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Abstract

We propose a novel probabilistic framework to merge information from diffusion weighted 

imaging tractography and resting-state functional magnetic resonance imaging correlations to 

identify connectivity patterns in the brain. In particular, we model the interaction between latent 

anatomical and functional connectivity and present an intuitive extension to population studies. 

We employ the EM algorithm to estimate the model parameters by maximizing the data 

likelihood. The method simultaneously infers the templates of latent connectivity for each 

population and the differences in connectivity between the groups. We demonstrate our method on 

a schizophrenia study. Our model identifies significant increases in functional connectivity 

between the parietal/posterior cingulate region and the frontal lobe and reduced functional 

connectivity between the parietal/posterior cingulate region and the temporal lobe in 

schizophrenia. We further establish that our model learns predictive differences between the 

control and clinical populations, and that combining the two modalities yields better results than 

considering each one in isolation.
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I. Introduction

The interaction between anatomical and functional imaging modalities offers a rich 

framework for under-standing the effects of neuropsychiatric disorders. Specifically, 

correlations present in resting-state functional magnetic resonance imaging (fMRI) data are 

believed to reflect the intrinsic functional connectivity of the brain [1], [2]. Similarly, 

diffusion weighted imaging (DWI) tractography is used to estimate the underlying white 

matter fibers and provides valuable information about anatomical connectivity within the 

brain [3]. To date, relatively little progress has been made on combining information from 

these imaging modalities. Prior analysis has focused on correspondences between 

independently computed statistics of fMRI and DWI data [4]–[7]. Clinical studies typically 

identify significant population differences separately within each modality and compare 

them a posteriori [8], [9].

In this work, we propose and demonstrate a novel probabilistic framework to infer the 

relationship between resting-state fMRI and DWI tractography. In particular, we introduce 

the notion of latent anatomical and functional connectivity between brain regions. These 

variables represent an underlying process in the brain which cannot be observed directly 

from the data. The resulting model describes how the latent connectivity differs between two 

populations and makes intuitive assumptions about the fMRI and DWI image generation 

process to construct the data likelihood. Our fMRI/DWI observation model is shared across 

subjects. Hence, we assume that the effects of a disorder can be explained via changes in 

latent anatomical and functional connectivity. To the best of our knowledge, ours is the first 

stochastic model to combine resting-state fMRI and DWI data in order to infer changes 

induced by a neurological disease.

We employ the EM algorithm to efficiently estimate templates of latent connectivity for 

each population and to identify group differences. The EM algorithm optimizes the model 

parameters by maximizing the data likelihood. We employ permutation tests and cross 

validation to verify the robustness of our method. We perform an extensive evaluation of the 

model on synthetic data. In addition, we learn stable patterns of interaction in a population 

study of schizophrenia.

Schizophrenia is a poorly-understood disorder marked by widespread cognitive difficulties 

affecting intelligence, memory, and executive attention. These impairments are not localized 

to a particular cortical region, but rather, they reflect abnormalities in widely-distributed 

functional and anatomical networks [10], [11]. Accordingly, our model identifies 

connectivity differences dispersed throughout the brain. This paper extends our prior work 

presented at the International Conference on Medical Image Computing and Computer 

Assisted Intervention [12] by providing more detailed derivations of the model and 

estimation procedure and by including more experimental evaluation of the methods.

The remainder of this paper is organized as follows. Section II summarizes prior research on 

joint modeling of fMRI and DWI data. We also review clinical findings of schizophrenia in 

this section. We introduce our generative model in Section III and develop the 

corresponding inference algorithm in Section IV. Section V presents the framework used for 
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the empirical validation of our approach. Sections VI and VII report experimental results 

based on synthetic and clinical data, respectively. Section VIII discusses the behavior of our 

model, its advantages and drawbacks, and future directions of research. We conclude with a 

summary of contributions in Section IX.

II. Background and Related Work

A. Multimodal Analysis in the Brain

Both DWI and fMRI have recently gained popularity as non-invasive imaging tools useful 

for the study of the brain and the effects of neurological diseases. DWI captures the 

anisotropic diffusion of water throughout the brain and is often used to estimate white matter 

bundles via tractography. Common measures of anatomical connectivity include the 

probability of diffusion between two brain regions, the number of fibers linking two regions, 

and the mean fractional anisotropy (FA) along the tracts [3]. fMRI studies can be divided 

into two broad categories. Task-based studies measure the response to a given experimental 

paradigm in order to localize brain functionality [13]. In contrast, resting-state fMRI 

measures spontaneous, low-frequency oscillations. Correlations within these signals reflect 

the intrinsic functional connectivity between brain regions [1], [2].

Early work in multimodal analysis focused on the relationship between task fMRI 

activations and the underlying anatomy. One popular technique is to use regions of fMRI 

activation as seed points for tractography [14]–[16]. Another approach is to quantify the 

relationship between anatomical connectivity and measures of functional co-activation in 

predefined regions of interest [17], [18].

Presently, the focus has shifted to resting-state fMRI for joint analysis [19]. Studies 

commonly compute statistics of the fMRI and DWI signals (such as fMRI correlations, 

fractional anisotropy values, etc.) and search for correspondences between these metrics a 

posteriori [4], [5], [20]. A notable exception is the recently demonstrated approach in [6] 

where the authors construct cortical connection graphs based on histological data of the 

macaw brain and simulate the corresponding functional correlations using a dynamical 

system to model the interactions within the graph. Although promising, this analysis has not 

been replicated using DWI data in humans.

The above methods have yielded many insights into the nature of connectivity in the brain. 

For example, fMRI-guided tractography has improved the mapping of the motor, visual and 

language areas [14]–[16]. It has also been established that while a high degree of anatomical 

connectivity predicts higher functional correlations, the converse does not always hold [4], 

[20]. For example, strong functional correlations can be found between spatially distributed 

locations in the brain, whereas one is more likely to identify white matter tracts connecting 

nearby regions.

The main limitation of the prior works in joint fMRI/DWI modeling is an artificial 

separation between the modalities. The analysis is largely performed on the individual 

modalities, and information is later pooled into a joint representation. In contrast, we assume 

that the structure and organization of the brain is captured by some underlying generative 
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process. The fMRI and DWI measures are conditionally independent given the details of this 

latent process. We use both modalities to infer population templates of connectivity and 

demonstrate that our model captures stable patterns of connectivity.

B. Population Studies

Univariate tests and random effects analysis are, to a great extent, the standard in population 

studies of connectivity [21]–[24]. In this case, significantly different connections are 

identified using a statistical score that is computed independently for each functional 

correlation or DWI measure.

Prior work has also explored multi-pattern analysis for functional connectivity. Specifically, 

group independent component analysis (gICA) has been used to represent the data as a set of 

spatially-independent regions with associated time courses [25], [26]. In [25], group 

functional connectivity is computed as the maximum lagged correlation between the 

detected time courses, and two-sample t-tests are employed to identify significant population 

differences. In [26], a neural network is constructed for patient classification of first-episode 

schizophrenia.

Our work focuses on a population study of schizophrenia, as several of its clinical symptoms 

may be linked to abberations in connectivity [27]. Relatively few studies to date have 

combined resting-state fMRI and DWI tractography to analyze schizophrenia [8], [9]. 

Univariate statistical tests are commonly used to identify significant population differences 

in both temporal correlations and in mean Fractional Anisotrophy (FA) values. The relevant 

connections are then compared across modalities. This approach treats functional and 

structural connections as independent and ignores distributed patterns of connectivity. In 

contrast, we jointly infer the network of functional and anatomical connectivity.

C. Schizophrenia: Findings and Hypotheses

Schizophrenia is a neuropsychiatric disorder characterized by gross distortions in the 

perception of reality. Despite generating considerable interest in the neuroscience 

community, the origins and expression of the disease are still poorly understood [28]. For 

example, structural findings only weakly and inconsistently correlate with the clinical and 

cognitive symptoms of schizophrenia [29]. Similarly, functional experiments report deficits 

in many cognitive domains, most notably memory and attention, but do not consistently 

report clinical correlates [30].

At present, the cognitive impairments of schizophrenia are believed to reflect underlying 

abnormalities in distributed brain networks. In particular, schizophrenia may compromise 

neural communication between cortical regions [27]. Recent studies have also focused on 

the degeneration of anatomical connectivity [24], fueled in part by postmortem and genetic 

evidence of myelination anomalies in patients with schizophrenia.

Findings from resting-state fMRI data include reduced connectivity in the brain’s default 

network [31], [32], dorsolateral prefrontal cortex [23] and a widespread reduction in 

connectivity throughout the brain [22]. In contrast, although the majority of DWI studies 

report white matter abnormalities, there is no consensus on the location and nature of these 
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changes [24], [33]. The most commonly reported anomalies are between frontal and 

temporal lobes and between the hemispheres [24]. They are believed to reflect the 

underlying neurodevelopmental or neurodegenerative processes affecting myelinated axons. 

Since DWI tractography and resting-state fMRI data provide different information about the 

underlying structure and dynamics of the brain, we believe that joint analysis of these 

modalities will improve our understanding of brain connectivity and of the effects that 

diseases such as schizophrenia have on the connectivity pattern. Additionally, resting-state 

fMRI is particularly attractive for clinical populations, since patients are not required to 

perform challenging experimental paradigms.

To summarize, prior work in joint analysis of anatomical and functional connectivity has 

focused on correspondences rather than the interaction between fMRI and DWI data. This 

type of analysis has produced widely varied results in the study of schizophrenia. In the next 

section, we present a novel framework for multimodal analysis that allows us to infer the 

patterns of connectivity and the changes induced by a disorder.

III. Generative Model

We combine the DWI tractography and fMRI correlations in a unified generative model of 

the brain. In particular, latent anatomical and functional connectivity specify a template 

organization of the brain for a given population. Anatomical connectivity indicates whether 

or not there are any white matter fiber bundles between two regions. It does not quantify the 

number or trajectory of these fibers. Functional connectivity describes how two regions co-

activate (positive relationship, negative relationship or no relationship). We do not have 

access to these “ground truth” variables. Rather, we observe noisy measurements via DWI 

tractography and resting-state fMRI correlations. Although DWI and fMRI signals vary 

across subjects, we assume they are generated probabilistically from a common latent 

template.

We first develop the probabilistic framework within a control population. This formulation 

serves as a foundation for modeling group differences, presented later in the section.

A. Single Population Model

Fig. 1(a) depicts our model for a single population, and Table I summarizes our notation. 

The individual subject data is generated from the latent population templates of connectivity. 

All latent and observed variables are generated independently for each pairwise connection; 

the data likelihood parameters are shared across connections.

a) Prior—Let N be the total number of relevant connections in the brain. We use An and Fn 

to denote the latent anatomical and functional connectivity indicators between the two 

regions associated with the nth connection (1 ≤ n ≤ N). The anatomical connectivity An 

indicates the presence or absence of a direct anatomical pathway between two regions. We 

model An as a binary random variable. The scalar parameter πa specifies the a priori 

probability that a connection is present
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(1)

In contrast, the functional connectivity Fn is a tri-state random variable. These states 

represent 1) little or no functional co-activation (Fn = 0), 2) positive functional synchrony 

(Fn = 1), and 3) negative functional synchrony (Fn = −1) between two regions. Strong 

negative correlations are often found in resting-state fMRI data. Since there is no consensus 

about their origin and significance [34], we isolate negative connectivity as a separate 

category. For notational convenience, we represent Fn as a length-three indicator vector Fn = 

[Fn, −1 Fn0 Fn1]T with exactly one of its elements equal to one

(2)

where  is the probability that the nth functional connection is assigned to state k.

Although we model latent connectivity via discrete random variables, the posterior 

probability distributions of the variables {An, Fn} provide a natural measure of connection 

strength. These distributions form the basis for subsequent analysis in the population studies.

Below, we describe how the latent connectivity templates affect the observed measures in 

individual subjects. Empirically, we observe that the variability of the DWI and fMRI 

measures of connectivity across connections and across subjects can be reasonably 

approximated using Gaussian distributions (Section VII-B provides more details). It is not 

surprising since both measures are computed as averages of the observed image data and 

should therefore approach Gaussian distributions as the number of elements increases. 

Moreover, using Gaussian likelihoods for the observed data greatly simplifies the learning/

inference algorithm and allows for efficient fitting of the model parameters.

b) DWI Likelihood—Let J be the number of subjects. The DWI measurement Dnj for the 

jth subject is a noisy observation of the anatomical connectivity An. In this work we use the 

average FA along white matter fibers to assess DWI connectivity. The model can be readily 

extended to accommodate other measures of connectivity by redefining the data likelihood 

term.

Our observation model Dnj for explicitly accounts for errors in tractography. These include 

missing tracts between anatomically connected regions and spurious tracts between isolated 

ones. In particular, if tractography identifies one or more white matter fibers between two 

regions, the value of Dnj is modeled as a Gaussian random variable whose mean and 

variance depend on the anatomical connectivity indicator An. Otherwise, Dnj is set to zero. 

Mathematically

(3)

where δ(·) is the Dirac delta function and (·; χ, ξ2) denotes a Gaussian distribution with 

mean χ and variance ξ2. ρ0, ρ1 are the probability of failing to find a white matter tract 
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between the regions in the absence (An = 0) or presence (An = 1) of a latent anatomical 

connection, respectively. Ideally, ρ0 = 1 and ρ1 = 0, i.e., a white matter tract should be found 

if and only if there is an underlying anatomical connection. However, detection via 

tractography is imperfect. In practice Dnj is strictly positive if a tract is found between the 

regions, and the Gaussian distribution in (3) adequately captures the data variation as our 

results in Section VII-B suggest.

1) fMRI Likelihood: We model the BOLD fMRI correlation Bnj for connection n of the jth 

subject as a Gaussian random variable whose mean and variance depend on both the latent 

functional connectivity Fn and anatomical connectivity An. This reflects the finding that 

direct anatomical connections predict higher functional correlations [4], [5]

(4)

In this work, we compute Bnj using Pearson correlation coefficients. Once again, our 

empirical analysis in Section VII-B suggests that the Gaussian likelihood in (4) provides a 

reasonable approximation for the data distribution.

Combining all the elements of the model in (1)–(4), we obtain the joint log-likelihood of all 

hidden and observed variables for the nth connection

(5)

B. Population Differences

Fig. 1(b) presents an extension of our model to a population study involving controls and 

schizophrenia patients. We assume that the differences between the groups are explained 

entirely by changes in latent connectivity and that the two populations share the same data 

likelihood model.

In particular, we assume the model in Fig. 1(a) for the control population and treat the latent 

connectivity template {Ān, F̅
n} of the schizophrenia population as a “corrupted” version of 

the healthy template. In particular, with (small) probability, each connection can switch its 

state
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(6)

(7)

Rather than parameterizing all possible connectivity differences, we rely on scalars εa and εf 

to govern the probability of change within each modality. For binary random variables An 

and Ān, this implies that the probability of change in anatomical connectivity does not 

depend on the value of An. A similar property holds for the tri-state random variables Fn and 

F ̅
n. Additionally, (7) assumes that functional connectivity switches to its other two states 

with equal probability. Empirically, our results are more robust using (6) and (7) than if we 

infer all transition probabilities for each modality.

IV. Algorithms

We employ the maximum likelihood (ML) framework to estimate the model parameters

(8)

where Θ is the set of model parameters. Θ = {π, μ, σ2, ρ, χ, ξ2} for the single-population 

model; Θ = {π, μ, σ2, ρ, χ, ξ2, ε} for the model of population differences.

We derive the expectation-maximization (EM) algorithm [35] for fitting the models. The 

EM algorithm constructs the joint posterior of all hidden variables, which is later used to 

infer population differences. The total number of model parameters is small. In particular, 

the posterior distribution can be computed directly from the observed data and the model 

parameters {π, μ, σ2, ρ, χ, ξ2, ε}. Since these parameters are shared across connections and 

across subjects, the solution is based on a small set of unknown values.

A. Single Population Model

We use Xn = {An, Fn} and Yn = {Dn, Bn} to denote the hidden and observed variables, 

respectively, associated with the nth connection.

Since An is a binary random variable and Fn is a tri-state random variable, the latent vector 

Xn assumes one of six distinct values. The EM algorithm iterates between estimating the 

posterior probability of the hidden variables Xn and estimating the model parameters Θ. Due 

to the independence of pairwise connections, this problem reduces to a standard mixture 

model with six components.

For notational simplicity, we index the six states of Xn using a set {1, …, 6}. We construct 

the associated prior distribution P(Xn = l; Θ) and data likelihood P(Yn | Xn = l; Θ) by 

evaluating (1)–(4). In particular, if the index l denotes the latent assignment An = i, Fn = k
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Independence across pairwise connections gives rise to a simple sum in the log-likelihood of 

the observed and hidden variables

(9)

E-Step—We fix the model parameter estimates Θ̂ and update the posterior probability 

estimates p̂nl of the latent variables

(10)

M-Step—We fix the posterior probability estimates p̂nl and update the model parameter 

estimates Θ̂. Given a guess of the parameters Θ̂ from the previous iteration, we construct a 

lower bound to the log-likelihood Ψ(Θ, Θ̂) = EX | Y [log P(X, Y; Θ) | Y, Θ̂]. With some 

algebraic manipulation, we obtain

(11)

The parameter updates are obtained by differentiating (11) with respect to Θ and setting the 

gradient equal to zero. For notational convenience, we let  be the number of subjects for 

which Dnj = 0 (i.e., no tract was detected). The binomial and multinomial priors reduce to 

intuitive sums of the latent posterior probability estimates

(12)

The probability ρ is the empirical likelihood of not finding a white matter tract between two 

regions
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(13)

The Gaussian likelihood parameters for the DWI measurements Dn are given by the 

weighted empirical mean and empirical variance over all nonzero values

(14)

(15)

The likelihood parameters for the functional observations Bn are similarly constructed as 

weighted statistics of the data

(16)

(17)

B. Modeling Population Differences

The algorithm presented above can be easily extended to the two-population model in Fig. 

1(b). This complete model is the primary focus of our work in the following sections. 

Below, we let Xn = {An, Fn, Ān, F̂
n} and Yn = {Dnj, Bnj, Dnm, Bnm} denote the hidden and 

observed variables, respectively, of the nth pairwise connection.

Both An and Ān are binary random variables and both Fn and F̂
n are tri-state random 

variables. Therefore, the latent vector Xn assumes one of 36 distinct values. Once again, we 

index the latent states of Xn using l ∈ {1, …, 36} and map the estimation problem to the 

standard mixture model with 36 components.

E-Step—We construct the full prior and likelihood distributions P(Xn = l; Θ) and data 

likelihood P(Yn | Xn = l; Θ) using (1)–(7). The posterior estimate pn̂l is computed 

analogously to (10) for each value of (n, l).

M-Step—As in the preceding section, we let  be the number of control subjects for whom 

Dnj = 0 and  be the number of schizophrenia patients for whom Dnm = 0.

Venkataraman et al. Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Once again, the probability estimates are intuitive sums of the latent posteriors. In this case, 

we must also solve for the parameters εa, εf in (6) and (7)

(18)

(19)

Since both populations share the same data likelihood model, the updates for {μ̂, σ̂2, ρ̂, χ̂, ξ̂2} 

are derived from (13)–(17) by incorporating one data term for each population. These update 

equations are presented in Table II.

To summarize, we have presented the EM algorithm for both models in Fig. 1. The 

parameter updates are intuitive in both cases. The posterior distributions over the latent 

connectivity variables play a crucial role in the clinical application of our model as follows.

C. Quantifying Group Differences

We assume that group differences are expressed in the latent templates {An, Fn, Ān, F̅
n}. 

Therefore, the main quantity of interest is the probability of change in the anatomical or 

functional connectivity templates for a given pairwise connection. We let  denote the 

probability of a change in the anatomical connectivity for the nth connection, and we let 

denote the corresponding probability of change in functional connectivity. We estimate 

these values based on the inferred posterior probabilities {p̂nl}

(20)

These values are the main output of our algorithm in the context of population studies.

V. Model Evaluation

A. Model Significance

Although our model is based on standard probability distributions (Gaussian and 

multinomial), the joint distribution is not Gaussian due to multiplicative interactions and the 

effects of unknown nonrandom parameters. Therefore, we evaluate significance through 

nonparametric permutation tests. Specifically, we construct the distribution of these values 

under the null hypothesis by randomly permuting the subject labels (NC versus SZ) 10 000 

times. For each permutation, we fit the model and compute the relevant statistics . The 

significance (p-value) of each connection is equal to the proportion of permutations for 

which the computed statistic is greater than or equal to the value obtained under the true 

labeling.
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B. Classification Accuracy

We also quantify the model’s predictive power via ten-fold cross validation. We randomly 

divide the subjects into 10 groups, each with an equal number of controls and schizophrenia 

patients.1 We fit the model using nine training groups and employ a likelihood ratio test to 

predict the diagnoses (NC or SZ) of the held-out subjects. In particular, our test compares 

the likelihood of the test subject being generated from the control and the schizophrenic 

templates

(21)

where  denotes the maximum a posteriori estimate for the latent templates 

when fitted to the training data, and {Dn, Bn} represents the observed DWI and fMRI data of 

a given test subject.

This process is repeated for each training-test set combination. In addition, we repeat the 

ten-fold cross validation 20 times using different groupings of subjects to evaluate the 

variability of the results. For comparison, we perform ten-fold cross validation using the 

support vector machine (SVM) classifiers trained on the fMRI correlations and DWI 

tractography measures individually, as well as on the combined dataset.

C. Baseline Methods

To evaluate the performance gain from combining fMRI and DWI data, we construct 

separate generative models for each modality. These individual models are depicted in Fig. 

2. In these baseline models, we sever the connection between the anatomical connectivity 

templates and the fMRI data for each population.

Since the DWI data is independent of the latent functional connectivity, all parameters, 

random variables and data likelihoods remain unchanged for the DWI-only model [Fig. 

2(a)].

The only modification in the fMRI-only model [Fig. 2(b)] involves the observed fMRI data. 

In particular, there are only three sets of likelihood parameters {μ, σ2} corresponding to the 

three latent functional connectivity states. Formally, we replace the likelihood in (4) with

(22)

for the control subjects and

1Our clinical dataset consists of 19 patients and 19 controls, which we divide into nine groups of four subjects and one group of two 
subjects. These groups specify the testing sets in our classification experiments. Since we infer differences between the populations, it 
is important to maintain equal numbers of control and schizophrenia subjects in each group to avoid biasing the solution towards one 
population.
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(23)

for the schizophrenia population.

We employ EM solutions, similar to those in Section IV. The empirical probabilities of 

change  are computed according to (20) by replacing p̂nl with the posterior estimates of 

the appropriate model.

We perform permutation tests and cross validation using the DWI- and fMRI-specific 

models. These results allow us to evaluate the benefits of incorporating both imaging 

modalities in our analysis.

D. Implementation Details

In this section we describe the optimization choices in our implementation of the EM 

algorithm. We concentrate on the model of population differences, as it is the primary focus 

of this work.

1) Initialization—Like many hill-climbing methods, the quality of our results depends on 

proper initialization. We initialize the model parameters Θ = {π, μ, σ2, ρ, χ, ξ2, ε} based on 

empirical measures computed from the clinical data. In particular, we randomly sample the 

initial values of πa, , εa and εf from the interval [0.3, 0.6]. This scheme produces values 

near the center of the parameter space. We set  and  to the variances (across all 

connections and subjects) of the fMRI correlations and the nonzero DWI data, respectively. 

We set μi0 = 0,  and . This captures our assumptions about the effect of 

latent functional connectivity on fMRI correlations and reflects the fact that the relationship 

between latent anatomical connectivity and fMRI data is less clear. Finally, we randomly 

sample χ0 and χ1 from the range of DWI FA values and generate ρ0 > ρ1.

It is sufficient to initialize the model parameters. The algorithm starts with computing the 

joint posterior probability distribution (E-Step). Empirically, we find that the results are 

stable with respect to different initializations of the model parameters. Therefore, we run the 

algorithm five times to sample the probability space and select the maximum likelihood 

solution.

2) Convergence and Run Time—We ran the EM algorithm ten times using different 

subsets of subjects in each cross validation iteration. Convergence was based on the relative 

change in log-likelihood between iterations. On average, the algorithm converges in 87 

iterations (E-step/M-step updates), and the average runtimes is 1.2 s per iteration. Thus, it 

requires on average 1.7 min to solve the model using EM. The iteration runtime scales 

linearly with the number of subjects. All simulations were performed using MATLAB on a 

single processor modern workstation.
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VI. Experimental Results—Synthetic Data

We first evaluate the robustness and sensitivity of our algorithm using synthetic data. 

Throughout this section, we fix the Gaussian variances  and 

, which corresponds to the parameter values estimated in the clinical 

dataset.

In all synthetic experiments, we fix the latent template and sample the observed data {Bnj, 

Bnm, Dnj, Dnm}, assuming 20 subjects in each population. We then infer the original latent 

templates from these noisy measurements. The error is computed as the proportion of 

connections for which the maximum a posteriori connectivity estimates do not match the 

ground truth templates. We repeat the experiment ten times to collect error statistics.

In the first experiment, we assume that the latent connectivity templates are similar for both 

populations. Specifically, the control templates have 180 pairwise connections for each of 

the six distinct values of latent connectivity templates {An, Fn} (N = 1080, comparable to the 

clinical dataset), and we randomly alter a small percentage of connections to obtain the 

schizophrenia templates. This mimics our clinical result that the changes induced by 

schizophrenia occur in a small yet spatially-distributed subset of connections.

We fix the fMRI likelihood parameters at μ00 = μ10 = 0, μ01 = −μ0, −1 = 0.1 and μ11 = −μ1, −1 

= 0.15. The resulting quantities |μ01 − μ0, −1| = 0.2 and |μ11 − μ1, −1| = 0.3, which determine 

the separation between fMRI distributions for positive and negative latent functional 

connectivity, correspond to those estimated in the clinical dataset. Likewise, we fix the DWI 

likelihood parameters at χ0 = 0.45, χ1 = 0.55, ρ0 = 0.6, and ρ1 = 0.4. The quantity |χ1 − χ0| = 

0.1, which influences the separation between DWI distributions for present and absent latent 

anatomical connectivity, is equivalent to that of the clinical dataset. The values for ρ0 and ρ1 

are much closer than what we estimate from real data. Otherwise, we find that anatomical 

connectivity is perfectly recovered, and we cannot probe the model’s behavior.

Fig. 3 shows the errors in determining the latent templates both for the consistent 

connections and for the connections affected by the disorder. The bold lines in Fig. 3 

represent the average error over ten independent samples of the entire data set. The error 

bars represent one standard deviation. Clearly, when the proportion of affected connections 

is small, the algorithm has slightly more difficulty identifying them. Similarly, if the 

proportion of affected connections is large, the algorithm has difficulty recovering the 

consistent connections. For example, when 10% of connections are affected, the model 

correctly identifies 97% of them. But if 90% of the connections are affected, the model 

recovers 99% of them. The maximum error is less than 10%. This suggests that our 

algorithm can accurately fit the model, which is promising for the application to clinical 

data.

In the second experiment, we explore the breakdown points of our model. We consider the 

case when the DWI likelihood distributions provide little information about latent 

anatomical connectivity as well as the case when the fMRI likelihood distributions are 

nearly uninformative about latent anatomical and/or functional connectivity.
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We parameterize the DWI model as follows:

(24)

where a, b ≥ 0. The parameter a controls the difference in DWI distributions for the two 

underlying anatomical connectivity values. The parameter b determines to how much more 

likely one is to find a DWI tract between two regions given a direct anatomical connection 

than if no connection is present.

We parameterize the Gaussian means for the fMRI model as follows:

(25)

where c, d ≥ 0. The parameters c and d control the functional separation in the absence and 

presence of a latent anatomical connection, respectively. The quantity (d − c) relates to the 

effect anatomical connectivity has on the magnitude of fMRI correlations. This setup allows 

for adequate flexibility in manipulating the generative process while simultaneously 

reducing the number of free parameters to explore.

We assume a uniform distribution of latent connectivity values; the templates contain 30 

pairwise connections for each of the 36 values of {An, Fn, Ān, F̅
n} (N = 1080). We generate 

20 subjects from each population and sweep the parameters in (24) and (25). For each 

parameter set, we generate data from the two-population model in Fig. 1(b) and solve for the 

latent connectivity. We repeat this procedure several times to ensure stability of the reported 

behavior.

First, we fix the DWI parameterization such that the probability of finding a tract is slightly 

greater than 0.5 given a latent anatomical connection (b = 0.05), and such that there is no 

difference in DWI likelihood when a tract is observed (a = 0). Fig. 4 reports the errors in 

predicting connectivity changes between the populations. We observe that as c, d increase 

from zero, the algorithm uses the fMRI data and the slight difference in DWI likelihood to 

estimate latent functional connectivity. Another interesting observation is the predictable dip 

in error in Fig. 4(a) when c, d ≥ σ = 0.1 and |d − c| ≥ σ. In this case, the fMRI likelihoods 

based on positive/negative latent functional connectivity are simultaneously far from zero 

and distinct given the presence or absence of a latent anatomical pathway. The algorithm 

uses the first separation (far from zero) to identify latent functional connectivity and the 

second (based on anatomy) to infer latent anatomical connectivity.
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Second, we fix the fMRI parameterization such that there is a slight separation between the 

mixture distributions given the presence of a latent anatomical connection (c = 0, d = 0.05). 

Fig. 5 reports the errors in predicting the connectivity changes. An informative DWI 

likelihood (higher values of a, b) allows us to correctly estimate the anatomical templates. 

However, it does not improve the estimates of latent functional connectivity. This is because 

our model does not include a direct link between the functional templates and the DWI data.

In summary, highly separable fMRI data allows us to estimate the functional templates and 

improves slightly our inference of latent anatomical connectivity. In contrast, highly 

separable DWI data produces accurate anatomical templates but does not improve the 

functional connectivity estimates. When both datasets are informative, the algorithm 

recovers all the latent templates and model parameters.

VII. Experimental Results—Clinical Data

A. Image Acquisition and Preprocessing

We demonstrate our model on a study of 19 male patients with chronic schizophrenia and 19 

healthy male controls. The control participants were group matched to the patients on age, 

handedness, parental socioeconomic status, and an estimated premorbid IQ. For each 

subject, an anatomical scan (SPGR, TR = 7.4 s, TE = 3 ms, FOV = 26 cm2, res = 1 mm3), a 

diffusion-weighted scan (EPI, TR = 17 s, TE = 78 ms, FOV = 24 cm, res = 1.66 × 1.66 × 1.7 

mm, 51 gradient directions with b = 900 s/mm2, 8 baseline scans with b = 0 s/mm2) and a 

resting-state functional scan (EPI-BOLD, TR = 3 s, TE = 30 ms, FOV = 24 cm, res = 1.875 

× 1.875 × 3 mm) were acquired using a 3T GE Echospeed system.

We segmented the structural images into 77 anatomical regions with Freesurfer [36]. The 

DWI data was corrected for eddy-current distortions using the FSL FLIRT algorithm [37]. A 

two-tensor tractography was used to estimate the white matter fibers [38]. We computed the 

DWI connectivity for connection n in subject j by averaging FA along all fibers that connect 

the corresponding regions. If no tracts were found, Dnj was set to zero.

We discarded the first five fMRI time points and performed motion correction by rigid body 

alignment and slice timing correction using FSL [37]. The data was spatially smoothed 

using a Gaussian filter, temporally low-pass filtered with 0.08 Hz cutoff, and motion 

corrected via linear regression. Finally, we removed global contributions to the time courses 

from the white matter, ventricles and the whole brain. We extracted the fMRI connectivity 

Bnj for connection n in subject j by computing Pearson correlation coefficients of the time 

courses between every pair of voxels in the two regions, applying the Fisher-r-to-z transform 

to each correlation (to enforce normality), and averaging these values. Since our anatomical 

regions are large, the correlation between the mean time courses of two regions shows poor 

correspondence with the distribution of voxel-wise correlations between them. Therefore, 

we believe our measure is more appropriate for fMRI correlations across subjects than the 

standard correlation of mean time courses.

To inject prior clinical knowledge, we preselected eight brain structures (corresponding to 

16 regions) that are believed to play a role in schizophrenia: the superior temporal gyrus, 
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rostral middle frontal gyrus, hippocampus, amygdala, posterior cingulate, rostral anterior 

cingulate, parahippocampal gyrus, and transverse temporal gyrus. We model only the 

 unique pairwise connections between these ROIs and all other 

regions in the brain.

B. Empirical Study of Data Distributions

In this section we present aggregate properties of our data, which motivate our choice of 

likelihood parameterization in Section III. We group both populations together, as the 

differences induced by schizophrenia are subtle and do not affect the global distributions.

We first fit the distributions of fMRI correlations and DWI FA values to our likelihood 

model in (3) and (4). Since we cannot access the latent connectivity An and Fn, we 

approximate these variables by working with average measures of the data across subjects. 

In particular, we threshold the proportion of subjects that exhibit white matter tracts between 

regions to estimate Ân. Similarly, we threshold the average fMRI correlations to estimate F̂
n. 

We then analyze the distribution of DWI FA values and fMRI correlations across all 

connections in all subjects.

Fig. 6 depicts the histograms of fMRI correlations for all combinations of estimated latent 

connectivity. Fig. 7 illustrates histograms of the nonzero DWI values for the two types of 

anatomical connectivity. We have overlaid the fitted Gaussian distributions in each plot. The 

yellow dots correspond to empirical means. We observe that the variability in DWI and 

fMRI data across connections is across subjects are reasonably approximated using Gaussian 

distributions.

Fig. 7 also suggests that the average DWI measure is slightly higher for connections in 

which tractography identifies white matter tracts in only a few subjects (Ân = 0). We explore 

this phenomenon by considering the distribution of FA values along all fibers when (1) 

white matter tracts are detected in all subjects, and (2) white matter tracts are detected in 

only one subject. Our analysis considers the first scenario to represent a “true” anatomical 

connection and the second to be spurious fibers. Fig. 8 illustrates the histograms of two 

representative connections for each of the above cases.

Empirically, we find that the distributions of FA values along spurious fibers is more 

uniformly distributed across a broad range of values (FA ∈ [0.2, 0.8]), whereas the 

distribution along true fibers is concentrated towards the lower end of this range (FA ∈ [0.3, 

0.5]). The average FA for a false-positive connection is higher than the FA for a correctly-

identified connection.

There are several factors which may contribute to this phenomenon. In particular, since 

tractography is guided by the estimated tensors, perhaps the algorithm latches onto 

artificially high anisotropy in the DWI images to produce these erroneous tracts. Our two-

tensor tractography algorithm [38] may also play a role. We fit one tensor along the main 

fiber bundle and use a second tensor to account for residual anisotropy. Our tractography 
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algorithm computes only FA along the main fiber, which may impact the overall 

distribution.

C. Joint Connectivity Model for the Clinical Data

We first fit the joint model in Fig. 1(a) to each population separately, as well as to the entire 

dataset. Table III reports the parameters of the three cases. We observe that the two solutions 

{π․μ, σ, ρ, χ, ξ} are largely consistent between the groups and for the combined case. This 

supports our hypothesis that population differences appear in the latent connectivities rather 

than in the data likelihood parameters.

Table III highlights some interesting properties of the data. For example, μ0k < μ1k for all k, 

which indicates that the presence of an anatomical connection between two regions 

increases the mean functional correlation. This result is consistent with prior work [4], [5]. 

Additionally, χ0 > χ1 implies that false-positive white matter tracts have higher mean FA 

values than correctly-identified white matter tracts. This is consistent with our empirical 

evaluation of the data in Section VII-B.

D. Population Study

Fig. 9 depicts the significantly different (εn̂ > 0.5) anatomical and functional connections 

identified by the algorithm. In this case, we identify connections with an uncorrected p-value 

of 0.05. Tables IV–V report the corresponding region pairs and significance values. Fig. 10 

shows representative DWI fibers for the significant anatomical connections identified by the 

joint model. In each case, we display the corresponding tracts within a single subject from 

the population with higher connectivity. We note that the results of the joint model do not 

completely agree with those of the single-modality models.

Fig. 11 displays the connectivity differences while ensuring a false discovery rate of 0.05 

[39]. We observe that few connections survive the stringent threshold. However, the 

uncorrected results yield patterns that have previously been reported in the schizophrenia 

literature and are linked to clinical hypotheses regarding the disorder. For example, we 

observe that schizophrenia patients exhibit increased functional connectivity between the 

parietal/posterior cingulate region and the frontal lobe and reduced functional connectivity 

between the parietal/posterior cingulate region and the temporal lobe in Fig. 9. These results 

confirm the findings of functional abnormalities involving the default network and of 

widespread functional connectivity changes in schizophrenia [10], [22]. Likewise, the 

differences in anatomical connectivity are distributed across the brain.

In our experiments, we also observe consistency in parameter estimates across random 

subject relabelings in the permutation procedure (not shown). This suggests that the main 

effects of the label permutations are reflected in the latent connectivity rather than in the 

data likelihood.

Fig. 12 reports classification accuracy for the joint generative model, for the individual 

generative models, and for the SVM classifiers. Training accuracy is presented as validation 

that the model does learn discriminative features.
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We acknowledge the low classification accuracy in Fig. 12 but emphasize that our model is 

not formulated for classification. In contrast, we aim to understand the interaction between 

fMRI and DWI data using a set of assumptions about connectivity and schizophrenia. 

Differences between the two populations are modeled through shifts in the likelihood 

parameters rather than by changes in specific fMRI and DWI values. Therefore, we do not 

expect our approach to achieve the performance of algorithms specifically tailored for 

classification, such as SVM. Rather, Fig. 12 illustrates three main points. First, the joint 

model achieves above-chance generalization accuracy. This suggests that the underlying 

connectivity might play a role in schizophrenia. Second, modeling anatomical and functional 

connectivity jointly yields predictive advantages over treating the fMRI and DWI data 

separately. Finally, the SVM accuracy is quite low. This underscores the well-documented 

challenge of finding robust functional and anatomical changes induced by schizophrenia 

[24], [40]. We note that much of the prior work on classification in schizophrenia did not 

rely on the modalities used in this paper. In particular, most reported classifiers consider 

volumetric changes found in T1 MRI [41] or activation patterns from task-based fMRI [42]. 

A few studies have focused on resting-state fMRI [26] or DTI tractography [43]. In all cases 

specialized classifiers were fine-tuned in order to obtain high accuracy.

VIII. Discussion

We formulate a generative model to infer changes in functional and anatomical connectivity 

induced by schizophrenia using both resting-state fMRI correlations and DWI tractography, 

and we present an algorithm for maximum likelihood estimation of the model parameters. 

We simultaneously obtain the joint posterior probability distribution of all the hidden 

variables, which allows us to identify population differences.

One interesting observation is the symmetry of functional connectivity differences across the 

hemispheres in Fig. 9(b) and (d). In particular, if a given functional connection shows 

significant differences between the populations, then functional connections involving those 

same regions in the opposite hemisphere tend to also be significant. This may arise from the 

well-documented symmetry found in resting-state fMRI correlations [34].

In contrast to functional connectivity, the model identifies few significant anatomical 

connections, only two of which are consistent between the algorithms. Moreover, the inter-

hemispheric connections in Fig. 9(a) do not correspond to direct neural pathways within the 

brain. Rather, these connections arise from artifacts in the DWI images as well as from the 

behavior of our two-tensor tractography algorithm [38]. In particular, our algorithm recovers 

a much richer set of white matter fibers relative to single-tensor methods. However, this set 

includes a larger number of false-positive tracts.

The results may also be influenced by our selection of regions. If the regions are too small, 

the variability in DWI tractography across subjects makes it difficult to infer the template 

anatomical connectivity and group-level parameters. However, larger regions smooth out 

important functional connectivity information. In this work, we rely on Brodman regions 

identified by Freesurfer. Brodman areas provide anatomically meaningful correspondences 

across subjects that roughly correspond to functional divisions within the brain. Moreover, 
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these regions are large enough to ensure stable tractography results. We address the 

functional smoothing by computing all pairwise correlations between voxels in two regions. 

This yields the entire distribution of functional connectivity. Presently, we select the mean 

of this distribution as a measure of functional correlation. However, other statistics can be 

incorporated as well (for example, mode of the distribution, variance, fitting to 

parameterized distributions). Finally, we emphasize that our framework applies readily to 

any set of ROIs that are defined consistently across subjects.

Despite the limited differences in anatomical connectivity, one justification for including the 

DWI data is the improved classification. We observe that combining fMRI and DWI data 

achieves better generalization accuracy than that of similar models built from one of these 

modalities. Additionally, most significant functional connections obtained through the 

individual fMRI model are not consistent with those obtained via the joint models. Our 

experience with the algorithms suggests that that the joint model focuses on the presence or 

absence of a white matter tract between two regions (rather than differences in FA) to 

determine latent anatomical connectivity. In particular, if several subjects exhibit a 

connection, then An is likely to be one; otherwise, it is likely to be zero. This is supported by 

results in synthetic data. Given a large difference in the probabilities of not finding a tract 

(e.g., ρ0 ≈ 0.65 and ρ1 ≈ 0.1, as estimated from the data), our algorithm correctly 

distinguishes latent anatomical connectivity, regardless of FA values. Once the anatomical 

connectivity pattern has been determined, the algorithm partitions the functional correlations 

into two groups. The mean functional correlation increases when there is a latent anatomical 

connection, which is reflected in the parameter estimates. The algorithms can reassign 

“borderline” connections based on the parameter/posterior estimates. We believe that this 

partition of fMRI correlations based on anatomical connectivity stabilizes the estimates of 

latent functional connectivity. This, in turn, allows the joint model to better explain 

differences between two populations.

The significant (uncorrected) connections in Fig. 9 may reveal underlying neurological 

changes induced by the disease. We observe increased functional connectivity between the 

parietal/posterior cingulate region and the frontal lobe and reduced functional connectivity 

between the parietal/posterior cingulate region and the temporal lobe in the schizophrenia 

population.

When the results are corrected for multiple comparisons Fig. 11, the majority of functional 

connectivity differences disappear. However, the pattern of group differences seems to be 

preserved. Namely, reduced anatomical and functional connectivity in schizophrenia 

patients is limited to connections between the posterior cingulate cortex and the temporal 

lobe, while increased functional connectivity in schizophrenia appears between the posterior 

cingulate cortex and the medial/inferior frontal regions.

Increased connectivity between the default network and the medial frontal lobe, both at rest 

and during task, has been reported in schizophrenia [10], [44]. It is believed to interfere with 

perception of the external world through the misdirecting of attentional resources. 

Interestingly, decreased connectivity within the default network has been described as well 

[23], [31]. The later study reported decreased functional connectivity between the posterior 

Venkataraman et al. Page 20

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cingulate gyrus and the hippocampus, which is consistent with our findings. The relationship 

between disruptions in functional connectivity and the integrity of the fornix has also been 

suggested. Similar to [23], our results reveal anatomical abnormalities within the two 

consistent anatomical connections (between the posterior cingulate and the hippocampus 

and between the superior temporal gyrus and the cuneus), which exhibits reduced 

anatomical connectivity in schizophrenia. We also observe a relationship between 

anatomical and functional connectivity disruptions within the posterior/temporal parts of the 

default network. Along with prior findings, our results suggest an inverse relationship 

between connectivity in the temporal and frontal parts of the default network. Such 

“anticorrelations” have been previously described between the default and task-related 

networks, but never within the default network itself.

We recognize the limitations of our joint generative model, especially those related to its 

simplicity. For example, we consider only direct anatomical connections between two 

regions while ignoring multistage pathways. In reality, there is some interaction between 

connections, which can be used to extract anatomical and functional networks within the 

brain. We model latent connectivity via discrete random variables, which may marginalize 

subtle variations between groups, and we assume that all subject data are drawn from the 

same distribution, whereas the strength of fMRI correlations and FA values can vary across 

subjects. Finally, the relationship between the modalities is captured through the link from 

anatomical connectivity to fMRI correlations.

These choices are deliberate on our part. Since the interaction between resting-state fMRI 

correlations and DWI tractography is neither well understood nor well characterized, we 

avoid placing strong prior assumptions on the structural-functional relationship. Our goal at 

this stage is to model what we observe from the data using a simple, robust framework. 

Furthermore, given the potentially large amounts of inter-subject variability and external 

noise, we intentionally simplify the model to reduce the number of parameters and avoid 

over-fitting. These limitations provide ample opportunities for future work.

IX. Conclusion

We proposed a novel probabilistic framework that fuses information from resting-state fMRI 

correlations and DWI tractography to infer the differences between two populations. We 

show that the model captures variations in functional and anatomical connectivity induced 

by schizophrenia. In particular, we detect increased functional connectivity from the parietal 

lobe to the frontal lobe and decreased functional connectivity from the parietal lobe to the 

temporal lobe. Finally, we demonstrate the predictive power of our joint model through 

cross validation. These results establish the promise of our approach for combining multiple 

imaging modalities to better understand the brain.
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Fig. 1. 
(a) Joint connectivity model for a single population. The pairwise connections are indexed 

with n = 1, …, N. An represents the latent anatomical connectivity of the nth connection, and 

Fn denotes the corresponding latent functional connectivity. Dnj and Bnj are the observed 

DWI and fMRI measurements, respectively, for the nth connection in the jth subject. 

Squares indicate nonrandom parameters; circles indicate random variables; observed 

variables are shaded. (b) Joint model for the effects of schizophrenia. The control population 

is generated according to the model in (a). The schizophrenia templates are identified by an 

overbar, and the subjects are indexed by m = 1, …, M. (a) Joint fMRI/DWI model. (b) 

Model of population differences.
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Fig. 2. 
Baseline models of population differences for a single modality. Once again, the pairwise 

connections are indexed with n = 1, …, N. An represents the latent anatomical connectivity 

of the nth connection, and Fn denotes the corresponding latent functional connectivity. Dnj 

and Bnj are the observed DWI and fMRI measurements, respectively, for the nth connection 

in the jth subject. The schizophrenia templates are identified by an overbar, and the subjects 

are indexed by m = 1, …, M. Squares indicate non-random parameters; circles indicate 

random variables; observed variables are shaded. The variables, parameters and likelihood 

of (a) remains unchanged from the joint model. The likelihood in (b) is modified to reflect 

only the three functional connectivity states. (a) DWI-only Model, (b) fMRI-only Model.
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Fig. 3. 
Proportion of mislabeled connectivity relationships as a function of the proportion of latent 

connections affected by the disease. The bold lines represent the average error over 10 

resamplings of the observed data {Bnj, Bnm, Dnj, Dnm}. The error bars represent one standard 

deviation from the mean. The likelihood parameterization is fixed at μ00 = μ10 = 0, μ01 = 

−μ0,−1 = 0.1, μ11 = −μ1,−1 = 0.15, χ0 = 0.45, χ1 = 0.55, ρ0 = 0.6, and ρ1 = 0.4, which mimics 

the behavior of our clinical dataset. (a) Anatomical. (b) Functional.
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Fig. 4. 
Proportion of mislabeled connectivity relationships between the latent templates. The bold 

lines represent the average error over 10 resamplings of the observed data {Bnj, Bnm, Dnj, 

Dnm}. The error bars represent one standard deviation from the mean. The DWI likelihood 

parameterization is fixed at a = 0 and b = 0.05. (a) Anatomical. (b) Functional.
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Fig. 5. 
Proportion of mislabeled connectivity relationships between the latent templates. The error 

is averaged over 10 resamplings of the data. The fMRI likelihood parameterization is fixed 

at c = 0 and d = 0.05. (a) Anatomical. (b) Functional.
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Fig. 6. 
Histograms of fMRI correlations based on estimated connectivity. Gaussian distributions 

that have been fitted to the data are overlaid in red. The yellow dots correspond to empirical 

means. (a) Ân = 0, F̂
n = −1. (b) Ân = 0, F̂

n = 0. (c) Ân = 0, F̂
n = 1. (d) Ân = 1, F̂

n = −1. (e) Ân 

= 1, F̂
n = 0. (f) Ân = 1, F̂

n = 1.
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Fig. 7. 
Histograms of nonzero DWI data based on estimated anatomical connectivity. Gaussian 

distributions that have been fitted to the data are overlaid in red. The yellow dots correspond 

to empirical means. (a) Ân = 0. (b) Ân = 1.
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Fig. 8. 
Histograms of FA values along fibers for representative connections detected in all subjects 

[(a), (b)] and representative connections detected in a single subject [(c), (d)]. (a) R-

Parahippocampal ↔ R-Hippocampus. (b) L-Posterior Cingulate ↔ L-Postcentral. (c) R-

Cuneus ↔ L-Transverse Temporal Gyrus. (d) R-Rostral Anterior Cingulate ↔ R-Inferior 

Parietal.
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Fig. 9. 

Significant anatomical and functional connectivity differences (p < 0.05 and ). 

Blue lines indicate higher connectivity in the control group; yellow lines indicate higher 

connectivity in the schizophrenia population. (a), (b) Derived from the joint DWI/fMRI 

model. (c) Significant anatomical connections from the DWI-only model. (d) Significant 

functional connections from the fMRI-only model. (a) Joint Model, Anatomical. (b) Joint 

Model, Functional. (c) DWI-only Model. (d) fMRI-only Model.
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Fig. 10. 
Representative DWI fibers for each of the significant anatomical connections identified by 

the joint model in Table IV. The corresponding ROIs are displayed in pink; the fibers are 

depicted in yellow. (a) L-Posterior Cingulate ↔ L-Hippocampus. (b) L-Superior Temporal 

Gyrus ↔ L-Cuneus. (c) R-Transverse Temporal ↔ L-Thalamus Proper. (d) R-Posterior 

Cingulate ↔ R-Rostral Anterior Cingulate.
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Fig. 11. 
Significant anatomical and functional connectivity differences with false discovery rate of 

0.05. Blue lines indicate higher connectivity in the control group; yellow lines indicate 

higher connectivity in the schizophrenia population. (a), (b) Derived from the joint DWI/

fMRI model. (c) Significant anatomical connections from the DWI-only model. (d) 

Significant functional connections from the fMRI-only model. (a) Joint Model, Anatomical. 

(b) Joint Model, Functional. (c) DWI-only Model. (d) fMRI-only Model.
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Fig. 12. 
Training and testing accuracy of ten-fold cross validation using the joint generative model, 

the individual fMRI and DWI models and a linear SVM classifier. Red results are obtained 

using both modalities; green results are based only the DWI data; blue results are acquired 

from the fMRI data. The box denotes the upper and lower quartiles, the line indicates the 

median values, and the whiskers correspond to the 10th and 90th percentiles. (a) Training 

Accuracy. (b) Testing Accuracy.

Venkataraman et al. Page 36

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Venkataraman et al. Page 37

TABLE I

Random Variables (Top) and Nonrandom Parameters (Bottom) in Our Graphical Model Shown in Fig. 1

An Latent anatomical connectivity for the nth connection in the control population

Ān Latent anatomical connectivity for the nth connection in the schizophrenia population

Fn Latent functional connectivity for the nth connection in the control population

F̄
n

Latent functional connectivity for the nth connection in the schizophrenia population

Dnj Observed DWI measure for connection n in subject j

Bnj Observed fMRI measure for connection n in subject j

πa Prior for binary anatomical connectivity An

πf Prior for multinomial functional connectivity Fn

εa Probability of change in anatomical connectivity

εf Probability of change in functional connectivity

ρi Probability of failing to find a white matter tract given that An = i (i = 0, 1)

χi Mean DWI value if there is a white matter tract given that An = i (i = 0, 1)

Variance of DWI values if there is a white matter tract given that An = i (i = 0, 1)

μik Mean fMRI value given that An = i and Fn = k (i = 0, 1, k = −1, 0, 1)

Variance of fMRI values given that An = i and Fn = k (i = 0, 1, k = −1, 0, 1)
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TABLE II

Likelihood Parameter Updates for the Model of Population Differences
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TABLE IV

Significant Anatomical and Functional Connections Based on the Joint Generative Model in Fig. 1(b)

Anatomical Connections

Region 1 Region 2 p

L Posterior Cingulate (L-PCC) L Hippocampus (L-Hipp) 0.0001 0.85

L Superior Temporal (L-STG) L Cuneus (L-Cun) 0.0095 0.94

R Transverse Temporal (R-TTG) L Thalamus-Proper (L-ThP) 0.031 0.99

R Posterior Cingulate (R-PCC) L Rostral Anterior Cingulate (L-RAC) 0.042 0.97

Functional Connections

Region 1 Region 2 p

R Paracentral (R-pC) L Transverse Temporal (L-TTG) 0.0001 0.88

R Pars Triangularis (R-pTri) L Posterior Cingulate (L-PCC) 0.0001 0.79

R Posterior Cingulate (R-PCC) L Amygdala (L-Amy) 0.0005 0.95

L Transverse Temporal (L-TTG) L Paracentral (L-pC) 0.0005 0.54

L Posterior Cingulate (L-PCC) L Amygdala (L-Amy) 0.0015 0.92

R Transverse Temporal (R-TTG) L Precentral (L-preCG) 0.0035 0.71

R Precentral (R-preCG) L Transverse Temporal (L-TTG) 0.0045 0.59

R Rostral Anterior Cingulate (R-RAC) L Pars Opercularis (L-pOper) 0.0095 0.78

R Posterior Cingulate (R-PCC) R Caudal Middle Frontal (R-CMF) 0.015 0.98

R Rostral Anterior Cingulate (R-RAC) L Entorhinal Cortex (L-Ent) 0.015 0.64

R Precuneus (R-pCun) R Parahippocampal (R-PHipp) 0.019 0.79

R Inferior Temporal (R-InfT) L Parahippocampal (L-PHipp) 0.020 0.73

R Rostral Anterior Cingulate (R-RAC) R Pars Opercularis (R-pOper) 0.0205 0.83

R Pars Opercularis (R-pOper) L Rostral Anterior Cingulate (L-RAC) 0.021 0.99

R Pars Orbitalis (R-pOrb) L Transverse Temporal (L-TTG) 0.023 0.69

R Rostral Anterior Cingulate (R-RAC) R Putamen (R-Put) 0.025 0.73

R Rostral Middle Frontal (R-RMF) R Corpus Callosum (R-CC) 0.031 0.81

L Transverse Temporal (L-TTG) L Caudal Anterior Cingulate (L-CAC) 0.031 0.74

R Posterior Cingulate (R-PCC) L Pericalcarine (L-Peri) 0.032 0.56

R Paracentral (R-pC) L Amygdala (L-Amy) 0.036 0.54

L Posterior Cingulate (L-PCC) L Putamen (L-Put) 0.043 0.95

R Caudal Middle Frontal (R-CMF) L Posterior Cingulate (L-PCC) 0.044 0.88

L Precuneus (L-pCun) L Parahippocampal (L-PHipp) 0.0465 0.52
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TABLE V

Significant Anatomical (Top) and Functional (Bottom) Connections Based on the Single-Modality Generative 

Models in Fig. 2

Anatomical Connections

Region 1 Region 2 p-value

L Posterior Cingulate (L-PCC) L Hippocampus (L-Hipp) 0.012 0.75

L Superior Temporal (L-STG) L Cuneus (L-Cun) 0.029 0.79

R Posterior Cingulate (R-PCC) L Rostral Anterior Cingulate (L-RAC) 0.030 0.99

R Rostral Middle Frontal (R-RMF) L Precentral (L-preCG) 0.039 0.93

R Transverse Temporal (R-TTG) R Precentral (R-preCG) 0.048 0.52

Functional Connections

Region 1 Region 2 p-value

R Pars Opercularis (R-pOper) L Posterior Cingulate (L-PCC) 0.0009 0.97

R Paracentral (R-pC) L Transverse Temporal (L-TTG) 0.0014 0.88

R Transverse Temporal (R-TTG) R Paracentral (R-pC) 0.021 0.98

R Transverse Temporal (R-TTG) L Paracentral (L-pC) 0.022 0.72

R Precentral (R-preCG) L Superior Temporal (L-STG) 0.023 0.58

R Posterior Cingulate (R-PCC) R Caudate (R-Caud) 0.027 0.55

R Precuneus (R-pCun) R Parahippocampal (R-PHipp) 0.040 0.54

R Superior Temporal (R-STG) R Paracentral (R-pC) 0.043 0.75
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