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Abstract—Here we introduce a general class of multiple calibration birth—death tree priors for use in Bayesian phylogenetic
inference. All tree priors in this class separate ancestral node heights into a set of “calibrated nodes” and “uncalibrated nodes”
such that the marginal distribution of the calibrated nodes is user-specified whereas the density ratio of the birth—death prior
is retained for trees with equal values for the calibrated nodes. We describe two formulations, one in which the calibration
information informs the prior on ranked tree topologies, through the (conditional) prior, and the other which factorizes
the prior on divergence times and ranked topologies, thus allowing uniform, or any arbitrary prior distribution on ranked
topologies. Although the first of these formulations has some attractive properties, the algorithm we present for computing
its prior density is computationally intensive. However, the second formulation is always faster and computationally efficient
for up to six calibrations. We demonstrate the utility of the new class of multiple-calibration tree priors using both small
simulations and a real-world analysis and compare the results to existing schemes. The two new calibrated tree priors
described in this article offer greater flexibility and control of prior specification in calibrated time-tree inference and
divergence time dating, and will remove the need for indirect approaches to the assessment of the combined effect of
calibration densities and tree priors in Bayesian phylogenetic inference. [Bayesian inference; birth-death tree prior; BEAST;

fossil calibrations; multiple calibrations, Yule prior.]

Divergence time dating and phylogenetic inference
are related concerns. Recent advances in Bayesian
phylogenetic inference (Rannala and Yang 1996; Yang
and Rannala 1997; Huelsenbeck and Ronquist 2001;
Drummond and Rambaut 2007) have culminated in the
field of relaxed phylogenetic inference, in which both
divergence times and phylogenetic relationships are
simultaneously estimated (Drummond et al. 2006). This
estimation is aided by relaxed molecular clocks (Thorne
et al. 1998; Kishino et al. 2001; Thorne and Kishino 2002;
Drummond et al. 2006; Rannala and Yang 2007) which
reconcile nonclock-like evolution with an underlying
time-tree in which common ancestors are placed on an
axis of time. To produce results on an absolute time
scale it is necessary to either provide information on
the rate of molecular evolution or alternatively calibrate
a subset of internal nodes with a calibration density
(Thorne et al. 1998; Drummond et al. 2006; Yang and
Rannala 2006). Either way, in a Bayesian setting, a
tree prior must also be placed on all the uncalibrated
divergence times. The tree prior is a function that
assigns a prior probability density to every possible
tree. Arguably the simplest tree priors are the one-
parameter Yule model (Yule 1924) and the two-parameter
birth—-death model (Nee et al. 1994b; Gernhard 2008).
The latter has been suggested as an appropriate null
model for species diversification Nee et al. (1994a) and
has been extended to include additional parameters to
model various types of incomplete sampling (Yang and
Rannala 1997; Stadler 2009b; Hohna et al. 2011). The other
commonly used tree prior, the coalescent (Kingman
1982), is typically deployed when all the samples are
from the same species. The coalescent is not handled
here but calibration information for a specific group

of individuals usually does not exist. However, the
calibrated prior can be used to calibrate a species tree,
within which the gene trees follow the “multispecies
coalescent” prior in a species-tree/gene-trees analysis
(Heled and Drummond 2010).

In a Bayesian setting, combining a calibration density
(on one or more divergences) with a tree prior into
a single calibrated tree prior for divergence time
estimation possesses a number of subtleties worthy of
note, which we cover under the following headings.

Fossil Bounds on a Single Divergence

Consider the simplest type of calibration to admit
uncertainty: The placement of an upper and a lower limit
on the age of a single divergence (/i¢) in the tree:

1/(u—1
mirar={ "

I<hc<u
. )
otherwise

A node calibration of this type is associated with a
specific subset of the taxa C. Throughout this article
our analytical results and implementations require that
these taxa are monophyletic in the phylogeny, and their
most recent common ancestor is the divergence that is
calibrated. The topology within the calibrated clade can
be subject to uncertainty, as can the topology outside
the calibrated clade, but the existence of the clade is a
condition of the calibration.

This simple approach to calibration already has two
quite distinct interpretations in a Bayesian setting when
considered within the context of an overall tree prior
on all divergence times. One interpretation is that the
resulting marginal prior distribution on the calibrated
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divergence should obey the tree prior (e.g., Yule or
birth-death) but be constrained to be within the upper
and lower bounds, so that the full calibrated tree prior,
pG(')/ is:

p(h, WIA) o< fo(h, WA )pp(he), ()
where hi represents the set of all divergence times, s is the
ranked tree topology and A represents the parameter(s)
of the tree prior. The interpretation above was the only
one available in the BEAST software until recently (Heled
and Drummond 2012). An alternative “conditional-on-
calibrated-node-ages” interpretation is that the marginal
prior on the calibrated divergence should be uniform
between the upper and lower limits and the prior on
the remaining divergence times should follow the tree
process prior, fo(h, W|A), conditioned on the height of
the calibrated node (Yang and Rannala 2006):

pc(l, WIA) =fo(h\hc, WIA)pp(hc), 3)

There is a difference between these two prior
formulations regardless of whether the tree topology
is known or estimated. In a previous work Heled and
Drummond (2012) described how to efficiently compute
the latter formulation in the face of uncertainty in
tree topology for arbitrary single-divergence calibration
densities under the Yule tree prior.

Nested Calibrations

It has been routine in almost all treatments of
phylogenetic calibration so far to specify independent
univariate priors for each calibrated divergence time.
However, calibrated divergence times that are nested in
the tree are necessarily interdependent, such that the
more recent calibrated divergence of a nested pair must
be younger than the older calibrated divergence. If the
specified calibration densities overlap then the resulting
marginals of the joint prior will necessarily differ from
the specified calibration densities. We do not address
this issue here. However, the correct solution to this
problem is simply to specify ajoint prior on the calibrated
nodes that obeys the necessary condition that nested
nodes are order statistics and, therefore, not free to vary
independently.

The Influence of Calibrations on the Tree Topology Prior

Heled and Drummond (2012) demonstrated that a
natural interpretation of the “conditional-on-calibrated-
age” construction of a calibrated tree prior produces a
distribution that is non-uniform on ranked topologies.
However, we show in this article that the tree prior can
be decomposed into a prior on the node ages (both
calibrated and uncalibrated) and a prior on the set of
possible ranked histories. We show that this provides a
means to compute a tree prior rapidly if a uniform prior
on ranked trees is chosen. We compare this approach to
a computational intensive alternative that weighs each
ranked tree topology by its probability conditional on

the divergence times of the calibrated nodes. The latter
is a natural extension to our previous work to the case
of multiple calibrations and a birth—death process prior.
However, this extension turns out to be computationally
expensive except for some special cases where a closed-
form formula exists. We therefore advocate the former
approach (that always applies a uniform prior to ranked
trees) as a practical alternative.

METHODS
Consider the following notation:

n Number of taxa.

W The set of all ranked binary topologies on 7 taxa. We
keep n implicit to simplify the notation.

P A ranked tree ({ € ¥). See Gavryushkina et al. (2013)
for a formal definition of a ranked tree.

h ={hy,hy,--- ,hy_1:hj>h;;1 >0}, an ordered set of
divergence ages.

g =(h,{y), a time tree on n taxa.
G the space of all time trees.

A the parameters of the tree prior process. For the pure
birth (Yule) prior A ={X}, where X\ is the birth rate,
while A ={X,, p} for the birth—death prior, where
w is the death rate and p is the sampling rate.

6 =(Q,R), a pair of parameter vectors, one for the
substitution process Q2 and one for the rates of the
molecular clock, R.

Posterior Probability for Bayesian Inference

Without calibration, the posterior probability density
of (g, A,0) given a sequence alignment, D can be written:

The term Pr{D|g,6} is the phylogenetic likelihood
(Felsenstein 1981). The rates R and divergence times
h combine to provide branch lengths in units of
substitutions per site on the edges of . The term f5(g|A)
is the uncalibrated tree prior and it can be readily
factored in the following way:

Jo@IA)=f(h A)Pr(y|A). ©)

f(h|A) is easy to compute for the pure birth (Yule)
prior, birth-death prior or any prior whose equivalence
classes are defined entirely by the divergence time order
statistics. Under the Yule or birth—death prior without
calibrations, Pr(y|A)=|¥|"!, is a uniform prior on all
ranked topologies. However, this factorization is no
longer simple when calibrations are introduced (Heled
and Drummond 2012), and so we must develop an
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alternative approach to describing the calibrated tree
prior in the following sections, which we will call pg(-)
to distinguish from the uncalibrated tree prior f5(:).
Note that throughout the remaining sections the tree
priors are always conditional on A, but we suppress the
conditioning in the notation for the sake of clarity.

Calibrated Birth—Death Density
We introduce some extra notation for calibrations:

K Number of calibration points.

¢ Set of conditions on W, typically clade monophyly
constraints. ¢ plays a part in the terms defined
below, but because it is fixed in each case we mostly
keep it implicit to make the equations easier to
read.

Wy The subset of all ranked topologies for which ¢
holds.

i(V) =(i1,1p,---,ix), mapping a ranked tree to the ranks
of the calibrated nodes. Typically those are the
ranks of the clades in ¢, but i may, for example,
pick the rank of a clade’s parent instead.

We use two additional mappings which are a
function of i. i(\)=(i1,i2,+-,ig) is the mapping of
calibration ranks into their sort order. For example,
if i=(3,1,4) then i=(2,1,3) and if i=(7,4,2) then
i=(3,2,1).

Also, (W)= (i1,ip. i) = (iz1.i72, -, izx) are the
ranks of the calibrated nodes sorted by age. For

the two examples above we have, respectively, i=
(1,3,4) and (2,4,7).

Wy » The subset of y € Wy, for which (1) is equal to the
sorting order of the heights vector x. That is, all the
ranked topologies which are compatible with the
heights x.

hy =(hi,,hi,, -, h;), the heights of the calibration points
on a given ranked tree . For convenience gy, is the
same as hy, when g = (h, ).

pp(hy) A K-dimensional calibration density.

Figure 1 illustrates the main elements of our notation
on an example tree with seven taxa and three calibrated
subclades.

In BEAST, the calibrated tree prior has been defined as,

000 (9)=fu(g)pn(hy)- ©)

We shall call this the multiplicative prior, as designated
by the superscript (M). While multiplying the two
densities create some valid (unnormalized) prior
density, this tree prior fails to preserve the calibration
density as the marginal prior distribution of the
calibrated nodes. That is, the marginal calibration
density—the density obtained by integrating out the

h

FIGURE 1. Notation. For the tree depicted we have: n=7 taxa, the
ranked topology ¥ =(((A,(8,):1):3,D):5,((E,F):2,G):4) in NEWICK format,
with internal nodes marked by rank, ¢ =({E,F,G},{B,C},{A,B,C,D}), K=
3 calibrated nodes marked in red, and i(¥)=(3,6,2), i(¥)=(3,1,2),
i(y)=(2,3,6) and hy, = (h3,he, h2).

non-calibrated heights over all time trees—is not equal
to py-

In Heled and Drummond (2012) we showed that it is
easy in principle to preserve the calibration marginal by
scaling the prior with the conditional marginal value,
that is, the total density of all trees whose calibration
times are identical to the calibration times of g:

mm=[k@@. )

geG
sy=x

The same general principle works for multiple
calibrations:

pn(hy)
fu(hy)

pc(g) Efc(g) (8)

The notation for describing the calibrated prior is
challenging because calibrated clade ages are not a
simple subset of all ages. It may seem natural to define
the joint density by defining the tree prior density as the
product of conditional and calibration priors as done in
Equation 3 of (Yang and Rannala 2006) and mirrored in
our own Equation 3. But then Yang and Rannala deal
only with trees whose ranked topology is known. For
example, with this formulation one can easily forget that
the space of possible values for the uncalibrated nodes
depends on the tree topology and the calibrated nodes,
and although this notational omission may be fine when
the topology is fixed, it should be explicit when dealing
with the whole of tree space. We think our notation is
better suited for describing the properties of the prior in
the context of the full tree space.

The conditional prior in equation (8) preserves the
marginal by construction. This is easy to see by writing
down the marginal density for x, a fixed vector of
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calibration values:

f fo(g)dg
G
op(h ¢) o7 ( ) ge
ffc(g) /fc(g)f() g=on) T
Pi,e:(jc hq,_x
=pp(x). )

However, the usefulness of this prior depends upon
the computational cost of evaluating f;(x) as part of the
full posterior. In a few cases we can obtain a simple
formula and the cost is negligible, and for the rest we
offer either (i) a general algorithm for computing the
marginal by iteration or (ii) the restricted conditional, a
faster alternate correction to be used when (i) is too
slow. The iterative approach is based upon the clade
level partition, which divides W, into disjoint subgroups
whose marginal has a closed form, and we shall discuss
the details later.

The restricted conditional prior is defined as follows

h
®g=ty.1) —fc(g)faf)h( v
where
F® e ) =W / fo(wh))dh. (1)

h¢=x

Here the correction is defined as the marginal of the
tree prior density when keeping both the topology and
calibrated ages fixed. This is equivalent to extending the
approach taken by Yang and Rannala (2006) to the case
of an unknown tree topology. Again, the marginal over
tree space is preserved by construction,

h
[ @ odg= > [ e ane
g=(lll,]’l>EG fh (hllj?llf) \lfe\ll‘l’)g:(llf,h) fh (xv llf)
hy=x hy=x
1
ED (R)( / F@Ah=) 3 g =it
YeW, =, h) Yew, ’
hq,_x
12)

The Marginal Yule for Multiple Calibrations

We start by showing how to decompose the Yule
density of genealogy g¢=(V,h) conditional on ¢. The
decomposition is based on separating the heights into
K+1 levels, where each level spans the range between
two consecutive calibration points.

The Yule density

fo(hI\) =

nle —)\hl 1_[ )\e—)\h

is factored using the two propositions below.

|\IJ | (13)

Proposition I:

/ dx1/ de/ dxs-- / dxy \e xxl}\.e Az, }\.Ei)\xk_
1

— /)\e*”ldxl /)\e*xxzdxz /)\e*”kdxk =
k' a a a

% (efxb _E,M>k
' (14)

Proposition II:

oo X0 X1 Xk—1
/ de/ dx1/ dx2~--/ doxg he 20 Ne M. e Mk
a a a a

by proposition I

. e L, 20 )k
= Ae MO~ (e* e~ xo) dxg
a k!

by Equation (A.10)

L —k+2na

~ (k+2)! (13)

Proposition I gives the contribution of k internal nodes
located between two consecutive calibration points with
ages a and b. Proposition II gives the contribution of k+1
nodes older than the last calibration point.

When the calibration values are fixed to x=
(x1,x2,-+-,xg), the contribution of the ranked topology

P is
[e.¢] hl h;173 h;172
xv = 1 20 3 3
fr(x, ) / dh / dh / dh 2/ dh 1
) % % 1% J5 -
X1 h: h;
i1+1 in—3
fx 1 [ Ay /;—Q i, o
I % I
ip—2 ip+1
/x dk;, / s, 41 / dh, 1o
2 X3 X3
/’%3 an /h;”dhf 1
X3 3= X3 3=

XK by hs
/ dh? +1/ ‘ dh? +2°7
0 kT2 Jo K 0

ha
/0 dhy 1 fo((0, ).

dhn—z
(16)

The above uses = (xll, APCLEN ) the calibration
height sorted by age. Now, let¢; be the number of internal

nodes in each level, c]_1]+1—1]—1 (0<j<K), and for
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convenience let 20 =0and ;K+1 =n. Using Propositions I
and II we get

n e—(co+1)xx1

fulx, W)=

|\IJ¢| (co+1)!
)\e_”‘l (e—)\XZ_e_)‘ﬁ)Cl
C1!

—\Xp _ _\C
e (e—)\X3 _e—}\JQ) 2
cp!

X
he MK (e_o_e_M-CK)CK
CK!
n! ﬁ}\ T 37(C0+1)>\5‘1
=| — e _—
Wyl L1 o+ 1)

K (e Mt — = k)

— (17)
k=1 k

The marginal density is the sum over all valid
topologies

fu)=" 3 fulx, W), (18)
el
1()=i(x)

To be valid, the order of calibration points by age has
to be compatible with x.

While explicitly summing over all topologies is not
feasible, evaluating the sum is possible by partitioning
W into (W, W3, -}, where Uy, Wy € WK = (1) =i(r2).
That is, topologies in the same partition have the same
number of internal nodes in each level. Because equation
(17) depends only on those counts (c;) and not on
the exact ranking, we have fr(x,{1)=fr(x, V) for two
topologies in the same partition. Finally,

0= > filc )= > [kfilxu)  (19)
Yew, ~ k_
i(W)=i(x) i(Wg)=i(x)

where ;. is any topology in \Ilg

The Marginal Birth—Death Prior for Multiple Calibrations

The birth—death process starts with a single species,
and evolves over time through existing species giving
birth (splitting) to new species at constant rate A and
dying (unobserved) at constant rate pu (Kendall 1948).
Although this characterization is unique, there are
several versions of the prior which differ in their start and
end conditions. BEAST uses the birth—death-sampling,
process, which assumes a uniform distribution [0, c0) on
the time of the tree origin, and that the tips of the tree are
sampled with probability p to obtain exactly n taxa. The

density for this prior is given in equation (5) of (Stadler
2009b):

(n—p)e (=i
ph+ (M1 —p)—p)e= (=i

fG(hD\, W, p)=n!(p)\)”—1

n—1

l—[ ()\ — M)ze_(x_u)hi
iz1 (P+(1—p)— u)e—(k—u)hf)z ’

We obtain the marginal for the birth—death process
using exactly the same procedure as described for
the Yule, but using the birth-death analogous for
Propositions I and II. We use the following definitions
for convenience:

(20)

N =p\ (21)

wW=p—r(1-p) (22)
A—H

q(t)= D= (23)

() =eWig(p). (24)

p1(t)=q1(t)q(t) (25)

p1(t) is the probability that a lineage leaves one
descendant after time f, which is easy to integrate

i) 26)

and gives wus the

Proposition I:

b X1 Xk—1 k
/ dxl/ dx2~~/ dxe [ [p1a)=
a a a i=1

birth-death equivalent of

(27)
1 k
1 (P10)—P1(@)".
For Proposition II we have
o] X0 Xk—1 k
/ dxof dx1~~-/ dxie q1.(x0) | Jpr (o) =
a a a i=0 (28)
3/~ (k+1)
Ut (a)*?

Which is proved in the Appendix. For the critical
case h=p we take the limit and use g1(t)= ﬁ in the
formulas above.

Partitioning and Counting

To evaluate the marginal (equations (19) and (10))
we need to establish a valid partitioning and count
the number of ranked topologies in each partition.
Ideally, the partition would be the smallest possible,
that is 1]11,11126\11(11() < i(Y1)=i(P2). Unfortunately, we

were unable to derive a counting formula under this
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FIGURE 2.  Counting ranked topologies. To count the number of
ranked topologies for the tree depicted, we multiply the counts in the
three levels. In the lowest level, we have three lineages reducing to
one (root of lowest calibration), five lineages reducing to three and
two free lineages not reducing. Hence, the total number of topologies

is RIRZR2 (2547 {13%2)) =3 ¢ (10 x 6) x 1 x 125; =540. Note that in the
multinomial we use one less lineage (two instead of three) for the
calibrated clade, because its position as root is fixed. In the second
level, we have three lineages reducing to one, and three free lineages
reducing to two, giving RIR3 (**3, (%) =3 x 3 x 2, =18 and in the last
level three lineages to one in three ways. Hence, the total number is
540 x 18 x 3=29,160.

C

constraint and instead use the clade level partition,
a refinement based on the number of lineages per
level inside each calibrated clade. Formally, let r({)=
{r1,72,+--, 7k} where 7 =(r]'0,r]-1, 7ij) and Tik is the
number of subclades (not already counted) of the k-th
calibration point whose rank is smaller than i;. Because
14> rjk =1}, the equivalence classes induced by r are
a refinement of the ones induced by i(-). Furthermore,
we can count the number of topologies in each class
by using two generic combinatorial principles: First, the
number of ways for lineages to coalesce in each level is
independent of other levels, so the product of counts of
all levels gives the total number of topologies. Second,
when n=n1+ny+---+n; lineages enter a level and are
reducedtok=1+ky+--- +k]-, where lineages can coalesce
only within their group (n; — k;) and the root of the first
group is calibrated (k; =1), the total number of ranked

n—k—1
m—2,ny—kp, -,

&
nj—k]') 1_[]l'=1 Rni :

RE is the number of ranked ways n lineages can
coalesce to k (equation (A.l)), and for convenience
R,=R].

Figure 2 illustrates the counting procedure on a small
example tree.

The use of the clade level partition has an interesting
consequence, which relates to the second property of the
conditional prior, namely that trees are “Yule-like” (or
“birth—death-like”) conditional on the calibrated ages.
This means that the density ratio of trees with equal
calibrated ages is the same as their density ratio under
the uncalibrated tree prior alone (equation (3) in Heled
and Drummond (2012)). This condition is relaxed for the

ways is (

Nested calibrations iterator. The calibrated clades are
N (green), M (blue) and L (red), with, respectively, n+2, n+2+m+1
and /42 taxa. In addition, we have r “free” taxa in orange, which can
coalesce between themselves and with the roots of M and L. There are
four levels associated with the three calibration nodes, separated by
the root ages of the calibrated clades.

FIGURE 3.

restricted conditional prior, where by construction this
ratio equality is true only for trees with the same ranked
topology. However, because the marginal (equation (17))
depends only on the number of lineages between levels
and not on the exact ranked topology, the space in which
each tree is “birth—death-like” is in fact larger, containing
all trees in the same partition.

Enumerating Ranked Topologies Classes

Here we explain the procedure for explicitly
enumerating all the elements of the clade level partition.
The enumeration is based upon combining several
iterators, one for every calibrated clade, which return
the number of lineages in each level of that clade.
Those counts are used to compute the marginal as
explained in the previous section. The calibrated nodes
and the root of the tree, which define the levels, are
not included in the counts. We show the working via
an example; the interested reader should consult the
source code for the very low-level details. The iterator
is built from the product of K+1 per-clade iterators,
one for each calibration and one for the “free” lineages
outside any calibrated clade. In fact, each calibrated clade
is potentially composed of several calibrated subclades
and some free lineages, and the iterator for the clade
handles the free lineages and the surviving lineage from
the root of each calibrated subclade. Figure 3 gives
an example with three calibrated clades, N with n+2
lineages, nested inside M with n+4-m+-3 lineages, and L
with /42 lineages. The uppercase letters are the clade
name, and the lowercase letter gives the number of
additional lineages.

In addition there are r >0 free lineages, for a total of
n+m+I[+54r lineages in the tree. The m 41 lineages of
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M not in N coalesce on the way to the clade root with
each other and with the roots of the nested clades, in
this case N. The r free lineages coalesce with the roots of
L and M on the way up, and uncalibrated internal nodes
can be in any of the four levels.

Because there are three calibrations there are four
levels, separated by the dashed lines, and each per-
clade iterator returns four numbers. The iterator of N
is trivial, always returning (1,0,0,0), because its root
defines the first level. The iterator for L is simple too,
because the lineages can coalesce only in the first two
levels and there are no free lineages. The iterator returns
(,0,0,0),(I-1,1,0,0),...(0,1,0,0).

The iterator for M takes care of m+1 free
lineages which can coalesce in the first three levels.
The iterator returns (m,0,0,0),(m—1,1,0),(m—1,0,1),
(m-2,2,0),(m—-2,1,1),(m—2,0,2)...,(0,0,m). Basically,
the iterator first returns all the cases with m internal
nodes in the first level, then all cases with m —1 internal
nodes in the first level, and so on. The same pattern holds
(recursively) for the rest of the levels.

The last iterator takes care of the r free lineages
and the surviving lineages of any subclade, here the
roots of M and L. In this example this iterator is
only necessary if >0, as otherwise there are only two
lineages left to deal with. While the internal nodes can
be in any of the four levels, there are some restrictions.
In general, these restrictions can be quite involved. In
this example, the restrictions arise because the enclosing
clade (here the root of the tree) has more than one
subclade. As a result we always have at least three
lineages above iy, and because only two lineages coalesce
at the root, the excess has to coalesce in the top two
levels. So, the iterator returns (r—1,0,1,0),(r—1,0,0,1),
(r—2,1,1,0)...,(0,0,0,r), filling up lower levels first as
before, while keeping at least one event in the top
two.

RESULTS

Calibrating the Parent of One Clade

Sometimes the calibration information is about the
time a particular clade (say a genus, or a species that is
divided into subspecies) separated from other lineages
in the tree. For a single lineage, the density is given in
Heled and Drummond (2012)

fr(x)=20e 2", (29)

Note that the parent age is equal to the (pendant)
branch length, and in fact f;(x) is the distribution of
the branch length when conditioning on the number of
leaves. Furthermore, because this holds for any branch,
we can derive a mean of ! /5, , which reproduces a result
discussed by Steel and Mooers (2010).

The result can be generalized to any clade C of size n.
In that case, let Wy, be the set of all genealogies of 141
taxa with a clade on n taxa (1 >1 and /> 0) (Fig. 4a).

We partition Wy, so that \L’é‘) contains all genealogies
containing k+1 surviving lineages at k, the age of the
calibrated parent. By the second counting principle,
there are R,R! (”_nzle_l) ranked ways for lineages to
coalesce in the first level, Rf.‘H ways for i lineages to
reduce to k+1 in the second level, and then one of the

k+1 coalesce with the parent of C. Then k41 lineages
coalesce to the root, giving

) .
(n—2+1—i
wil= Y RnR;< o )(k+1)R{F+le 1

i=k+1 2
—24+1—k
- (k+1)(" + )RHR,. (30)
n—1
The total number of ranked trees in W is
-1
I+n

|w¢|=2|wqﬁ|=(l_1>Ran. (31)

k=0

Putting it all together,

-1
1
fh(x>=ml§|w§,|(n+l>!

Cx e~ (k+1)nx (1- e—)\x)n+l—k—2
k+1)!  (nti—k—2)!

-1
=n(n+ 1)2 <l ; 1>g—(k+2)xx(1 _ e haynH=(k+2)
k=0

=n(n+1)re 2 (1—@‘”)1171. (32)

Note that the marginal does not depend the size of the
tree, just on the size of the calibrated clade.

Calibrating Two Nested Clades

Here we give the marginal density for two nested
clades. When the enclosing clade is the root (Fig. 4b),
the marginal is

Fulho, hln,m) =(n—1)n(n+1)n2e~+2h0)
(1 _ef)\h)n72(1 _ef)\ho)me
[1 +2(m— 1)6_)\]1 —2me Mo _

m(m—1)e Mo+ 4

-2
<m2 ) 20 +(’;1) e—zxxo]’

(33)
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b)
n m [
FiGure 4.  Diagrams and notation for three special cases of calibration. a) Calibrating the parent of a clade of size n. b) Calibrating a nested

clade of size n and the root with a total of #+m taxa. c) Calibrating two nested clades of size #n and n+m taxa in a n+m+I taxa tree (/> 0).

And when the enclosing clade is proper (Fig. 4c), it is

fi(h o, m) =" /5 (n—Dn(n+1)(n+1+m)>
e*)\(h2+3h1)(1 _ef)\hz)n72(1 _ e*')\hl )m73
[1 —2me M1 +2(m— 1)e M2

m(m—1)e~Mrtm)

("3 e (")) o

See the Appendix for additional details on the derivation
of those formulas.

Placing Additional Monophyly Constraints

It is important to keep in mind that placing additional
constraints can invalidate the closed form equations for
the marginal. However, it may still be possible to obtain
a formula for the full set of constraints. For example, the
marginal density for a clade of size n in a n4+m+1 taxa
tree with an outgroup can be obtained by integrating out
hy in equation (34) and is equal to

m—Dnmn+1)n+m+1)

= —NX(1 _ ,—Axyn—2
frn(x)= A e M (1—e M)
(1 —(1=e )" — (m42)e M + (m;%)e—m) ,

(35)

which is not equal to the marginal for the same-sized tree
where the monophyly on the n+m clade is not enforced.
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However, we can derive the marginal in some cases
that are not covered by the standard construction (root
ages of clades and no extra constraints). For example,
take the *BEAST analysis performed as part of the
investigation of determining the Pipid root (Bewick et al.
2012). This analysis involves the genera Xenopus, Silurana,
Hymenochirus, Pipa, and an outgroup. Five species in
total with a four-taxon clade and a calibration on the
age of the parent of Pipa. There are 6 x 3 valid ranked
topologies: nine of those have three internal nodes above
the calibrated parent, six has two above and one below,
and the remaining three has two below and one (the root)
above.

The total density for a internal nodes above and b
below by equation (17) is

b
o= Ma+Dh (1 —e—*h)
(a+1)! b! ’

fop(h)y=re M

and so the marginal is:

!

fu(h) 215_8 (9f3,0() +6f2,1 (1) +3f1 2 ()

:g <672xh — 4o M +6> .

A Four-Taxon Tree with One Calibration

Following Heled and Drummond (2012) we consider
the following four-taxon tree in which taxa AB are
constrained to be monophyletic and their most recent
common ancestor is calibrated with density fa5.

There are four ranked topologies in this case, and the
2012 article gives the marginal density for each. Here we
wish to contrast the three priors using concrete values:
A birth rate of =1/, and a uniform calibration prior
(fas=UI4,6]). Table 1 summarizes the results.

The table lists the “correction term” for each ranked
topology, the marginal probability for each unranked
topology, and the calibration marginal. As expected, the
full and restricted conditional preserve the calibration

density, whereas the marginal for the multiplicative

prior is equal to the conditional marginal (3re=3"¥),
bounded between 4 and 6. The marginal topology
probability illustrates the difference between the full
and restricted priors. The former is similar to the
multiplicative prior, with a high probability on the
balanced tree. In the space of Yule trees with birth
rate 1 /5 and one internal node age between 4 and 6,
the other age is far more likely to be smaller than the
first. The latter, with equal weight for the two classes,
matches the probabilities of the Yule prior without
calibration.

Three Calibrations for Bombina

A recent study wusing 13 complete genomes
investigated the phylogenetic relationships of the
fire-bellied toads of the genus Bombina (Pabijan et al.
2013). The study contains several types of analysis, and
Table 2 of the article lists the sources of the fossil dating
used to calibrate the major mitochondrial lineages here.
The authors kindly provided us one of the BEAST
analyses which uses three nested calibration points, on
five taxa, seven taxa, and the root. The results of running
the Markov Chain Monte Carlo (MCMC) chain on the
multiplicative prior by itself are shown in Figure 5a.

While the marginal for the two clades deviates only
slightly from the specified calibration, the marginal for
the root, with mean around 50, is much lower than
the normal density calibration N(u=125,0=38). The
marginals for the analysis using the conditional prior
match the calibration densities as expected (Fig. 5b). We
also reran the original analysis and a modified version
with the conditional prior instead of the multiplicative
prior, and the summary trees for the two runs are
plotted side by side in Figure 6. Excluding the root,
the two analyses produce almost identical divergence
times. Becuase the root age dates the divergence of
the Discoglossus outgroup, which is incidental in this
study, the prior mismatch had no significant effect in
this case.

Usually the reason for such a close match is hard
to see, as the interaction between the prior and the

TaBLE1l.  Anillustration of the difference between the restricted and full conditional prior using a four-taxa example
Multiplicative Conditional Restricted conditional
Prior “correction term” ((a,B),(C,D)) Tep < Ty - 3re M2 12¢73M2 (1 — ¢~ Mn2)
((AB)(C,D)) Teo = Ty
(((AB),C),D) - 3re M 4re 4
(((aB),),0)
Marginal Topology probability ((a,B),(c,D)) 93% 94.2% 50%
(((A,B),C),D) 3.5% 2.9% 25%
(((a,B),0),0) 3.5% 2.9% 25%
Marginal calibration prior % é 61—4

The prior is a pure birth process with a birth rate of . =1/, and a uniform calibration density between four and six is applied to the clade

(A,B). The uncorrected (multiplicative) prior is 6IT4 %)\3e—x(2h1+hz +h3

), and the table gives the conditional prior “correction terms” for each ranked

topology, together with the induced prior probability of each unranked topology and the marginal density for the calibrated clade.
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FIGURE 5. Three calibrations for Bombina. Three calibration densities for the Bombina analysis, a) under BEAST multiplicative calibration

prior and b) under the conditional prior. Each sub-figure shows the density for calibration times (myr), where specified calibration densities are
inred, and the induced prior from a BEAST run are in blue. The three fossil calibrations from left to right are for the western Bombina (lognormal
distribution with M =0.0039 and S=1.0, offset by 3.6 myr), the small Bombina (lognormal with M=0.994 and S=1.0, offset by 13), and for the
root (normal distribution with mean 125 and standard deviation of 38).

posterior is too complex, but here it seems pretty clear.
The analyses used the uncorrelated relaxed clock model
(Drummond et al. 2006), and a younger or older root
can be “accommodated” by decreasing or increasing
the rates on the branches diverging from the root,
while maintaining a similar genetic distance. Indeed,
the average rate for the longer outgroup branch in
the original analysis is 0.044, while the value for the
conditional-prior analysis was 0.024. Because the two
non-root calibration densities were almost identical, the
other divergence times are practically identical.

Two Fossil Calibrations for Sparagnium

Another recent study used two nuclear genes and
two chloroplast genes to investigate the systematics,
biogeography, and character evolution of Sparganium,
a group of aquatic monocots (Sulman et al. 2013).
For the divergence dating analysis the authors used a
concatenated (supermatrix) approach with two fossil
calibrations as detailed in the Calibration points for
DNA subsection of their paper. We sample both the
multiplicative and conditional calibration priors for this
data set. The calibration densities and the induced
marginal priors are shown in Figure 7. Under the

multiplicative prior, the internal calibration on 27 taxa
has a slight preference for older ages whereas the root
has a preference for younger ones, compared with the
calibration densities. Note that the densities for the two
nested clades overlap in the range 90-105 Mya, and so
even the conditional prior cannot guarantee the exact
marginal for both calibration densities, but the match
seems good by visual inspection (Fig. 7).

We then performed both the original analysis with
the multiplicative prior and a modified version with
the conditional prior. The summary trees for the two
runs are plotted side by side in Figure 8. In this case,
the two calibrated (top) nodes have the same estimated
divergence time in both analyses, but the non-calibrated
nodes in the conditional prior analysis are around 23%
younger than their counterparts in the multiplicative
prior tree. We can verify that individual divergence
times from the two analyses are significantly different by
computing the standard error for each estimate, obtained
by dividing the standard deviation of the posterior
samples by the square root of the effective sample size.
For example, the divergence time of the Puya—Brocchinia
in the conditional prior analysis is 25.94+0.11 versus
33.840.083 in the multiplicative prior analysis. Similarly,
the Typha root is 5.40£0.036 versus 7.06£0.037, and the
Sparganium root is 9.7540.051 versus 12.6240.060.



2015 HELED AND DRUMMOND—CALIBRATED BIRTH-DEATH PRIOR FOR BAYESIAN INFERENCE 379

BvarB1

BvarB3

BvarP1

BvarC1l

BbomT

Boril

Bori2

_%'0 Bfor

Blich

93.2 Bmic

—_——— nax

Bmax2

Discoglossus

20.0

FIGURE 6. Summary trees for Bombina analysis. Summary tree from the multiplicative-prior analysis (in black) and the conditional prior
(in red). The trees were generated from the posterior using the Common Ancestor method (CAT), which produces the most accurate divergence
estimates (Heled and Bouckaert 2013).
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FIGURE 7. Two calibrations for Typhaceae. Two calibration densities for the Sparganium (Typhaceae) analysis under BEAST multiplicative
calibration prior a) and the conditional prior b). The specified calibration densities are in black, and the induced prior from a BEAST run is in
gray. The crown age of Typhaceae (27 taxa) was constrained to be at least 70 myr (A lognormal with offset 70 and M=1.5 and S=0.5), and the
root constrained with a uniform density between 90 and 105 myr.



380

SYSTEMATIC BIOLOGY

VOL. 64

10.0

FIGURE 8.

SGLOWi
SGLOhokk
Ssichuan
SEMEnix
SEMEsawa
SJAPhaya
SFALjpn
SFALtaiw
SANGCamp
SANGbigh
SANG2
SANG1
SFLUtayl
SGRAhokk
SSUBusuba
SAMEalleq
SANDtayl
SHYPparker
SNATminn
SEREhokk
SEREmacjpn
SEURwaus
SGREOlema
TANGwi
TDOMjpn
TLATwi
TORIjpn
Puya_ferruginea
Puya_venusta
Brocchinia

Summary trees for Sparganium analysis. Summary Tree from the multiplicative-prior analysis (in black) and the conditional prior

(in red). The trees were generated from the posterior using the Common Ancestor method (CAT), which produces the most accurate divergence

estimates (Heled and Bouckaert 2013).

CONCLUSIONS

We have presented a general approach to specifying a
birth—death process tree prior conditional on the heights
of a set of calibrated nodes, in the context of the joint
inference of topology and divergence times. We have
described a few special cases where this prior density
has a closed form solution and we have described a
general, though computationally intensive, approach to
numerical calculation of this conditional density for any
number of calibrated nodes. As a result, an arbitrary
marginal prior distribution can be precisely specified on
the calibrated nodes.

We have also described how the conditional birth—
death tree prior naturally induces a nonuniform
distribution over ranked topologies. If this effect is
unwanted, our approach can be modified to produce
a uniform prior on ranked topologies (therefore
permitting any arbitrary distribution on ranked tree
topologies to be composed with the conditional birth—
death prior on divergence times). This modification
also renders a computationally efficient algorithm for
calculation of the prior density.

To compute the conditional birth—death prior, it is
necessary to compute the marginal density of the
calibrated node heights averaged over all consistent
time-trees. Although we have described some special
cases where this marginal prior density of the calibrated

nodes can be efficiently computed, it remains to be
determined whether other cases have analytical closed-
form solutions.

Our implementation is available in BEAST2
(Bouckaert et al. 2014). We regard the full conditional
formulation as the correct approach, if one assumes that
the birth—death process prior is the appropriate prior
for the phylogenetic time-tree under estimation. We
therefore recommend the full conditional formulation
when computationally feasible (e.g., 2-3 calibrations
and/or small numbers of taxa). The restricted
formulation effectively removes influence of the
birth-death prior on the estimation of the ranked
topology and is a good alternative for analyses with
larger number of calibrations or taxa for which
computational considerations will preclude application
of the full conditional. Both of these approaches relieve
the practitioner from running their calibrated analysis in
the absence of data to determine the resulting marginal
distributions (e.g., compare Fig. 5a,b).

We examined and reran two recent BEAST analyses
which used a calibrated prior. In both cases the induced
prior calibration densities did not match the intended
calibrations under the multiplicative prior, but did match
as expected with the conditional prior. However, the
relevant posterior estimates were not affected in the
first case (Bombina), but were significantly different for
the second (Sparganium). Hence, while sometimes the
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estimates are not affected by the change of prior, the two
priors can give significantly different results for the same
analysis settings and data.

It is clear that development of calibrated tree priors
for Bayesian phylogenetic inference remains an area
ripe for future development. Obvious next steps would
include taking explicit account of the different sources
of uncertainty in fossil ages and collection (uncertainty
in geological dates, variation in fossil preservation
rates, and paleontological discovery effort) and more
sophisticated means of dealing with the phylogenetic
placement of fossil information (uncertain placement
of fossils based on morphological characters of fossils
and/or tree prior assumptions). All of these factors are
currently subsumed into whatever marginal distribution
is specified on the set of calibrated nodes. In the mean
time, the work presented here derives new results
for multiple-calibration tree priors and in doing so
illustrates some of the subtle choices open to the
practitioner when calibrating birth—death tree priors.

FUNDING

JJH. and A.J.D. were supported by a Rutherford
Discovery Fellowship from the Royal Society of New
Zealand awarded [to A.J.D].

ACKNOWLEDGMENTS

The authors wish to thank Mike Steel for helpful
discussion and comments.

APPENDIX
Two Nested Clades for the Yule Prior

RE is the number of ranked ways n lineages can
coalesce to k

T\ nl(n—1)
R 1(;)="5

i=2

" /i\ R n(n—1)"?
izir1 N2 Re k(k—1)!

Root and Clade—For the marginal of a clade of n taxa
and the root in a n+m taxa tree we partition Wy so that

\Ilg contain all topologies with k+1 surviving lineages at
time & (Fig. 4b). The size of each subset is

n—2+4+I1—k
|w3§|=( ’ )Ran‘Rk+1 (A2)

-2

and from (Heled and Drummond (2012) appendix C,
equation (12)) we have

n+l
[Wol|= (l— 1)R]Rn. (A.3)

Plugging those counts into equation (19) we get

1
Z[|\P$|(n+l)!)\e_m)\e_nh°
k=1
(1 . e—}\h)n—Z-‘rl—k (eXh _ e}\ho)k—l
(n—2+I1—k)! (k—1)! -

1
[Wol

1
(n—Dn(n+1)» [(k;l) (]l(ill) re ™ Mipe=2Mho

k=1
(1 _e—}\h)n—z-l-l—k(e)\h _e}\ho )k—l]

(n—1n(n+ 1))\26_“’74’2’10)(1 _ E—Xh)n—z

! k+1><l—1>
(1 _ef')\h)lfk(e)\h _e)\ho)kfl’
(A4)

which simplifies to equation (33), because without the

(kH), the sum is the binomial expansion of (1+v)""1,

and with the combinatorial identity
- n
>k ()= o (A5)
k=0

we can simplify such sums where the terms are
multiplied by any simple polynomial in k.

(x)n is the Pochhammer symbol, the falling factorial.
Here (“}1)=1/2(k)2+ (k).

Two nested clades.—When the top clade is not the root we
need to handle three levels. Let the number of surviving
lineages at hp be my and Iy, and I, at hy (Fig. 4c). We
partition Wy, according to m1, [; and I». that is topologies
with the equal values are in the same class.

The number of internal nodes at the three levels is

ko=n+m+1—(m1+11+2)
ki=m1+1L—A+1)
ko=l +1-1.

The size of each subset is

ko!
\Ilml’ll’lz =R leRll 0
%o | =RnRon L (m=2)(m—my)(I—11)!

L ki
Ry 1Ry, <m1 - 1)

Rlz+1'

(A.6)

Each of the three lines above gives the contribution of
one level. The total number of topologies is

n+m n+m-+l
|qj¢|=( )RmRn( )Rl.

m—1 -1 (A7)
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This can be obtained either from summing over
il . .

all \I/(?:l 12 terms or more simply by applying

Equation (A.3) twice, because the internal clade N does

not interact with the free global lineages. Again pluggin
those counts into equation (17) we get

—(ko+1)MIq
Iy ) = DiZe M)~
fml,ll,lz( 1, 2) (n+m+) e (k2+1)'
(1 _ e—)x.hz )k() (e—)\.hz _ e—)x.hl )k1
ko! k!
(A.8)

And finally

m 1 ll
fl ) =113 33w, L (A9)

Wl1:111=1lz=1

The rest is tedious manipulations similar to those in
the root and clade case above.

Integral Identity used in Obtaining the Yule Marginal

1
/oon)\e—nm(e—xh _e—Xx)m dx= (m—i—n) o~ (m+n)\h
h n

(A10)
Proof:

00
/ n)\e—nbc(e—xh _e—XX)m dx
h

— /oon)\e—n)\xe—m)\h(l _e—x(x—h))m dx
h

00 m m
Z/h n)\e—nue—mxhz(_l)k<k>e—k)\(x—h)dx

k=0

m m
BV VP Nkt —(k+m)
=nhe " kE_O( 1) <k>e /h e M gy

m — (k)i
— =N Yk () ok €
e Z;( k) T

m
_ ,—(m+n)\h 1\, m n .
=e kZ(:)( 1) (k)(k+n) Using (A.11)

_ o~ (mnpn (AT -
n

The last step used the well-known combinatorial
identity (e.g., Sprugnoli (2006), p. 74)

= k(my n _ (m+n -1
Z(_l) (k)m_< » ) . (A11)

k=0

Pox=5 Y Pia ()

The Birth—Death Prior Marginal

For convenience, let z=x;, be the age of the last
calibration point, and ¢=cj —1, the number of lineages
between the root and the last calibration point (excluding
the root).

Po(z) = / ” / L / [m(xl)j]:[im(xk)} dx=

oo p _p ¢
/ [41 (M)Pl(ﬂ)M} dx) =

1 o0 ¢ P . P
i [ meomey (j)Pl (11)/(— Py (2)) ety =

j=0

1E . B\ O .
Al E (=P1(2))"/ C)/ q1(x1)p1(x1)P1(xqYdxy.

(A12)

The following solution for the integral can be verified
by taking the derivative of the right-hand side

/Q1(X1)P1(x1)P1(x1)jdx1

1 (l’«_)\>j+2 -}\/_(]'_FZ)M/E—()\—M)JQ

= (+1)(j+2) w ()\/_M/ef()\fu)xl)jJrZ
1—(j+2) .
B mw — (2w T Y2,

Substituting in equation (A.12) and simplifying gives

1—(j+2)

¢! (+1G+2)

g j

O/ — (]'+2)M'ef(%7u)xl )q(x1 )j+2 _
1 (—96) )ff C) /=
6!];;( W’ i) G+1)(+2)

O — (]'+2)M'e(kfu)xl )q(x1 )j+2 _

—@+2) ¢ /n o
a (C+2)<—q<z»c—f

(c+2)! pars j+2
()J_(]'+2)M’e(kfu)x1)q(x1)j+2:
—@+2) | € ) L ,

e

> —(+2) (;3)u’e(*—m(—q(z»f—fq(xl)fﬂ} =

j=0
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u/—(?:—1-2)
(c+2)!

¥ (@) +9@) 2= (-q@) 2 - E+296n)(-9@) )

+ (4296 (-9@) ! = @qae) +9@) ).
(A.13)

The last step uses equation (A.5) for the second sum.
Now, after canceling terms and simplifying we are
left with

00 3/~ (k+1)

Po(z) =Po(z,x1) e

— (k+2)! (A14)

q1(2)F 2.
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