). At the protein level, PTEN 
expression was highest on postnatal day 7 (P7) and gradu-
ally decreased throughout development, again with no 
difference between WT and Akt-DD mice (Fig. 2B). PTEN 
activity and stability are also regulated by post-translational 
modifications of its C-terminal tail, where phosphoryla-
tion increases PTEN stability but renders the protein less 

Fig. 1. Schematic of Akt signaling and regulation. Extracellular 
ligand (purple) binding a transmembrane receptor and 
activating the PI3K/Akt pathway (blue icons). Lipid second 
messengers PIP2 and PIP3 indicated in yellow. Negative 
regulators indicated in red. Blunted arrows indicate inhibi-
tion. Dashed line indicates indirect regulation.



Jared T. Ahrendsen, et al.    Signaling mechanisms regulating myelination in the central nervous system 205

Fig. 2. Developmental expression profiles of PTEN and PHLPP phosphatases. Expression of PTEN and PHLPP mRNA (A and D, respec-
tively) and protein (B and E, respectively), relative to P7 wide-type (WT) is presented. The ratio of phospho-PTEN to total PTEN 
relative to the ratio in P7 WT samples is presented (C). Representative Western blots shown below the respective quantification. 
Mean ± SEM for three animals per group. *P <0.05 (unpaired Student’s t-test).
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active[157]. When we examined the levels of phospho-PTEN 
in these samples, we observed a relatively constant ratio 
of phospho-PTEN to total PTEN from P10 through P120, 
and that ratio did not differ between WT and Akt-DD mice 
(Fig. 2C). Collectively, there are no differences between 
WT and Akt-DD mice in PTEN mRNA or protein expression 
or in the ratio of phospho-PTEN/PTEN, and the expression 
profiles did not meet our expectations of a bona-fide “myelin 
brake” in the CNS. Although the conditional knockout stud-
ies presented above suggest that PTEN may play a role in 
curbing active myelination[154,156], the developmental stud-
ies presented here suggested that some other molecule(s) 
may also have an important role in curbing active myelin 
production in the CNS.

We therefore extended our developmental expression 
profiling studies to other putative regulators of Akt signaling 
(Fig. 1). PHLPP (Plekstrin Homology domain Leucine-rich 
repeat Protein Phosphatase) is a protein phosphatase that 
dephosphorylates and inactivates Akt directly[158], and forms 
a tumor-suppressor network with PTEN and the scaffolding 
protein Nherf that is disabled in glioblastoma[159]. The role of 
PHLPP has not been previously studied in myelinating glia; 
however, PHLPP has been shown to regulate Akt signaling 
in a feedback mechanism mediated by mToR[160]. The ex-
pression profile of PHLPP mRNA in WT mice peaked at the 
end of active myelination (P30), while protein levels peaked 
earlier, at P14. PHLPP mRNA and protein then decreased 
to steady-state levels during later development (Fig. 2D, E). 
The expression of PHLPP mRNA increased throughout the 
time points examined in Akt-DD mice, and it was more than 
2-fold increased relative to WT at P90 (Fig. 2D); however, 
the protein expression was not different between WT and 
Akt-DD mice (Fig. 2E). These results suggested differential 
regulation of PHLPP mRNA and protein during the devel-
opment of the corpus callosum, where levels of PHLPP 
mRNA were increased by constitutively active Akt signaling 
but protein levels were not. Although PHLPP mRNA met 
our criteria for a putative myelin brake, PHLPP protein did 
not. These results suggested a differential regulation of 
PHLPP at the transcriptional and translational levels and/or 
differential stability of PHLPP mRNA compared to PHLPP 
protein. Since PHLPP protein inhibits Akt activity, differ-
ences in protein levels are more relevant for our studies 
than mRNA levels, and we have focused less on PHLPP as 
a likely myelin brake candidate. 

Ship-1 and Ship-2 are upstream lipid phosphatases 
that inhibit the formation of lipid second messengers that 
activate Akt signaling[161,162]. in WT mice, Ship-1 mRNA lev-
els remained constant throughout development. mRNA lev-
els in Akt-DD mice matched WT levels at early time points, 
and then increased dramatically at later time points (P60 
and P90) (Fig. 3A). Ship-1 protein could not be detected 
via Western blot analysis, most likely because of very low 
expression levels in the tissue. Ship-2 mRNA in WT mice 
slowly increased during early development and peaked at 
P30, corresponding to the end of active myelination; mRNA 
levels then dropped back down to baseline levels at later 
time points. in Akt-DD mice, Ship-2 mRNA peaked sooner 
at P21, remained elevated at P30, and then similarly 
dropped back down to baseline levels at later time points 
(Fig. 3B). As with Ship-1, Ship-2 protein expression was too 
low to be detected. Given the interesting differences in their 
RNA levels, these phosphatases have potential to regulate 
aspects of Akt signaling in oligodendrocytes. However, be-
cause of the difficulty in detecting these proteins, pursuing 
Ship-1/2 as myelin brake candidates may be difficult.

Shp1 (PTPN6) and Shp2 (PTPN11) are non-receptor 
type protein tyrosine phosphatases originally described in 
terms of their ability to regulate MAPK/ERK signaling, but 
they have since been shown to regulate multiple intracellu-
lar signaling networks[163]. Shp1 is expressed predominantly 
in hematopoietic cells[164]; however, mice homozygous for 
the motheaten loss-of-function mutation in Shp1 display a 
variety of defects, including hypomyelination, dysmyelina-
tion, and decreased numbers of differentiated oligodendro-
cytes in the brain[165,166]. WT oligodendrocytes have been 
shown to express functional Shp1, regulating oligodendro-
cyte differentiation in response to cytokine signaling[167]. 
in our analysis, Shp1 mRNA levels peaked at P14 in WT 
mice, and then slowly decreased during later development. 
in Akt-DD mice, a gradual increase in Shp1 mRNA was 
observed, with very high levels at P90 that differed signifi-
cantly from WT (Fig. 4A). in both WT and Akt-DD, Shp1 
protein expression increased slowly, peaked at P30, and 
remained high during adulthood (Fig. 4B). The expression 
profile for Shp1 protein suggested it could be involved as a 
myelin brake, as expression peaked at P30 and remained 
elevated during later developmental stages. Furthermore, 
Shp1 transcripts were markedly elevated in Akt-DD mice. 
The role of Shp1 has not been studied during later stages 
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Fig. 3. Developmental expression profiles of Ship-1 and Ship-2 phosphatases. Expression of Ship-1 and Ship-2 mRNA (A and B, respec-
tively), relative to P7 wide-type (WT). Mean ± SEM for three animals per group. *P <0.05 (unpaired Student’s t-test). 

Fig. 4. Developmental expression profiles of Shp1 and Shp2 phosphatases. Expression of Shp1 and Shp2 mRNA (A and C, respectively) 
and protein (B and D, respectively), relative to P7 wide-type (WT). Representative Western blots shown below the respective 
quantification. Mean ± SEM for three animals per group. *P <0.05 (unpaired Student’s t-test).

of myelination, myelin maintenance, or remyelination.
Shp2 was the first protein tyrosine phosphatase iden-

tified to function as an oncogene[168] but has since been 
shown to behave also as a tumor suppressor in certain 

tissue types[169]. Similarly, although it has been traditionally 
considered a positive regulator of many signaling path-
ways, including Akt and ERK[163], Shp2 is now known also 
to negatively regulate Akt/mToR signaling[170,171]. Shp2 in-
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fluences neuronal and glial development[172,173]. in particular, 
it is expressed by oligodendrocytes and influences the in 
vitro differentiation of oligodendrocytes via Akt and ERK1/2 
signaling[174]. Shp2 activity maintains cultured oPCs in a 
state of proliferation and opposes the pro-differentiation 
effects of Shp1[175]. Likewise, Shp2 conditional knockout 
decreases oPC proliferation and generation in vivo, but its 
effects during later stages of oligodendrocyte differentia-
tion and myelination could not be analyzed due to early 
postnatal lethality[176]. We examined the developmental 
expression profiles of Shp2 mRNA and protein in order to 
assess its function during development. in WT mice, Shp2 
mRNA peaked at P30, corresponding to the end of active 
myelination, and then decreased to steady-state levels dur-
ing later time points (Fig. 4C). The same expression pattern 
was observed with Shp2 protein (Fig. 4D). in Akt-DD mice, 
both Shp2 mRNA and protein increased gradually through-
out the time points examined, with significant differences 
between WT and Akt-DD at the mRNA level at P90 and 
P60 and significant differences between WT and Akt-DD at 
the protein level at P60 and P120 (Fig. 4C, D). Like PTEN, 
Shp2 activity is also regulated by post-translational modifi-
cations, where phosphorylation of two carboxy-terminal ty-
rosine residues relieves basal inhibition of the phosphatase 
domain[177]; however, we were unable to detect phospho-
Shp2 in our experimental conditions (data not shown). Nev-
ertheless, the expression profiles of Shp2 transcript and 
protein in WT and Akt-DD mice strongly suggest that this 
protein may play a role in regulating Akt/mToR signaling 
driving myelination as a potential myelin brake in the CNS.

Concluding Remarks

Collectively, the data presented here demonstrate that mol-
ecules other than PTEN deserve consideration as potential 
‘myelin brake’ candidates in the CNS. PTEN seems to fulfill 
the role of the ‘myelin brake’ in the PNS; however, many 
fundamental differences between PNS and CNS myelina-
tion exist, only some of which have been highlighted here. 
in addition to PTEN, other mechanisms may exist to regu-
late the hypothesized master regulatory function of Akt/
mToR signaling in CNS myelination. it is likely that cross-
talk between Akt/mToR and other signaling pathways, no-
tably MAPK/ERK, exists in order to provide intricate regula-
tion over this highly advanced and delicate system. 

Myelin overproduction is observed in the PNS in dis-
eases such as Charcot-Marie-Tooth disease[178,179] and the 
hereditary neuropathy with liability to pressure palsies (HN-
LPP)[180]. Genetic analyses have helped to pinpoint spe-
cific genes responsible for the disruptions and further our 
understanding of myelination[153,154]. An obstacle impeding 
progress in understanding myelination in the CNS is the 
fact that hypermyelination is rarely observed in human 
disease, and the molecules involved in PNS myelination 
are not always conserved in CNS myelination[44]. The hy-
permyelinating phenotype observed in the CNS as a result 
of constitutively active Akt signaling in oligodendrocytes[147] 
represents a significant advance on this front and will serve 
as a useful tool in elucidating more precise mechanisms of 
regulatory control over CNS myelination.

A key to understanding CNS myelination is to identify 
cell-autonomous changes within myelinating oligodendro-
cytes as the cell progresses from initiation of myelination 
to active myelin accumulation and then to myelin mainte-
nance. Differentiation of oligodendrocytes does not imply 
myelination per se, and the developmental program of oli-
godendrocytes appears to be more complex than tradition-
ally viewed. Achieving a thorough understanding of the mo-
lecular mechanisms responsible for the regulation of CNS 
myelination will undoubtedly improve our knowledge about 
human myelin disorders and pathology. This heightened 
understanding will elucidate novel therapeutic approaches 
that will enable more effective treatments. 

Supplemental Data: Supplemental Data include Materials and 
Methods for Figs. 2–4, and can be found online at http://www.Neu-
rosci.cn/epData.asp?id=76.
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