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Abstract.—Despite an increasingly vast literature on cophylogenetic reconstructions for studying host–parasite associations,
understanding the common evolutionary history of such systems remains a problem that is far from being solved. Most
algorithms for host–parasite reconciliation use an event-based model, where the events include in general (a subset of)
cospeciation, duplication, loss, and host switch. All known parsimonious event-based methods then assign a cost to each
type of event in order to find a reconstruction of minimum cost. The main problem with this approach is that the cost of the
events strongly influences the reconciliation obtained. Some earlier approaches attempt to avoid this problem by finding a
Pareto set of solutions and hence by considering event costs under some minimization constraints. To deal with this problem,
we developed an algorithm, called COALA, for estimating the frequency of the events based on an approximate Bayesian
computation approach. The benefits of this method are 2-fold: (i) it provides more confidence in the set of costs to be used
in a reconciliation, and (ii) it allows estimation of the frequency of the events in cases where the data set consists of trees
with a large number of taxa. We evaluate our method on simulated and on biological data sets. We show that in both cases,
for the same pair of host and parasite trees, different sets of frequencies for the events lead to equally probable solutions.
Moreover, often these solutions differ greatly in terms of the number of inferred events. It appears crucial to take this into
account before attempting any further biological interpretation of such reconciliations. More generally, we also show that
the set of frequencies can vary widely depending on the input host and parasite trees. Indiscriminately applying a standard
vector of costs may thus not be a good strategy. [approximate Bayesian computation; cophylogeny; host/parasite systems;
likelihood-free inference.]

Cophylogeny is the reconstruction of ancient
relationships among ecologically linked groups of
organisms from their phylogenetic information. The
study of host–parasite systems has a long history and
has been already well addressed in the literature (e.g.,
Charleston 1998; Conow et al. 2010; Huelsenbeck
et al. 1997; Merkle and Middendorf 2005; Page
1994b; Paterson and Banks 2001). It also has broad
applications throughout biology. For instance, the same
mathematical model can be applied to gene–species
associations (Bansal et al. 2012; Doyon et al. 2011a,b;
Hallett and Lagergren 2001; Tofigh et al. 2011). Hence,
any single method for host/parasite associations that
is developed could be applicable to both situations.
Lately indeed, there have been attempts to introduce a
general framework that incorporates all existing models
(Wieseke et al. 2013).

Our work is particularly focused on reconstructing
the coevolutionary history of host–parasite systems.
Specifically, we are given a host tree H, a parasite tree
P, and a function ϕ mapping the leaves of P to the
leaves of H. In general, four main macro-evolutionary
events are assumed to be recovered: (i) cospeciation,
when the parasite diverges in correspondence to the
divergence of a host species; (ii) duplication, when
the parasite diverges “without the stimulus of host
speciation” (Paterson and Banks 2001); (iii) host-
switching, when a parasite switches, or jumps from
one host species to another independent of any host
divergence; and (iv) loss, which can describe three

different and undistinguishable situations: (a) speciation
of the host species independently of the parasite, which
then follows just one of the new host species due to
factors such as, for instance, geographical isolation; (b)
cospeciation of host and parasite, followed by extinction
of one of the new parasite species and; (c) same as (b)
with failure to detect the parasite in one of the two new
host species. These events are depicted in Figure 1.

A parsimonious solution for reconciling the
phylogenetic trees for hosts on one side, and parasites
on the other, simply assigns a cost to each of the four
types of events and then seeks to minimize the total
cost of the mapping. If host switches are forbidden,
exact solutions can be found in time linear in the size of
the trees (e.g., Goodman et al. 1979; Guigó et al. 1996;
Mirkin et al. 1995; Page 1994a). If timing information
is available, for example, if we happen to know the
order in which speciation events occurred in the host
phylogeny, then any proposed reconciliation must
also respect the temporal constraints imposed by the
available timing information. Host switches are thus
restricted to occur only between coexisting species.
When coexistence relationships are known for all host
species, the reconciliation problem can again easily
be solved using dynamic programming, this time
polynomially in the size of the trees (Conow et al. 2010;
Drinkwater and Charleston 2014; Libeskind-Hadas and
Charleston 2009). However, when timing information
is not available, the difficulty of separating between
compatible and incompatible switches makes the
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FIGURE 1. Recoverable events for a coevolutionary reconstruction.
The tube represents the host tree and the dotted lines the parasite tree.

reconciliation problem NP-hard (Ovadia et al. 2011;
Tofigh et al. 2011). A number of algorithms have been
developed that allow for solutions that are biologically
unfeasible, that is, solutions where some of the switches
induce a contradictory timing ordering for the internal
vertices of the host tree (Doyon et al. 2011c). In this case,
the algorithms are able to generate optimal solutions in
polynomial time. For the fastest existing ones, see for
example Bansal et al. (2012).

Clearly in all situations, the choice for the cost values
is crucial in the solution(s) found. Indeed, arbitrarily
choosing a cost vector may lead to solutions where the
events in the optimal solutions do not necessary reflect
the reality (Charleston 2003, e.g. describes a study on
the distribution of the events in optimal reconciliations).
From a biological point of view, reasonable cost values
for an event-based reconciliation are not easily chosen.
It is also natural to think that the frequency of the events
is not constant across data sets. Thus, different pairs
of host/parasite phylogenies might be associated with
different cost events. Moreover, our results show that
for the same pair of host and parasite trees, different
reconciliations—in the sense of presenting a different
set of frequencies for the events—may constitute equally
probable solutions. It is thus crucial to take this
into account before attempting any further biological
interpretation of such reconciliations.

Some approaches (Charleston 2012; Libeskind-Hadas
et al. 2014) attempt to choose the costs of the events by
adopting some minimization constraints and by focusing
on Pareto optimal solutions. As indicated in Ronquist
(2003), if each event is associated with a cost that is
inversely related to its likelihood (the more likely is the
event, the smaller its cost), then the most parsimonious
reconstruction will also, in some sense, be the most
likely explanation of the observed data. Likelihood-
based approaches should in general be preferred to
parsimony-based methods as they remove the subjective
step of cost parameter choice and rely instead on a
simultaneous inference of parameter values and events.
Some work has been done along these lines, for instance
in testing for coevolution (Huelsenbeck et al. 1997, 2000).
This, however, excluded duplications and tended to

over-estimate the number of host switches. Instead,
in Szöllősi et al. (2013) all four types of events are
considered, but the method was developed with the
objective of reconstructing a species tree starting from
multiple gene trees. The aim is similar in Arvestad et al.
(2003) but the type of approach is different and the model
again incomplete as in Huelsenbeck et al. (1997, 2000),
this time not allowing for host switches. The likelihood
approach adopted in Huelsenbeck et al. (1997, 2000) and
Szöllősi et al. (2013) moreover presents the inconvenience
of being computationally intensive.

The huge space of possible solutions is also an issue,
for instance, in population genetics for reconstructing
the evolutionary history of a set of individuals. Since the
early work of Pritchard et al. (1999), the literature from
this domain has seen classical Monte Carlo methods
and their variants being replaced by Approximate
Bayesian Computation (ABC), a set of more efficient
statistical techniques (Beaumont et al. 2002). In complex
models, likelihood calculation is often unfeasible or
computationally prohibitive. ABC methods, also called
likelihood-free inference methods, bypass this issue
while remaining statistically well-founded. For more
details, we refer to the review of Marin et al. (2012) as
well as the convergence results in Fearnhead and Prangle
(2012).

Following these ideas, we developed an algorithm,
called COALA (COALA stands for “COevolution
Assessment by a Likelihood-free Approach”, and
is also the Portuguese spelling for Koala, the arboreal
herbivorous marsupial native to Australia), for
estimating the frequency of the events based on a
likelihood-free approach. Given a pair of “known” host
and parasite trees and a prior probability distribution
associated with the events, COALA simulates the
temporal evolution of a set of species (the parasites)
following the evolution of another set (the hosts) as
represented by the latter’s known phylogenetic tree.
In this way, it generates under different parameter
values a number of simulated multilabeled parasite
trees which are then compared with the known parasite
tree. The ABC principle is to keep the parameter values
(event probabilities) giving rise to parasite trees that are
“close” to the known one. The output of the algorithm
is then a distribution on such parameter values that is
a surrogate of the posterior probability for the events
which would best explain the observed data.

To the best of our knowledge, the only other method
that might be compared with ours is the parameter
adaptive approach CORE-PA (Merkle et al. 2010). In this
case, the space of cost vectors is explored either by
sampling such vectors at random assuming a uniform
distribution model or by using a more sophisticated
approach, the so-called Nelder–Mead simplex method
(Nelder and Mead 1965). The first appears to be the
option by default in CORE-PA. In both cases, the function
to minimize is the difference between the probabilities
directly computed from the cost vector chosen and
the actual relative frequencies observed during the
reconstruction using such vector. This choice may appear
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somewhat circular as one would expect that, because
reconstruction is driven by the cost vector, the frequency
of the events thus reconstructed not only would, but
indeed should agree with it.

METHOD

General Framework
The method we propose relies on an ABC. This

belongs to a family of likelihood-free Bayesian inference
algorithms that attempt to estimate posterior densities
for problems where the likelihood is unknown a priori.
Given a set of observed data D0 and starting with
a prior distribution � on the parameter space � of
the model, the objective is to estimate the parameter
values �∈� that could lead to the observed data using
a Bayesian framework. More precisely, the Bayesian
paradigm consists in finding the posterior given D0
defined as:

p(�|D0)= p(D0|�)�(�)
p(D0)

.

If the likelihood function p(D0|�) cannot be derived,
then a likelihood-free approximation can be used
to estimate this posterior distribution and thus
the parameter values. In general, a likelihood-free
computation involves a chain of parameter proposals
and only accepts a set of parameter values on condition
that the model with these values generates data that
satisfy a performance criterion with respect to the
observed data (Sisson et al. 2007, 2009). Strict acceptance
(or inversely rejection) is based on whether the generated
data DS perfectly matches the observed data D0. In cases
where the probability of perfectly matching the data is
very small, a tolerance d(Ds,D0)≤� is adopted to relax
the rejection policy, where d is a distance measure. In
either case, this is called the fitting criterion. Note that this
fitting criterion often relies only on a summary statistic
instead of the full data sets DS and D0. Moreover, for
complex models where the prior and posterior densities
are believed to be sufficiently different, the acceptance
rate is very low and then the use of a likelihood-
free Sequential Monte Carlo (SMC) search that involves
many iterations leads to a more appropriate strategy.
SMC is also preferred among other possible methods
as it is flexible, easy to implement, parallelisable, and
applicable to general settings (Del Moral et al. 2012).

The ABC–SMC algorithms approximate the posterior
distribution by using a large set of randomly chosen
parameter values. Over sufficiently many iterations and
under suitable conditions, the stationary distribution
of the Markov chain will approach the distribution of
p(�|d(DS,D0)≤�), which will converge to the posterior
density p(�|D0) if the statistics used to compare the
generated data with the real one are sufficient and
� is small enough. In our case, the observed data
are a pair of host and parasite trees, denoted by H
and P respectively, and a list of associations between
parasite and host leaves. The parameter vector of the
model is composed of the probabilities of each one of

four events corresponding to respectively: speciation
of the parasite together with a speciation of its host
(called cospeciation); speciation of the parasite without
concomittant speciation of the host (called duplication);
switch (also known as jump) of the parasite to another
host (called host switch, which is further assumed to be
without loss on the original host); and speciation of the
host without concomitant speciation of the parasite, and
thus loss of the parasite for one of the new host species
(called loss). We thus have that � stands for a vector of
four probabilities 〈pc,pd,ps,pl〉. Note that each node in
the host tree either matches a node in the parasite tree or
represents a loss, giving rise to the four possible events.
For this reason, the parameter � is constrained such that
pc +pd +ps +pl =1 (see Section “Parasite tree generation
algorithm” for more details).

Starting from the host and respecting the probabilities
of the events specified in a given parameter vector �i, we
generate M parasite trees, where M≥1.

Once a parasite tree P̃ is thus simulated, it can be
compared with the real parasite tree P by computing
a distance between the two. For a given parameter
vector �i, we can then produce a distance summary of
the generated trees, and use this as a criterion in the
ABC rejection method. The latter selects the parameter
vector(s) that approximate the observed data within a
given tolerance threshold.

The ABC–SMC procedure allows us to refine the list
of accepted probability vectors by sampling a vector �i,
introducing a small perturbation to it to produce a vector
�′

i, and then collecting a new distance summary for �′
i.

The list of vectors output in the final step of the
algorithm defines the posterior distribution of the
coevolutionary event probabilities for the given pair H

TABLE 1. Notation

Notation Description

H Host tree.
P Parasite tree.
ϕ Function from the leaves of P to the leaves of H. It

represents the associations between currently living
host species and parasites.

� Function from the vertices of P to the vertices of H. It
represents the reconciliation between H and P and
extends ϕ.

�,	,
 Sets of parasite vertices associated with, respectively,
cospeciation, duplication, and host switch events.

� Set containing arcs of the parasite tree that are associated
to host switch events.

� Multiset containing all vertices h∈V(H) that are
associated to loss events.

D0 Observed data.
DS Generated data.
� Parameter space.
� Parameter value.
P̃ Simulated parasite tree.
pi Probability of the event i, where i∈{c,d,s,l}.
ci Cost of the event i, where i∈{c,d,s,l}.
oi Number of observed events of the type i, where

i∈{c,d,s,l}.

Note: c= cospeciation, d= duplication, s= host switch, and l= loss.
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and P. Table 1 shows a summary of the notation used
throughout this work.

Parasite Tree Generation Algorithm
The Duplication–Transfer–Loss (DTL) model.—To simulate
the coevolutionary history of the two input phylogenies,
we rely on the event-based model presented in Tofigh
et al. (2011), and later further analyzed in Bansal et al.
(2012).

A rooted phylogenetic tree is a leaf-labeled tree
that models the evolution of a set of taxa from their
most recent common ancestor (placed at the root). The
internal vertices of the tree correspond to the speciation
events. The tree is rooted so a direction is intrinsically
assumed that corresponds to the direction of increasing
evolutionary time. Henceforth, by a phylogenetic tree T,
we mean a rooted tree with labeled leaves where every
vertex has in-degree 1 and out-degree 2 except for the
leaves, which have out-degree 0. For such a tree T, the set
of vertices is denoted by V(T), the set of arcs by A(T), and
the set of leaves by L(T). The root of T is denoted by r(T).
Given an arc a= (v,w)∈A(T), going from v to w, we call its
head, denoted by h(a), the vertex w and its tail, denoted by
t(a), the vertex v. For a vertex v∈V(T), we define the set of
descendants of v, denoted by Des(v), as the set of vertices in
the subtree of T rooted at v (including v). Similarly, the set
of ancestors of v, denoted by Anc(v), is the set of vertices
in the unique path from the root of T to v (including the
end points). For a vertex v∈V(T) different from the root,
we call its parent, denoted by par(v), the vertex x for which
there is the arc (x,v)∈A(T). We denote by mrca(v,w) the
most recent common ancestor of v,w in T. Finally, we
denote by ≥ the partial order induced by the ancestry
relation in the tree. Formally, for x,y∈V(T), we say that
x≥y if x∈Anc(y). If neither x∈Anc(y) nor y∈Anc(x), the
vertices are said to be incomparable.

Let H,P be the phylogenetic trees for the host and
parasite species respectively. We define ϕ as a function
from the leaves of P to the leaves of H that represents
the association between currently living host species
and parasites. These associations are part of the input
of our algorithm, together with the trees themselves.
In our model, we allow each parasite to be related to
one and only one host, whereas a host can be related
to zero, one, or more than one parasite. More formally,
ϕ is thus a function which needs not be surjective nor
injective.

A reconciliation � is a function � :V(P)→V(H) that is
an extension of ϕ. In particular � partitions the set V(P)
into three sets �, 	, and 
 which correspond to the
vertices of P associated with, respectively, cospeciations,
duplications, and host switches. The reconciliation � also
defines a subset � of A(P) which corresponds to the arcs
associated with host switches.

Given a reconciliation �, the following holds (Tofigh
et al. 2011; Charleston 2002):

1. For any p∈L(P), �(p)=ϕ(p) (� extends ϕ).

2. For any internal vertex p∈V(P)−L(P) with
children p1 and p2:

(a) mrca(�(p),�(pi))≥�(pi), for i=1,2 (a child
cannot be mapped to an ancestor of the
parent).

(b) mrca(�(p),�(p1))=�(p) ormrca(�(p),�(p2)))=
�(p) (one of the two children is mapped to the
subtree rooted at the parent).

3. For any (p1,p2)∈�⇔mrca(�(p1),�(p2)) �∈ {�(p1),
�(p2)} (the arc (p1,p2) is an arc denoting a host
switch).

4. For any p∈V(P)−L(P) with children p1 and p2:
(a) p∈
⇔ (p,p1)∈� or (p,p2)∈� (p is associated

with a host switch).
(b) p∈	⇔mrca(�(p1),�(p2))∈{�(p1),�(p2)} (the

children are mapped to comparable vertices
and p is associated with a duplication event).

(c) p∈�⇔mrca(�(p1),�(p2))=�(p) and �(p1)
and �(p2) are incomparable (p is associated
with a cospeciation event).

The losses are identified by a multiset (generalization
of a set where the elements are allowed to appear more
than once) � whose elements are in V(H) containing all
the vertices h∈V(H) that are in the path between the
image of a vertex p∈V(P) and the image of one of its
children. The images themselves are not included in the
count, except for the duplication event, where one of the
images is included.

The triple S=〈H,P,�〉 is said to be a reconciliation.
Given a vector 〈cc,cd,cs,cl〉 of nonnegative real values that
correspond to the cost of each type of event, the cost of a
reconciliation is equal to cc|�|+cd|	|+cs|
|+cl|�|.

Finally, a reconciliation is said to be acyclic or time
feasible if there exists a total order on V(H)∪V(P) that is
consistent with the two partial orders induced by H and
P and respects all temporal constraints imposed by both
tree topologies and by the set of host switch events. For
a detailed definition of a time-feasible scenario, we refer
to Stolzer et al. (2012).

Evolution of parasites.—The evolution of the parasites
is simulated by following the evolution of the hosts
traversing the phylogenetic tree H from the root to the
leaves, and progressively constructing the phylogenetic
tree for the parasites. During this process, a single
parasite vertex can be in two different states: mapped or
unmapped. At the moment of its creation, a new vertex
v is unmapped and is assigned a temporary position on
an arc a of the host tree H. We denote this position by
〈v,a〉. From this position, we can decide to map v to a
vertex w of H (all coevolutionary events except for loss),
or, in the case of a loss, to move v to another position. In
the first case, v is always mapped to the vertex h(a) that
is the head of the arc a. We denote this mapping by [v :w]
with w=h(a).

Because in all three nonloss cases (cospeciation,
duplication, and host switch), the parasite is supposed
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a) b) c)

d) e) f)

FIGURE 2. Events during the generation of the parasite tree P̃. The host tree has white vertices and the parasite tree gray vertices. The
association 〈v :a〉 indicates that an unmapped parasite vertex v is positioned on the arc a of the host tree. The association [v :w] indicates that
the parasite vertex v is mapped to the host vertex w. a) initial configuration; b) unmapped vertex; c) cospeciation; d) duplication; e) host switch;
f) loss.

to speciate and two children are created for v, denoted
by v1 and v2. Their positioning along arcs of the
host then depends on which of the three events took
place. In the case of a loss, no child for v is created
(at this step) because there is no parasite speciation,
and v is just moved to one of the two arcs outgoing
from h(a) chosen randomly. Notice however that, in
order to avoid confusing a loss with another event
(for instance, a cospeciation), some precautions must
be taken, as explained more specifically in the next
paragraph concerning the simulation of a loss event.

These choices, together with the general framework
for our parasite tree generation method, are provided
next.

Starting the generation.—The generation of the simulated
parasite tree P̃ starts with the creation of its root vertex
P̃root. This vertex is positioned before the root of H on
the arc a= (
,Hroot). This allows the simulation of events
that happened in the parasite tree before the most recent
common ancestor of all host species in H. Figure 2a
depicts this initial configuration.

The evolutionary events.—For any vertex v of P̃ that is not
yet mapped and whose position is 〈v,a〉 (Fig. 2b), we
choose to apply one among the four allowed operations,
depending on the probability of each event. In what
follows, we denote by a1,a2 the arcs outgoing from the
head h(a) of the arc a.

• Cospeciation (Fig. 2c): we apply the mapping
[v :h(a)] and we create the vertices v1 and v2
as children of v. We position them as follows:
〈v1,a1〉 and 〈v2,a2〉. This operation is executed with
probability pc.

• Duplication (Fig. 2d): We apply the mapping [v :
h(a)] and we create the vertices v1 and v2 as children
of v. Both v1 and v2 are positioned on a. This
operation is executed with probability pd.

• Host switch (Fig. 2e): We apply the mapping
[v :h(a)] and we create the vertices v1 and v2 as
children of v. We then randomly choose one of
the two children and position it on a. Finally, we
randomly choose an arc a′ that does not violate the
time feasibility of the reconstruction so far (Stolzer
et al. 2012). If such an arc does not exist, it is not
possible for a host switch to take place. In this case,
we choose between the three remaining events
with probability pi/(pc +pd +pl) with i∈{c,d,l}.
Otherwise, we position v2 on a′. This operation is
executed with probability ps.

• Loss (Fig. 2f): This operation is executed with
probability pl and consists of randomly choosing
an arc outgoing from the head h(a) of a and
positioning v on it. Observe that we are considering
only losses resulting from lineage sorting. It would
be interesting to incorporate extinction or failure to
detect infection but this would require the addition
of new parameters, thus making the model more
complex to analyze. However, if v was created
by a duplication event and is being processed
for the first time, we have to verify if its sibling
vertex v′ was already processed and also suffered
a loss. In this case, v must be positioned on
the same arc a′ where v′ was positioned. This
procedure is adopted to avoid later mappings
where a duplication followed by two losses would
be confused with a cospeciation.
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We also assume that no evolutionary event takes place
whenever a leaf of H is reached. This means that, if v is
positioned on an arc incoming to a leaf, then v is mapped
to the leaf and no further operation is executed. Hence,
the generation of P̃ terminates when all the created
vertices are mapped (i.e., have reached a leaf of the
host tree). Finally, the leaves of the parasite tree P̃ are
labeled according to their mapping to the leaves of the
host tree. Observe that as more than one parasite can
be mapped to the same host, P̃ is a multilabeled tree
(i.e. trees whose leaf labels need not be unique). Finally,
some combinations of host switches can introduce an
incompatibility due to the temporal constraints imposed
by the host and parasite trees, as well as by the
reconciliation itself. During the generation of the parasite
tree, we always allow only for host switches that do not
violate the time-feasibility constraints. For the criteria
enabling to assess time-feasibility, we refer to Stolzer et al.
(2012).

Note that in this model, we do not use information
about edge lengths. This is a positive aspect of the
method in the sense that branch lengths are not always
easy to determine with accuracy. In contrast, we cannot
simulate the “null events” (parasite doing nothing in the
host tree). Moreover, for now, we do not simulate “failure
to diverge” which describes a situation where a host
speciates whereas the parasite does not but continues
to inhabit both of the two new species of hosts. Despite
the importance of this event, mathematically speaking
it is not clear how to include it in the cophylogenetic
reconciliation model because we have to allow the
association of a parasite to multiple hosts. The ideas
presented by Drinkwater and Charleston (2014) for the
improvement of node mapping algorithms may help
on the simulation of the “failure to diverge” event in
future work.

Because the simulation model is restricted to the
events of cospeciation, duplication, host switch, and loss,
the probabilities of these four events sum up to one.

Cophylogeny Parameter Estimation Algorithm
Prior distribution �.—The parameter �=〈pc,pd,ps,pl〉
lives in the simplex S3 (the p’s are positive and sum to
one). It is then standard to sample � from a Dirichlet
distribution which is a family of continuous multivariate
probability distributions parameterized by a vector � of
positive real numbers that determine the shape of the
distribution (Gelman et al. 2003).

In our simulations, we adopt a uniform Dirichlet
distribution (namely �= (1,1,1,1)) that corresponds to
sampling uniformly from the simplex S3. This is often
used when there is no previous knowledge favoring one
component (e.g., coevolutionary event) of � over another.
However, the method we implemented allows the user to
specify other prior distributions when such knowledge
is available.

Choice of summary statistic and fitting criterion.—The
ABC inference method is based on the choice of

a summary statistic that describes the data while
performing a dimension reduction task. The latter is
used to evaluate the quality of agreement (similarity)
between the simulated data sets (the generated parasite
trees) and the observed (the real parasite tree). In
our case, the summary statistic will be based on the
measured distances between the generated parasite trees
and the real one.

The distance of each simulated tree to the real parasite
tree is therefore informative about the quality of the
vector that generated it. Hence, the distance that will
be used must take into account: (i) how well does the
simulated tree represent the set of trees generated by
a given vector, and (ii) how topologically similar is the
simulated tree to the real parasite tree.

Concerning the first point, the intuition is as follows.
In our model, when generating a parasite tree, the
expected frequency of an event should be close to the
corresponding probability value of the parameter vector
used to generate the tree. To this purpose, for a given
vector �=〈pc,pd,ps,pl〉 and for each simulated tree P�
that was generated according to this vector, we kept track
of the number of events obs=〈oc,od,os,ol〉associated with
this simulation. We compared the observed number of
events to the expected exp=〈ec,ed,es,el〉. Observe that
the expected number of events can be easily calculated
using the size of the parasite tree P and the vector �. A
tree is a good representative if the observed number of
events is near to the expected. More formally, for a real
parasite tree P, a vector �=〈pc,pd,ps,pl〉, and a simulated
parasite tree P� for which the observed number of events
are obs=〈oc,od,os,ol〉, we define a measure D1(P,P�) as
follows:

D1(P,P�)= 1
4

×
∑

i∈{c,d,s,l}

|ei −oi|
max{ei,oi} .

As concerns point (ii), we use a metric for comparing
phylogenetic trees. There is a wide literature on distances
for phylogenetic trees (Felsenstein 2003). Our choice was
driven by the need to have one that can be computed
efficiently and accurately. Unfortunately, many of the
distances used in biology are also NP-hard to compute
(Baroni et al. 2005; Hein 1990; Waterman and Smith
1978), whereas some of the fastest, like for instance,
the Robinson–Foulds distance (Robinson and Foulds
1981) which can be calculated in linear time (Day
1985), are poorly distributed and thus not good enough
discriminators (Bryant and Steel 2009; Steel and Penny
1993). Moreover, many efficient-to-compute distances
are not robust to small changes (such as in the position
of a single leaf) in one of the two trees.

Recall that in our method the leaves of the parasite tree
P̃ are labeled according to their mapping to the leaves
of the host tree and that more than one parasite can be
mapped to the same host. Hence, we are interested in
distances between multilabeled trees.

In our context, the distance that best meets the
requirement of efficiency and accuracy appears for now
to be the maximum agreement area cladogram (MAAC)
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(Ganapathy et al. 2006). This is a generalization for multi-
labeled trees of the well-known maximum agreement
subtree (Finden and Gordon 1985; Farach-Colton et al.
1995) and it corresponds to the number of leaves in
the largest isomorphic subtree that is common to two
(multilabeled) trees. Clearly this isomorphism takes into
account the labels of the trees. The MAAC distance can
be calculated in O(n2) time where n is the size of the
largest input tree (Ganapathy et al. 2006).

We use a normalized version of MAAC that takes into
account also the number of leaves in common between
the two trees. More formally, for two trees P and P′
with leaf sets L(P) and L(P′) respectively, we define the
measure D2(P,P′) as follows:

D2(P,P′)=
⎧⎨
⎩

1− MAAC(P,P′)
|L(P)∩L(P′)| if L(P)∩L(P′) �=∅

1 otherwise.

Observe that the intersection operation involves
multisets. We recall that a multiset is a generalization
of a set where the elements are allowed to appear more
than once, hence the operations take into account their
multiplicity in the following way: if the multiplicity of an
element e in a multiset A is given by [e](A), then [e](A∩B)
is given by min{[e](A),[e](B)}.

Finally, we propose a distance that is based on these
two components D1 and D2. For a real parasite P, a vector
�=〈pc,pd,ps,pl〉, and a simulated parasite tree P�, we
define the distance d(P,P�) as follows:

d(P,P�)=�1D1(P,P�)+�2D2(P,P�), with �1 +�2 =1.

According to our experiments (see Supplementary
Material available at, http://dx.doi.org/10.5061/
dryad.9g5fp), the most appropriate values are �1 =0.7
and �2 =0.3 but this can be set by the user. The main
drawback of this distance is that it is not a metric;
however, it achieves good results with respect to
discriminating the trees as observed in our experiments.

In COALA, we implemented two other distances, both
of which are variations of the MAAC. A user can choose
the most appropriate one depending on the case. In this
article, we show only the results for the two-component
distance, as this had the most discriminating power (data
not shown).

Given a parameter vector �=〈pc,pd,ps,pl〉, we generate
M trees and for each of them we consider the distance
of P̃ from the real parasite tree P. From this set of
distances, D, we produce a summary, denoted by S(�),
that characterizes the set of trees generated with the
parameter vector. In our experiments, we choose S(�) as
the average of all the produced distances.

The summary S(�) is the value that is used in the
rejection/acceptance step of the ABC method.

Finally, it is worth noting that although the choice of a
summary statistic (or equivalently here a summary tree
distance) is independent from the generation process
(coevolution model), such a choice may have a deep
impact on the performance and the results of the
method. This is one of the main issues with ABC-related

methods. Some recent works have attempted to improve
this step (Fearnhead and Prangle 2012). From the
experiments done however, we can already see that the
two-component distance seems to be a good enough
discriminator.

ABC–SMC Procedure.—The ABC–SMC procedure is
composed of a sequence of R>1 rounds. For each of these
rounds, we define a tolerance value �r (1≤r≤R) which
determines the percentage of parameter vectors to be
accepted. Associated with a tolerance value �r, we have
a threshold �r which is the largest value of the summary
statistic associated with the accepted parameter vectors.

• Initial round (r=1):

Draw an initial set of N parameter vectors
{�i

1}(1≤i≤N) from the prior �. Then, for each
�i

1 generate M trees {P̃j(�i
1)}(1≤j≤M). Select

Q=�1 ×N parameter vectors �1 that have the
smallest S(�1), thus defining the threshold �1
and the set A1 of accepted parameter vectors.

• Following rounds (2≤r≤R):

1. Sample a parameter vector �� from the set
A(r−1). Create a parameter vector ��� by
perturbing ��. The perturbation is performed
by adding to each coordinate of �� a
randomly chosen value in [−0.01,+0.01] and
normalising it.

2. Generate M trees {P̃j(���)}(1≤j≤M) and
compute S(���). If S(���)≤�(r−1), add ��� into
the quantile set Sr. If |Sr|<Q, return to Step 1.

3. Based on the set Sr, select �r ×Q parameter
vectors �r that have the smallest S(�r), thus
defining the threshold �r and the set Ar of
accepted parameters.

The final set AR of accepted parameter vectors is the
result of the ABC–SMC procedure and characterizes the
list of parameter vectors that may explain the evolution
of the pair of host and parasite trees given as input.

Let us observe that, because in all our experiments
we are assuming a uniform prior distribution and also
are performing the perturbations in a uniform way, the
weights induced by the proposals appear to be uniform
(Beaumont et al. 2009). However, in the case of a different
prior, weights should be used in the process in order
to correct the posterior distribution according to the
perturbation made.

Clustering the Results
COALA implements a hierarchical clustering procedure

to group the final list of accepted parameter vectors. The
basic process of a hierarchical clustering is as follows.
At the beginning, each parameter vector forms a single
cluster. Then at each step, the pair of clusters that have
the smallest distance to each other are merged to form
a new cluster. The distance that we use between the

http://dx.doi.org/10.5061/dryad.9g5fp
http://dx.doi.org/10.5061/dryad.9g5fp
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vectors �=〈pc,pd,ps,pl〉 and �′ =〈qc,qd,qs,ql〉 is the �2

distance, which is a weighted Euclidean distance defined
as follows:

d(�,�′)=
√√√√ ∑

i∈{c,d,s,l}
2× (pi −qi)2

(pi +qi)
.

At the end of this process, we have a single
cluster containing all the items represented as a tree
(hierarchical cluster tree or dendrogram) showing the
relationship among all the original items. As we make
no assumptions concerning the space of the vectors we
are dealing with, we chose to apply a more general but
still efficient method, introduced in Langfelder et al.
(2007), to select the branches to be cut in the dendrogram.
The method proceeds in two steps. Starting with the
complete dendrogram, it first identifies preliminary
clusters that satisfy some criteria: for example, they
contain a certain minimum number of objects (to avoid
spurious divisions), any two clusters are at least some
distance apart, etc. (Langfelder et al. 2007, for more
details). In a second step, all the items that have not been
assigned to any cluster are tested for sufficient proximity
to preliminary clusters; if the nearest cluster is close
enough, the item is assigned to that cluster, otherwise
the item remains clustered according to the complete
dendrogram.

Finally, once the vectors are split into clusters, we
associate to each one a representative parameter vector.
To define each coordinate of the “consensus” parameter
vector, we take the mean value of the respective
coordinate in all the parameter vectors which are
inside the cluster. We then normalize the “consensus”
coordinates to sum to one.

EXPERIMENTAL RESULTS AND DISCUSSION

We evaluated our method in two different ways. First
we designed a self-test to show that the principle under-
lying it is sound and to test it on simulated data sets.

We then extended the evaluation to four real examples
that correspond to biological data sets from the
literature. This choice was dictated by: (i) the availability
of the trees and of their leaf mapping; and (ii) the
desire to, again, cover for situations as widely different
as possible in terms of the events supposed to have
taken place during the host–parasite coevolution. As
a matter of fact, the first point drove the choice more
than the second: there are not so many examples
available from which it is easy to extract the tree and/or
leaf mapping and that are big enough to represent
meaningful data sets on which to test COALA. All four
examples were also analyzed in the original paper
from which they were extracted by one or more of the
existing algorithms that search for a most parsimonious
(possibly cyclic) reconciliation (i.e., for a reconciliation of
minimum cost). Except in one case, which is a heuristic
strategy and therefore does not guarantee optimality of
the solution, all existing algorithms need to receive as

input the cost of the events, which is thus established a
priori and drives the conclusions on the results obtained.

Finally, we applied COALA to a biological data set of
our own, representing the coevolution of bacteria from
the Wolbachia genus and the various arthropods that host
them. This data set was selected because of its size: the
trees have each 387 leaves.

Experimental Parameters
All data sets were processed by COALA configured with

the same parameters. For each data set, we generated
N =2000 parameter vectors in the first round. For each
of the vectors, we generated M=1000 parasite trees using
our method. We required these trees to have a size at most
twice the one of the real parasite tree, otherwise the tree
was discarded as being too different from the original.
If a given vector did not generate M such trees in 5000
trials, then the vector was immediately associated with
a distance equal to 1 which indicated that it represented
the real data badly.

We used the average of all the 1000 distances produced
as a fitting criterion in the rejection/acceptance step of
the ABC method. The tolerance value used in the first
round was �1 =0.1. For the remaining rounds 2≤ i≤R,
we defined �i =0.25. Notice that �1 ×N =200 defines the
size Q of the quantile set which must be produced in
each new round. Thus, after the last round, we have �R ×
Q=50 accepted vectors. These vectors are grouped into
clusters and a representative vector is associated with
each cluster as explained in the Section “Clustering the
results.”

We ran the experiments using R=3 and R=5 rounds.
The number of rounds is an important parameter,
which defines the characteristics of the list of accepted
parameter vectors.

However, observe that a high number of rounds
will tend to overfit the data and thus hide a possible
variability in the list of accepted vectors that could
provide significant alternatives for explaining the
studied pair of trees.

Because, we are interested in exploring different
alternatives for each data set, we present only the
results which were obtained after running COALA for 3
rounds. The results involving 5 rounds may be found
in the Supplementary Material available at http://dx.
doi.org/10.5061/dryad.9g5fp.

Simulated Data sets
We first evaluated our model on simulated data.

Clearly, in order to do this, we have to generate
the phylogenies for the hosts and parasites whose
coevolution is being studied in such a way that the
probability of each event is known. The basic idea is
that if we are able to select a “typical” (or representative)
parasite tree P� that is generated starting from a host tree
H and a given probability vector �, COALA should be able
to list values close to � among the vectors accepted in the
last round.

http://dx.doi.org/10.5061/dryad.9g5fp
http://dx.doi.org/10.5061/dryad.9g5fp
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It is important to observe that many different
probability vectors can explain the same pair of trees. We
will therefore consider it acceptable if COALA produces
clusters that are relatively close to �.

Generating simulated data sets.—Due to the high
variability of the parasite trees which can be simulated
given a host tree H and a vector �, the task of choosing
the most “typical” tree can be hard. To simplify this task
and select a typical tree, we impose two conditions which
must be observed by the simulated tree. The first one
requires that the candidate tree should have a size close
to the median for all the trees which are simulated using
H and �. The second condition requires that the observed
number of events of a candidate tree should be very close
to the expected number given �.

In practical terms, we execute the following procedure:
in order to get realistic data sets we choose a real
host tree H (see Supplementary Material available
at http://dx.doi.org/10.5061/dryad.9g5fp, for more
information). Then, given a probability vector � and H,
we generate 2000 parasite trees using our model, without
imposing any limit on the size of the generated trees.
We then compute the median size of all generated trees
and we filter out those whose size is far from this value
(difference greater than 1 or 2 leaves from the median
value). Finally, we select as typical tree P� the one that
shows the smallest �2 distance between the vector � and
the vector of observed frequencies of events.

We generated in this way 9 data sets (H,P)
associated with the following 9 probability vectors:
�1 =〈0.70,0.10,0.10,0.10〉, �2 =〈0.80,0.15,0.01,0.04〉,
�3 =〈0.75,0.01,0.16,0.08〉, �4 =〈0.70,0.05,0.02,0.23〉,
�5 =〈0.60,0.20,0.00,0.20〉, �6 =〈0.55,0.00,0.20,0.25〉, �7 =
〈0.45,0.10,0.15,0.30〉, �8 =〈0.40,0.20,0.10,0.30〉, and �9 =
〈0.30,0.20,0.40,0.10〉 (see the Supplementary Material
available at http://dx.doi.org/10.5061/dryad.9g5fp,
for more details). The choice of vectors was done with
the aim to cover different patterns of probability. All
data sets were generated with the same host tree H of
36 leaves.

Self-test.—As concerns the self-test, we designed the
following procedure. Let P� denote the simulated
parasite tree chosen in correspondence of the probability
vector �, as explained in the previous section. We recall
that the host tree H remains the same during all the
self-test experiments. For a pair of host and parasite
trees (H,P�), we ran COALA 50 times. In each run j, we
computed the quality qj that corresponded to how well
the method was able to recover the target vector � used
for generating the data set P�. To do this, for each run j,
we considered the representative vectors of the clusters
produced as output. We computed the �2 distance for
each of the representative vectors to the target vector �
and set qj to the smallest value among them.

Figure 3 shows the distribution of the quality
values which were obtained at the end of each round
(from 2 to 5) for the simulated data sets �1, �3,
�4, and �7 (the results for the remaining data sets

can be found in the Supplementary Material available
at http://dx.doi.org/10.5061/dryad.9g5fp). Figure 4
shows the histograms of the event probabilities
observed for the 50 parameter vectors with smallest
�2 distance at the end of each round for data set
�3 (again, the results for the remaining data sets are
available in the Supplementary Material available at
http://dx.doi.org/10.5061/dryad.9g5fp).

Up to a certain level of cospeciation probability
(≥0.50), our results (Fig. 3) show that in the rounds 2
and 3, COALA is able to select parameter vectors that
are close to the target probability vector. Looking to the
histograms of these two rounds, we can observe that
in most of the runs, the closest parameter vector has
low �2 distance to the target. After the third round,
this tendency changes and the closest parameter vectors
show high �2 distances indicating that COALA is mainly
selecting vectors which are far from the target one.

Because COALA is based on an ABC–SMC approach,
the accepted vectors in one round have summary
statistics (i.e., average distance) smaller than the �
defined in the previous round. This means that at each
new round, COALA is selecting parameter vectors that
have more probability of explaining the pair of trees
given as input because their simulated parasite trees are,
on average, closer to the real one.

Although we try to choose the best representative
parasite tree P for each pair (H, �), we cannot guarantee
that � is the best explanation for the association between
H and P. Even so, COALA was able to select parameter
vectors that are close to the target probability vector in
the first rounds. Figure 4 shows the histograms of the
event probabilities observed among the 50 parameter
vectors with smallest �2 distance at the end of each
round for data set �3, and confirms these observations.
We can see that at round 2, the median and mean event
probabilities (solid and dotted vertical lines respectively)
are very close to the target value (dashed vertical line).
When we increase the number of rounds, the distance
between the median/mean probabilities and the target
values increases.

When we decrease the cospeciation probability to
values smaller than 0.50, COALA selects very few
vectors which are close to the target vector. When the
cospeciation probability decreases while the duplication
and host switch probabilities increase, the variability
of the tree topologies observed increases exponentially.
Due to this, selecting a typical tree becomes an almost
impossible task and this may explain the obtained
results. Increasing the number of simulated trees to
compute the summary statistic might enable us to
improve the quality of the results. However, this would
require a much longer execution time.

Biological Data sets Extracted from the Literature
To evaluate COALA on biological data sets, we

extracted four pairs of host and parasite trees from the

http://dx.doi.org/10.5061/dryad.9g5fp
http://dx.doi.org/10.5061/dryad.9g5fp
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FIGURE 3. For each simulated data set, we ran COALA 50 times and, at the end of each round (from 2 to 5), we took note of the cluster whose
representative parameter vector had the smallest �2 distance to the probability vector used to generate the simulated data set. The histograms
show the distribution of the smallest �2 distance observed on each one of the 50 runs at the end of each round (for the simulated data sets v1 =�1,
v3 =�3, v4 =�4, and v7 =�7.). The solid and dotted vertical lines indicate median and mean values, respectively.

literature. However, due to space issues, in this work
we present only two of them. A description and the
results obtained on the additional biological data sets
can be found in the Supplementary Material available
at http://dx.doi.org/10.5061/dryad.9g5fp. Before
presenting and discussing the data sets, we provide
details on how we performed the analyses.

Each data set was processed by COALA as described in
the Section “Experimental parameters.” Table 2 shows
the representative parameter vectors obtained for each
one of the data sets and Figure 5 the histograms of the

event probabilities of the list of accepted vectors obtained
at the end of the third round.

In order to compare our results to the existing
literature, we transformed each one of the representative
parameter vectors 〈pc,pd,ps,pl〉 into a vector of costs
that was then used to compute optimal reconciliations
between the host and the parasite trees given as input.
The transformation was done by defining ci =−lnpi,
with i∈{c,d,s,l}, which is based on a commonly accepted
idea that the cost of an event is inversely related to
its probability (e.g., Charleston 1998; Ronquist 2003;

http://dx.doi.org/10.5061/dryad.9g5fp
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FIGURE 4. For each simulated data set, we ran COALA 50 times and, at the end of each round (from 2 to 5), we took note of the cluster whose
representative parameter vector had the smallest �2 distance to the probability vector used to generate the simulated data set. The histograms
show the distribution of the event probabilities observed on the list of parameter vectors which have the smallest �2 distance on each run for the
data set v3 =�3. The solid and dotted vertical lines indicate median and mean values, respectively. The dashed vertical line indicates the “target”
value.

Huelsenbeck et al. 1997). Indeed, if pi is equal to 1, then
we expect all the events to be of type i, thus the cost of the
corresponding event must be 0. Similarly, if pi is equal to
0, we expect that event i never happens, and thus the cost
must be assigned to +∞.

To the best of our knowledge, the only methods
that enumerate all optimal reconciliations are CORE-PA
(Merkle et al. 2010), NOTUNG (Stolzer et al. 2012), and
EUCALYPT (Donati et al. 2014). However CORE-PA in some
cases misses solutions, probably because it considers
some additional constraints. NOTUNG does not allow

cospeciation costs different from zero and the remaining
event costs must be described by integer values. We
thus present the results of EUCALYPT which allows the
configuration of all event costs and accepts real numbers.

Table 3 shows, for each data set, the vector of
costs (cc, cd, cs, cl) produced by transforming the
representative parameter vectors obtained after the third
round (Table 2). Column Opt indicates the cost of
the optimal solution and columns #c, #d, #s, #l the
numbers of each event type which are observed among
the enumerated scenarios. Finally, columns #A and #C
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TABLE 2. Representative probability vectors produced by COALA
at Round 3

Data set Cluster pc pd ps pl No. of vectors

1

0 0.030 0.000 0.557 0.413 1
1 0.461 0.258 0.000 0.281 24
2 0.554 0.000 0.270 0.176 20
3 0.910 0.016 0.058 0.016 5

2

1 0.851 0.082 0.000 0.066 25
2 0.473 0.204 0.000 0.323 10
3 0.238 0.349 0.000 0.413 8
4 0.580 0.002 0.282 0.136 7

indicate, respectively, the total number of acyclic and
cyclic scenarios.

Data set 1: flavobacterial endosymbionts and their insect
hosts.—This data set was extracted from the work of
Rosenblueth et al. (2012) and is composed of a pair of
host and parasite trees which have each 17 species (see
Supplementary Material available at http://dx.doi.org/
10.5061/dryad.9g5fp). The parameter adaptive approach
of CORE-PA (Merkle et al. 2010) was used to infer
the more appropriate cost vectors for analyzing this
data set. Nine such vectors were produced. However,
only one, 〈cc =0.088,cd =0.325,cs =0.339,cl =0.248〉, was
associated with a feasible reconciliation in the sense
that host switches happened between contemporary
species only (the branch length was used to infer this
information). Because CORE-PA can produce unfeasible
(i.e., cyclic) solutions during the parameter adaptive
approach, Rosenblueth et al. decided to complement
their study with Jane 3 (Conow et al. 2010), which
uses a genetic algorithm approach to produce only
acyclic reconciliations. They thus started with the only

cost vector obtained by CORE-PA associated with a
feasible reconciliation, however transforming it into
integer numbers (a requirement of the software), and
then gradually changed the costs until a feasible
reconciliation was produced (again using branch-length
information). This procedure resulted in the cost vector
〈cc =1,cd =1,cs =1,cl =2〉 and a reconciliation with 9
cospeciations, 0 duplication, 7 host switches and 1 loss,
the same as obtained by CORE-PA.

Running COALA on this data set, we obtain 3
nonsingleton clusters which are quite different from
each other (Table 2). Cluster 0 is formed by a single
accepted vector which did not cluster with any other
because it is too far apart. Cluster 1 shows probabilities
of 0.46, 0.26, and 0.28, respectively, for cospeciation,
duplication, and loss. After transforming these into costs
(Table 3), the obtained reconciliation scenarios have 11
cospeciations, 2 duplications, 3 host switches, and 11
losses. Clusters 2 and 3 show very low duplication
probability. Although Cluster 2 exhibits intermediate
values for the remaining probabilities, Cluster 3 has
a very high cospeciation probability value (0.91) and
low host switch (0.06) and loss (0.02). Due to the
low duplication value, these clusters show the same
reconciliation scenario: 9 cospeciations, 0 duplications,
7 host switches, and 1 loss, which is identical to the one
proposed by Rosenblueth et al. (2012).

Dataset 2: Rodents and Hantaviruses.—This data set is
taken from Ramsden et al. (2009, Fig. 2) and considers
the coevolution of hantaviruses with their insectivore
and rodent hosts. The host tree consists of a total of 34
hosts (28 rodents and 6 insectivores) and the parasite
tree includes 42 hantaviruses. It was strongly believed
that hantaviruses cospeciated with rodents becuase
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FIGURE 5. Distribution of the probability values for each event type observed on the parameter values accepted on the third round while
processing the biological data sets 1 and 2.
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TABLE 3. Event vectors obtained by transforming the probability vectors (Table 2) into cost vectors

Data set Cluster cc cd cs cl Opt #c #d #s #l #A #C

1

0 3.517 13.816 0.584 0.885 14.044 1 0 15 2 2944 0
1 0.775 1.355 7.824 1.270 48.664 11 2 3 11 2 0
2 0.591 8.517 1.310 1.736 16.217 9 0 7 1 1 0
3 0.094 4.160 2.844 4.154 24.892 9 0 7 1 1 0

2

1 0.161 2.496 9.210 2.717 153.544 22 11 8 18 0 12
2 0.748 1.592 9.210 1.130 105.393 22 19 0 52 1 0
3 1.436 1.053 8.112 0.884 97.548 22 19 0 52 1 0
4 0.545 6.266 1.265 1.996 72.588 17 5 19 4 4 0

Note: #c,#d,#s, and #l denote the number of each event type which are observed among the enumerated scenarios. #A and #C indicate,
respectively, the total number of acyclic and cyclic scenarios.

their phylogenetic trees have topological similarities
with three consistently well-defined clades (Hughes
and Friedman 2000; Jackson and Charleston 2004;
Nemirov et al. 2004; Plyusnin and Morzunov 2001).
The authors show that to support this hypothesis,
the evolutionary rate of the RNA sequences of the
hantaviruses should be several orders of magnitude
smaller than the rates which are normally observed
in RNA viruses that replicate with RNA-dependent
RNA polymerase (Hanada et al. 2004). By analyzing
the cophylogenetic reconciliations, the authors show
that scenarios with more than 20 cospeciations are
statistically nonsignificant. To explain the topological
congruences, the authors point to the fact that host-
switching followed by pathogen speciation can generate
congruence between trees, particularly when pathogens
preferentially switch among closely related hosts. Based
on this fact and on the observed patterns of amino acid
replacement observed in these viruses (compatible with
host-specific adaptation), the authors conclude that the
coevolutionary history of these hosts and parasites is the
result of a recent history of preferential host-switching
and local adaptation.

Looking at Table 2, we can observe that Clusters 1, 2,
and 3 have representative vectors with zero probability
for host switch events: Cluster 1 has a very high
cospeciation probability (0.85), whereas Clusters 2 and
3 have probability values which are almost equally
distributed among cospeciation, duplication, and loss
events. After transforming these vectors into costs
(Table 3), we obtain scenarios with a high number
of cospeciations which is considered nonsignificant by
Ramsden et al. (2009).

Differently from the others, Cluster 4 shows a
vector with host switch probability higher than the
probabilities of duplication and loss. When converted
into costs (Table 3), this generates time-consistent
scenarios with 17 cospeciations, 5 duplications, 19 host
switches, and 4 losses, a result much closer to the
explanation given by Ramsden et al. (2009). These results
reinforce the idea that, although COALA is able to identify
vectors which can explain a pair of trees, having a prior
knowledge of the dynamics of the interactions of the two
groups of species is important to identify the clusters that
better explain their coevolution.

TABLE 4. Representative probability vectors produced by COALA, at
the end of the third round, while processing the Wolbachia-arthropods
data sets

Cluster pc pd ps pl No. of vectors

1 0.866 0.006 0.055 0.073 26
2 0.771 0.078 0.010 0.141 22
3 0.964 0.022 0.014 0.000 2

Wolbachia and their Arthropod Hosts Data set
Wolbachia is a large, phylogenetically diverse

monophyletic genus of intracellular bacteria that are
currently considered the most abundant endosymbionts
in arthropods. In insects alone, it is estimated that over
65% of the species are infected by Wolbachia. The data set
used in this artcile corresponds to Wolbachia species that
were detected in an extensive set of arthropods collected
from 4 young, isolated islands (less than 5 Myr old)
(Simões et al. 2011; Simões 2012). The trees are a subset
of those discussed in (Simões et al. 2011; Simões 2012),
where we retained only those parasites which were
associated with a unique host, the hosts diverge by at
least 2% at the level of the CO1 genes that were used for
reconstructing their phylogenetic tree and the Wolbachia
sequences (corresponding to the fbpA gene) differ by at
least one SNP. Each resulting tree is composed of 387
leaves. The initial results presented in Simões (2012)
seemed to indicate that host switches might be quite
frequent even among hosts that are physiologically and
molecularly very distinct and thus phylogenetically
distant.

The Wolbachia-arthropods data set was also processed
by COALA as described in the Section “Experimental
parameters.” Table 4 shows the three clusters which
were obtained at the end of the third round. All
these clusters have significantly high cospeciation
probabilities (>0.77). The first cluster has a very low
duplication probability and a host switch probability
around 0.5. The two other clusters point to a relatively
high duplication probability and low level of host
switches. The difference between them is related to the
probability of losses, which is around 0.14 for Cluster 2
and zero for Cluster 3.
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TABLE 5. Total number of solutions obtained by transforming the
probability vectors (Table 4) into cost vectors for Wolbachia-arthropods
data sets

Cluster cc cd cs cl Opt Solutions Acyclic
solutions

1 0.144 5.116 2.899 2.623 917.475 5.4×1043 No
2 0.260 2.551 4.595 1.961 1407.877 9.8×1040 No
3 0.037 3.817 4.269 13.816 1375.725 1.6×1051 Yes

Cluster 1 goes in the direction of what was presented
in Simões (2012) where the author suggested that in
the last 3 Ma, there were many transfers of Wolbachia,
including between different arthropod orders, that is
over large phylogenetic distances. Clusters 2 and 3 point
to an opposite scenario.

Similarly to the analysis performed for the small
biological data sets, we transformed each one of the
representative parameter vectors into a vector of costs
that was then used to compute optimal reconciliations
between the host and the parasite trees given as input.

What is most striking with the results obtained
for this data set is the absolutely huge number of
optimal reconciliations that can be derived for all
clusters. Because the total number of solutions makes
impossible the enumeration of all the results, for this
data set, we therefore only computed the costs of the
optimal solutions and the total number of solutions.
Additionally, for each cluster, we sampled 10,000
solutions and we checked for the presence of acyclic
solutions. Table 5 summarizes the results obtained.

For the small sampling that we performed, we were
able to find feasible (acyclic) solutions only with the cost
vector produced with the event probabilities of Cluster
3. However, the results obtained with all the other four
data sets used here lead us to suggest that the number
of feasible solutions might quite possibly remain large.

CONCLUSIONS

We have developed an automated method that,
starting from two phylogenies representing sets of host
and parasite species, allows extraction of information
about the costs of the events in a most probable
reconciliation. It is clear that within a parsimony-based
approach, an optimal solution strictly depends on the
specific values attributed to these costs. However, there
seldom is enough information for assigning those values
a priori. Indeed, we observe in the results we obtained on
a diverse selection of data sets that the costs inferred by
our simulations may be very different across data sets,
thus motivating the use of estimated instead of fixed
costs. Such costs may even differ widely for a same pair
of host–parasite trees, as is observed for the Wolbachia-
arthropods data set.

These costs are inversely related to their likelihood,
and so to their expected frequency. For this reason,
providing information on the frequencies of the events

is an important issue, in particular in the cases where the
reconciliation methods fail to find a solution. The latter
can happen, for instance, if all the optimal solutions that
are identified by the existing reconciliation algorithms
are biologically unfeasible due to the presence of cycles,
becuase finding an acyclic reconciliation is an NP-hard
problem. In addition, if the host and parasite trees
are large (for instance, on the order of hundreds of
taxa), these cases cannot be handled by the existing
reconciliation algorithms in the sense that there are too
many solutions to test for acyclicity.

As a future work, we first plan to refine the model used
for the reconciliation problem, including more biological
information and making it more realistic. In particular,
we could include information about the distance of the
allowed host switches (for instance if we expect a host
switch to rarely happen between species that are too far
from each other), or allow the mapping of the leaves to
be an association instead of a function (thus addressing
the cases where a parasite can be found in more than
one host species). Moreover, we should also consider the
case where the input phylogenies are not fully resolved,
meaning that the trees are not binary.

A more efficient exploration of the parameter space is
another important future issue that would significantly
increase the efficiency of our procedure and also allow
to handle larger trees.

It is important to observe that most studies on
cophylogeny assume that the phylogenies of the
organisms are correct. Clearly, this may affect the results
observed. It would therefore be interesting to be able
to infer the cophylogenetic reconciliation directly from
sequence data.

Finally, the accuracy of the results obtained by our
method depends on the choice of the metric used for
comparing trees. Designing new metrics that can be
computed efficiently while still capturing the similarity
for multilabeled, not fully resolved trees is therefore
another important future issue which we believe is also
interesting per se.

AVAILABILITY

The COALA program is available at
http://coala.gforge.inria.fr/ and runs on any machine
with Java 1.6 or higher. The EUCALYPT program is
available at http://eucalypt.gforge.inria.fr/.

Running Time
The experiments were executed at the IN2P3

Computing Center (http://cc.in2p3.fr/). For the
simulated data sets, each pair of trees was processed
with 3 threads for speeding up the simulation process.
The time necessary to complete 5 rounds for all 50 runs
varied from 1 to 2 days depending on the size of the
trees. For the biological data sets 1 to 4, we also used
3 threads. The observed execution times for 5 rounds
were between a couple of hours for the smallest data set
(Data set 1) and 1 day for Data set 4. Due to its size,

http://coala.gforge.inria.fr/
http://eucalypt.gforge.inria.fr/
http://cc.in2p3.fr/
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the data set Wolbachia-arthropods was processed with
150 threads and it required approximately 8 days to
complete 5 rounds.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.9g5fp.
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