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Abstract.—In order to gain an understanding of the effectiveness of phylogenetic Markov chain Monte Carlo (MCMC), it
is important to understand how quickly the empirical distribution of the MCMC converges to the posterior distribution.
In this article, we investigate this problem on phylogenetic tree topologies with a metric that is especially well suited
to the task: the subtree prune-and-regraft (SPR) metric. This metric directly corresponds to the minimum number of
MCMC rearrangements required to move between trees in common phylogenetic MCMC implementations. We develop
a novel graph-based approach to analyze tree posteriors and find that the SPR metric is much more informative than
simpler metrics that are unrelated to MCMC moves. In doing so, we show conclusively that topological peaks do occur in
Bayesian phylogenetic posteriors from real data sets as sampled with standard MCMC approaches, investigate the efficiency
of Metropolis-coupled MCMC (MCMCMC) in traversing the valleys between peaks, and show that conditional clade
distribution (CCD) can have systematic problems when there are multiple peaks. [Markov chain Monte Carlo; phylogenetic
methods; subtree prune-and-regraft; topological peaks; tree space.]

The Bayesian paradigm has been extensively adopted
to infer phylogenetic trees and associated parameter
values in a consistent probabilistic framework. (We are
interested in convergence properties on the discrete
structure of unrooted tree topologies, so for the
purposes of this article we will use the word tree
without further qualification to signify an unrooted
leaf-labeled tree topology without branch lengths.)
Current Bayesian phylogenetic methods rely on being
able to move efficiently through tree hypothesis space
with a random walk via Markov chain Monte Carlo
(MCMC) (Hastings 1970; Metropolis et al. 1953). These
include the widely used BEAST (Bouckaert et al. 2014;
Drummond and Rambaut 2007; Drummond et al.
2012) and MrBayes (Ronquist et al. 2012) software
packages as well as more recent methods such as BAli-
Phy (Suchard and Redelings 2006), RevBayes (http://
github.com/revbayes/revbayes, last accessed February
17, 2015) and ExaBayes (http://sco.h-its.org/exelixis/
web/software/exabayes/index.html, last accessed
February 17, 2015). The empirical distribution of
suitably spaced MCMC samples converges to its true
posterior distribution given an infinitely long run of
the MCMC (reviewed in Tierney 1994). However, in
order to obtain accurate computations of trees and
associated confidence levels in practice, it is essential
that these Markov chains explore phylogenetic “tree
space” efficiently.

Many important questions remain unanswered
concerning the practical performance of MCMC for
phylogenetics, such as the presence and frequency
of multiple peaks (i.e., modes) in phylogenetic tree
posteriors, and the ability of chains to move between
these posterior peaks. Also, to what extent are
“peaky” (i.e., multimodal) posteriors a consequence
of the discrete structure of phylogenetic trees, or
simply a consequence of simultaneously estimating
a large number of real parameters? Do strategies

such as Metropolis-coupled MCMC (MCMCMC or
(MC)3) (Geyer 1992; Huelsenbeck and Ronquist 2001),
which are helpful for multimodal distributions in
the real case, effectively solve the problem? To what
extent do convergence diagnostics based on tree
topologies, such as average standard deviation of
split frequencies between independent Markov chains,
imply that the empirical distribution of the underlying
discrete tree topologies is close to the actual posterior?
How many independent chains are required for such
convergence diagnostics to adequately assess the level
of convergence?

There are continuing (Höhna and Drummond 2012;
Lakner et al. 2008; Štefankovic and Vigoda 2011) and
sometimes vitriolic (Mossel and Vigoda 2005, 2006;
Ronquist et al. 2006) debates concerning how well
MCMC methods explore tree space. Lakner et al. (2008)
and Höhna et al. (2008) showed that the random choices
of operations used in current methods lead to a low
rate of accepted transitions and increase the amount
of computation required before MCMC runs achieve
a given split frequency distance to golden runs. To
address this problem, Höhna and Drummond (2012)
introduced improved Metropolized Gibbs samplers—
biased operators that use additional computation to
select transitions with a higher acceptance rate—
and showed that these operators reduced the time
to achieve such a given split frequency distance to
golden runs using BEAST on 11 empirical data sets.
Parsimony-biased tree proposals have been included in
MrBayes 3.2 (Ronquist et al. 2012). Mossel and Vigoda
(2005) showed mathematically that MCMC methods can
give misleading results when the alignments used to
construct the trees derive from a site-wise mixture of
data generated on two very different trees (note that
this usage of “mixture” refers to a means of combining
probability distributions, whereas the separate concept
of “mixing” as described below refers to a characteristic
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of Markov chains). On such a site-wise mixture, the
Markov chain appears to converge rapidly according
to diagnostics but in actuality requires an exponential
amount of time to converge due to the large “valleys” of
unlikely trees between the two site-wise mixture peaks.
Such site-wise mixtures are but one contrived example
of a peaky distribution. However, even if we never see
the sort of data set they postulate we may still encounter
peaky distributions. In such a situation, the posterior
samples from a single peak may appear as though the
chain has completely explored the relevant part of tree
space, leading to a mistakenly high confidence value
for an incomplete sample of trees. Although there has
been extensive discussion in the literature about to what
extent Metropolis-coupling helps traverse peaks, there
have been few conclusions, probably because there has
not been a clear exploration of peaks and peakiness in
phylogenetic posteriors.

Some studies have focused on estimating mixing
properties of phylogenetic MCMC using theory (Aldous
2000; Mossel and Vigoda 2005); this is known to be a very
hard problem and can only be done in “toy” examples.
(As is standard in the field, we will use the word mixing
to refer to the convergence of the empirical distribution
of MCMC samples to their posterior distribution.) Even
when we can diagnose the failure of a Markov chain
to converge to the posterior distribution, it does not
lead to an understanding of why the failure occurred.
A more practical approach to understanding movement
in discrete tree space is to equip this space with a metric
and consider distances traveled by the chain.

Recently, Höhna and Drummond (2012) and Larget
(2013) proposed using Conditional Clade Probability
(CCP) and Conditional Clade Distribution (CCD)
methods, respectively, to approximate tree posterior
probabilities. In both methods, the probability of a
tree is estimated based on a product of conditional
clade probabilities. Larget (2013) uses the approximation
that compatible splits, separated by another split,
are approximately conditionally independent given
the separating split. The approximating equation of
CCD is then a product of joint conditional sister
clade probabilities, given the parent clade. Conditional
probability methods have the potential to estimate
the posterior probabilities of many trees using only
a small sample of the tree posterior. They have
already been productively applied to approximate tree
posteriors in phylogenomic analyses (Szöllősi et al. 2013).
However, the validity of the assumption of conditional
independence of sister clades, given the parent clade, is
not clear in practice. It is thus crucial to determine the
accuracy of the CCD approximation on real data sets.

These considerations motivate improved methods
to understand the performance of phylogenetic
methods and the corresponding “topography” of
trees. Hillis et al. (2005) used the Robinson–Foulds
(RF) distance (Robinson and Foulds 1981) between
phylogenies with multidimensional scaling (MDS) to
visualize tree space. However, the RF distance does
not correspond to SPR operators, and in fact may be
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FIGURE 1. An SPR move.

arbitrarily large even for trees separated by a single
SPR operation. Matsen (2006) suggested using the
nearest-neighbor interchange (NNI) distance with MDS
visualization. Höhna and Drummond (2012) used this
idea to visualize “islands” among 15 trees from the
27 taxon tree space. Still, the NNI distance does not
correspond closely with many rearrangements used
in phylogenetic inference and is difficult to compute,
limiting the utility of this method.

Subtree prune-and-regraft (SPR) (Hein et al. 1996)
moves are the most common rearrangements used by
phylogenetic programs (Höhna and Drummond 2012).
These involve cutting a subtree off and attaching it
somewhere else (Fig. 1). The minimum number of such
operations required to transform one tree into another
is called the SPR distance. Moreover, SPR operators
are closely related to other common rearrangements.
NNI operators are a subset of SPR operators. Two other
common operators, the subtree swap (SS) and tree-
bisection-and-reconnection (TBR) are each equivalent to
two SPR operations (Höhna and Drummond 2012).

Thus, the SPR distance is especially appropriate to
investigate phylogenetic MCMC behavior in this setting
because of the correspondence between SPR operators
and most MCMC moves. However, SPR distance is
challenging to use due to the computational complexity
of its computation (Allen and Steel 2001; Bordewich
and Semple 2005; Hickey et al. 2008). Recently, efficient
fixed-parameter algorithms for computing the SPR
distance have been developed and implemented in
the freely available and open-source RSPR software
package (Whidden and Zeh 2009; Whidden et al. 2010,
2013, 2014). These efficient algorithms require fractions
of a second to compute SPR distances between trees
with hundreds of taxa and enable, for the first time, tree
comparison using the SPR distance on a relevant scale.

In this article, we use SPR tree space to visualize and
analyze Bayesian phylogenetic posterior distributions.
Our graph-based method directly shows the difficulty
in moving between areas of tree space and can
identify topological peaks that are not visible in
multidimensional scaling (MDS) projections. We show
that our SPR graphs explain the error rate and time to
a given average standard deviation of split frequencies
(ASDSF) (Ronquist et al. 2012) of Bayesian phylogenetic
methods on various data sets when these statistics do
not correlate with the number of taxa alone. Moreover,
we show that multiple topological peaks are common
in nontrivial posteriors, even with relatively few taxa,
and that the graphs can be used to identify bottlenecks
in posterior distributions: regions of tree space between
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peaks that are difficult for MCMC methods to cross.
We propose a topological variant of the Gelman-Rubin
convergence diagnostic and show that a small ASDSF
often implies a small such topological convergence
diagnostic. We explore the effect of Metropolis-coupling
and show that it greatly improves mixing, particularly
between topological peaks, and reduces the number of
MCMC iterations required for multiple runs to achieve a
given ASDSF threshold. Metropolis-coupling improves
overall performance in peaky distributions but may
increase computation time in nonpeaky distributions,
in which case we observe the number of iterations
to be reduced by a smaller factor than the number
of Metropolis-coupled chains. For both MCMCMC
and single-chain approaches, we find that the current
standard of two runs to calculate ASDSF is insufficient
to obtain a proper error estimate. Finally, we show that
independence of sister clades, conditioned on parent
clades, does not hold in some peaky distributions.
This causes the CCD distribution to systematically
underestimate the probability of trees within alternative
peaks and systematically overestimate the probability of
trees between peaks.

METHODS

Computing the SPR Distance
We modified RSPR, the open-source C++ software

package for computing subtree prune-and-regraft
distances (Whidden et al. 2010, 2013, 2014). Previous
versions of RSPR computed the SPR distance between
two input trees or the aggregate SPR distance
from a single tree to a set of trees. Our new
version 1.3 of RSPR (https://github.com/cwhidden/
rspr/, last accessed February 17, 2015) adds support
for computing pairwise SPR and RF distance matrices.
These distance matrices can be used as input to MDS
methods or to compute tree space graphs.

RSPR computes a maximum agreement forest
(MAF) (Allen and Steel 2001; Hein et al. 1996) of
two rooted trees with a fixed-parameter algorithm. An
agreement forest is a forest of subtrees that can be
obtained by cutting edges from both trees. An MAF
is obtained by cutting the fewest possible number of
edges. This smallest number of cut edges is equivalent
to the SPR distance between the trees if they are rooted
(Bordewich and Semple 2005). The time required for
this fixed-parameter algorithm increases exponentially
with the distance computed but only linearly with the
size of the trees. In particular, the algorithm can quickly
determine whether two rooted trees are separated by a
single SPR operation. In practice, RSPR can compute SPR
distances between trees with hundreds of taxa and more
than 50 transfers in fractions of a second (Whidden et al.
2014).

Unrooted trees are commonly inferred by
phylogenetic methods including MrBayes. However,
an MAF of two unrooted trees is equivalent to their
tree-bisection-and-reconnection distance (Allen and

Steel 2001) and no MAF formulation is known for
the SPR distance of unrooted trees. For unrooted
trees, we thus consider each possible rooting of
the trees and choose the rootings which give the
minimal SPR distance. This “best rooting” SPR distance
should closely agree with the unrooted SPR distance
except in pathological cases where the minimum
set of unrooted SPR operations is incompatible with
any rooting (e.g., Supplementary Fig. 1 available at
http://dx.doi.org/10.5061/dryad.jf7b3). In particular,
both are guaranteed to agree when the trees are
separated by a single SPR operation; much of our work
here uses the graph induced by these single SPR moves.

SPR Tree Space Graphs
We used SPR-based graphs, restricted to sets of high

probability trees, to model the SPR tree space of Bayesian
phylogenetic posterior distributions. We selected these
sets of high probability trees as follows. First, we
ordered the trees from a posterior sample by descending
posterior probability (ties broken by sample order). In
cases with a large number of ties (e.g., where every tree is
sampled once or twice), breaking ties with sample order
may cause bias, so we broke ties randomly in such cases.
The 95% credible set is the smallest set of trees at the
head of this list with cumulative posterior probability
more than 95%. We call the m trees with highest posterior
probability the “top m trees,” that is, the first m trees in
this list. We used m=4096 in our tests unless otherwise
noted, and generally used the 95% credible set when it
contained fewer than 4096 trees, and the top 4096 trees
when it was not. We call these sets of at most 4096 trees
the “top trees.”

We define the SPR graph for a set of trees T to be
the undirected graph GT = (V,E) such that each tree is
represented by a node in V and two trees are connected
by an edge in E if and only if they are separated by an
SPR distance of 1. In particular, we constructed a distance
matrix D such that an entry Dij =1 if, and only if, the
SPR distance between i and j is 1. We constructed such
graphs using RSPR version 1.3, then converted these
matrices to an edge list format suitable for input to graph
visualization software.

Clustering High-probability Regions of Tree Space
We used a simple iterative clustering procedure to

aid in the detection of topological peaks. These peaks
are intuitively defined as a set of topologies with
relatively high probability surrounded by topologies
with low probability. Any useful clustering procedure
must therefore make use of posterior probabilities in
addition to topology, moreover, comparing every pair of
trees is computationally expensive even with the simple
goal of computing RF distances. We thus employed the
following approximate iterative clustering algorithm.
First select the most probable topology as the center
of our first cluster. Then compare the current cluster

https://github.com/cwhidden/rspr/
https://github.com/cwhidden/rspr/
http://dx.doi.org/10.5061/dryad.jf7b3


2015 WHIDDEN AND MATSEN—QUANTIFYING MCMC EXPLORATION OF TREE SPACE 475

center to each unclustered tree, and add each tree within
a specified SPR distance radius to the current cluster.
This procedure proceeds iteratively, grouping the most
probable unclustered topology and the remaining set of
unclustered trees until each tree has been clustered or
a given number of clusters assigned. For a given cluster
center, we used a clustering radius equal to the mean
SPR distance from the current cluster center to each
unclustered tree, minus the standard deviation of these
distances (i.e., �−�). This radius is recalculated for each
new cluster. We stopped this process after 8 clusters had
been identified.

Graph Visualization with Cytoscape
SPR graphs were visualized with the open-source

Cytoscape platform (Shannon et al. 2003). In addition
to the edge list and clusters described above, we
computed SPR distances between the tree with highest
posterior probability and the top m trees. We visualized
tree space in three ways: (i) distance SPR graphs, (ii)
cluster SPR graphs, and (iii) weighted MCMC graphs.
To visualize SPR graphs we used a force-directed
graph layout, which essentially means that graph nodes
are pushed away from each other, but edges act as
“springs” that attempt to maintain a uniform length. We
scaled node sizes (area) in proportion to tree posterior
probability. The largest node represents the tree with
highest posterior probability. We hypothesized that
peaks would be visible in such graphs as sets of relatively
large (high probability) nodes separated by relatively
small (low probability) nodes or in disconnected graph
components. In distance SPR graphs, graph nodes
are colored on a red–yellow–white scale (dark-light in
the print version) with increasing SPR distance from
the most probable topology. We further hypothesized
that difficult to sample peaks would be visible in
distance SPR graphs as large yellow or white nodes. In
clustered SPR graphs, graph nodes are colored by cluster.
We expected that any significant topological peaks
would be grouped in different clusters and therefore
receive different colors. Finally, we used another type
of graph to visualize Markov chain movement between
trees to validate our assumption that SPR tree space
corresponds to MCMC movement in practice. These
graphs represent movement between MCMC samples
(including Metropolis-coupling chain swaps where
applicable). We weighted these edges with the number
of such transitions and visualized these edge weights
using edge thickness and color. Note, however, that
posteriors are typically subsampled every given number
of iterations, and we followed this practice. Given such
subsamples, some of the dependence between sample
tree and order may be eliminated and care must be taken
when interpreting such graphs.

Quantifying Tree Space Mixing
To quantify mixing behavior in tree space we

computed statistics based on mean access times

(MAT)—the mean number of iterations required to
transition between topologies in an MCMC search
(Lovász 1993). As with our graph clustering, computing
statistics for each pair of trees can be computationally
expensive and difficult to visualize. Rather than directly
considering access time statistics for each pair of trees,
we instead computed the mean commute time (MCT)
(Lovász 1993) from the most probable topology to
each other high probability tree and back: the sum of
pairwise MATs. We also considered a new measure,
the mean round trip cover time. This is the mean
number of iterations required to cover (visit) each high
probability tree, starting from and returning to the
highest probability tree. This measure is essentially
a round-trip analog of the mean cover time (Lovász
1993). The MAT values (and hence MCT and round
trip cover time values) can be computed with a single
pass through the tree posterior using a method for
updating weighted means (see e.g., West 1979). Formal
definitions of these statistics and a description of our
dynamic programming method for computing them can
be found in the Supplementary Material available at
http://dx.doi.org/10.5061/dryad.jf7b3.

A Discrete Topological Gelman–Rubin-like Convergence
Diagnostic

In order to avoid having to project trees down
to vectors of split frequencies in order to diagnose
convergence, we developed a discrete topological variant
of the Gelman–Rubin convergence diagnostic (Gelman
and Rubin 1992). The Gelman–Rubin convergence
diagnostic for a real-valued parameter x requires multiple
independent Markov chains and compares the variance
within chains and between chains, as we review
now. Note that by “chains” here we refer to multiple
independent chains, which are equivalent to the
MrBayes terminology “runs” rather than Metropolis-
coupled chains. Suppose we have m chains, each with
n sampled values. The value of chain i at iteration j is
denoted xij. The variance between chains, B, is estimated
by the variance between the m sequence means, x̄i., each
based on n values of x. That is,

B/n= 1
m−1

m∑
i=1

(x̄i·− x̄··)2,

where x̄·· = 1
m

∑m
i=1 x̄i· . The variance within chains, W, is

the average of the m within-sequence variances, s2
i , each

based on n−1 degrees of freedom. That is,

W = 1
m

m∑
i=1

s2
i ,

where s2
i = 1

n−1
∑n

j=1(xij − x̄i)2. The estimated variance is
then a weighted average of W and B,

V̂ =
(

1− 1
n

)
W + 1

n
B.
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The potential scale reduction factor (PSRF) is defined as

R̂=
√

V̂/W. This measures the potential for reducing the
difference between B and W. B initially overestimates
the variance, given multiple chains with overdispersed
starting points. W initially underestimates the variance,
as it is based on an incomplete sample from a limited
region of the parameter space. These values converge
as the independent chains converge. As such, the PSRF
approaches 1 as the chains converge.

Our topological Gelman–Rubin-like convergence
diagnostic estimates the differences within and between
Markov chains in terms of topological changes. There is
no concept of sample mean for topologies, so we compute
an analogous statistic with the mean square deviation
instead of variance. In particular, we estimate the SPR
distance deviation within and between chains. Again, xij
denotes the tree from chain i at iteration j. Let d(xi1j1 ,xi2j2 )
denote the distance between two such trees.

W is the mean square deviation within a chain:

s2
i = 1

n(n−1)

n∑
j1=1

n∑
j2=1

d(xij1 ,xij2 )2.

Similarly, we estimated the between-chain deviation by
comparing each chain to the aggregate set of chains:

B= 1
(m−1)mn2

m∑
i1=1

m∑
i2=1

n∑
j1=1

n∑
j2=1

d(xi1j1 ,xi2j2 )2.

With this formulation,
√

V estimates the topology root
mean square deviation (RMSD). R̂ is computed as before.

As written, these formulas require a great deal
of computation. To efficiently compute topological
PSRF values, observe that there are many repeated
comparisons between identical trees. We thus grouped
identical topology comparisons, computed one SPR
distance for each and weighted the squared distances
accordingly in our calculations. We also limited our
comparisons to the top trees, as in our SPR graph
construction. We normalized our computations by the
number of included distances rather than the total
number of samples n. Using this method, B is no more
complex to compute than W.

As with the original Gelman–Rubin convergence
diagnostic, the topological PSRF value approaches 1
as the independent chains converge. Initially, B and
W overestimate and underestimate, respectively, the
RMSD between topologies and these values converge
as the independent chains converge. We use the name
topological Gelman–Rubin-like to emphasize that it is
inspired by the original but is not the same.

MDS
MDS is a method for projecting complex data to a

small number of dimensions suitable for visualization

(Kruskal 1964a,b). Nonmetric MDS is typically applied
to create a new two or three dimensional space from a
given pairwise distance matrix in a way that preserves
the pairwise distances as much as possible. Specifically,
it minimizes a stress function quantifying the difference
between the original distances and Euclidean distances
in the projected space. MDS has been used previously
to visualize RF distances between trees in a posterior
distribution (Hillis et al. 2005) and, on a limited scale,
NNI distances (Höhna and Drummond 2012). We
applied MDS to SPR and RF distance matrices using the
R isomds function from the MASS package (Venables
and Ripley 2002).

Conditional Clade Probability
Recently, the conditional clade probability (CCP) and

conditional clade distribution (CCD) concepts have been
proposed by Höhna and Drummond (2012) and Larget
(2013), respectively. These methods use conditional
products of split posterior probabilities on splits
to estimate the corresponding phylogenetic posterior
probabilities. To test the conditional independence
assumption in practice, we applied the CCD software of
Larget (2013) to compute conditional clade probabilities
and compare the results to posterior probabilities on
large posterior samples.

Number of Runs and Chains
Two MrBayes run parameters are of particular

importance to obtain ASDSF estimates that reflect the
level of convergence to the posterior distribution: the
number of independent runs used for testing ASDSF
convergence and the number of Metropolis-coupling
chains. The number of independent runs determines
the behavior of the average standard deviation of split
frequencies (ASDSF) convergence diagnostic, which
compares split frequencies between independent runs.
As is typical, our ASDSF calculations only consider splits
with a frequency exceeding 10% in at least one of the
runs. We follow previous researchers by using a 0.01
cutoff for ASDSF as a stopping rule. In the MrBayes
version 3.2 manual, Ronquist et al. (2011) suggest that
“an average standard deviation below 0.01 is very good
indication of convergence, whereas values between 0.01
and 0.05 may be adequate depending on the purpose of
your analysis.” Increasing the number of runs increases
the stringency of ASDSF convergence at a given limit
at the expense of increased computation. Metropolis-
coupling (Geyer 1992; Huelsenbeck and Ronquist 2001)
is a commonly applied method to improve MCMC
mixing in peaky distributions. In addition to the primary
“cold” Markov chain, from which posterior samples
are drawn, multiple “hot” chains are maintained. These
hot chains typically move more freely through the
parameter space. The cold chain is periodically swapped
with a hot chain to “jump” through the parameter
space.
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TABLE 1. The data sets used in this study, DS1-11 (eukaryote) and VL1-6 (bacterial/archaeal)

Data N Cols Type of data Study Est error

DS1 27 1949 rRNA; 18s Hedges et al. (1990) 0.0048
DS2 29 2520 rDNA; 18s Garey et al. (2012) 0.0002
DS3 36 1812 mtDNA; COII (1678); cytb (679-1812) Yang and Yoder (2003) 0.0002
DS4 41 1137 rDNA; 18s Henk et al. (2003) 0.0006
DS5 50 378 Nuclear protein coding; wingless Lakner et al. (2008) 0.0005
DS6 50 1133 rDNA; 18s Zhang and Blackwell (2001) 0.0023
DS7 59 1824 mtDNA; COII; and cytb Yoder and Yang (2004) 0.0011
DS8 64 1008 rDNA; 28s Rossman et al. (2001) 0.0009
DS9 67 955 Plastid ribosomal protein; s16 (rps16) Ingram and Doyle (2004) 0.0164
DS10 67 1098 rDNA; 18s Suh and Blackwell (1999) 0.0164
DS11 71 1082 rDNA; internal transcribed spacer Kroken and Taylor (2000) 0.0008
VL1 40 271 UDP-2,3-diacylglucosamine hydrolase Beiko et al. (2006) 0.0019
VL2 44 472 coproporphyrinogen III oxidase Beiko et al. (2006) 0.0007
VL3 50 442 GARTFase Beiko et al. (2006) 0.005
VL4 52 129 hypothetical protein Beiko et al. (2006) 0.0484
VL5 53 349 fructose-1,6-bisphosphatase Beiko et al. (2006) 0.007
VL6 63 294 pyridoxine 5′-phosphate synthase Beiko et al. (2006) 0.0542

Notes: N=number of species; Cols = number of nucleotides; Est error = Estimated maximum standard error of split frequencies in golden runs
(in %); rDNA = ribosomal DNA; rRNA = ribosomal RNA; mtDNA = mitochondial DNA; COII = cytochrome oxidase subunit II GARTFase =
phosphoribosylglycinamide formyltransferase 2.

Implementation
We developed the open-source software package

sprspace (https://github.com/cwhidden/sprspace,
last accessed February 17, 2015) to construct SPR
graphs. This software package also implements our
clustering routine, prepares graph visualizations for
Cytoscape, computes access times and commute times
and computes our topological Gelman–Rubin-like
measure. Our software allows users to specify a
fixed clustering radius in case dynamic cluster radius
selection provides poor results. Moreover, users may
modify the number of top trees considered to change
the amount of computation required.

Data and Run-time Parameters
We investigated MCMC estimation on unrooted trees

by applying MrBayes 3.2 (Ronquist et al. 2012) to
17 empirical data sets. The first group of data sets,
which we will call DS1-DS11, have become standard
data sets for evaluating MCMC methods (Höhna and
Drummond 2012; Lakner et al. 2008; Larget 2013). These
data sets consist of sequences from 27 to 71 eukaryote
species (Table 1), and are fully described elsewhere
(Lakner et al. 2008). Note that TreeBASE identifiers for
these data sets have changed from those used in some
previous publications (Supplementary Table 1 available
at http://dx.doi.org/10.5061/dryad.jf7b3). The second
group of data sets, which we will call VL1-VL6, consist
of alignments with 40 to 63 bacterial and archaeal
sequences (Table 1) of protein-coding genes, and are fully
described elsewhere (Beiko et al. 2006).

To analyze the level of convergence to the posterior
distribution, we computed large “golden run” posterior
samples for each data set, meaning that we repeatedly
ran the chains well past the typical number of

iterations used for such analyses: for each of our
17 data sets, 10 single-chain MrBayes replicates
were run for one billion iterations and sampled
every 1000 iterations. We followed Lakner et al.
(2008) in using the simple Jukes and Cantor (1969)
substitution model with no rate variation across sites
(MrBayes commands: lset nst=1 rates=equal;
prset statefreqpr=fixed(equal)). We used a
uniform prior on topologies and an unconstrained
exponential prior on branch lengths. These replicates
were not Metropolis-coupled. We discarded the first
25% of samples as “burn-in” for a total of 7.5 million
posterior samples per data set, and assumed that this
long burn-in period implied stationarity, that is that
after burn-in the chain was sampling from the stationary
distribution of the MCMC. Following Höhna and
Drummond (2012), we assumed these runs accurately
estimated posterior split frequency distributions because
of the extreme length of these Markov chains in
comparison to our data size. To test this assumption, we
estimated the split frequency error between replicated
golden runs (maximum standard error of any split)
as in Höhna and Drummond (2012) (see Table 1).
The estimated split frequency error was below 0.06%
for each of our data sets, suggesting that the various
golden runs are sampling the same split frequencies.
Moreover, commonly applied diagnostics implemented
in the MrBayes sumt and sump tools satisfied
common thresholds (Supplementary Table 2 available
at http://dx.doi.org/10.5061/dryad.jf7b3), including
having a standard error of log likelihoods at most 2.11,
maximum standard deviation of split frequencies at
most 0.015 (0.007 for all but DS1), maximum Gelman–
Rubin split PSRF values of 1.000, and the effective sample
size (ESS; a measure of the number of samples correcting
for MCMC autocorrelation) for the treelength parameter
(the sum of branch lengths) exceeding 650,000.

https://github.com/cwhidden/sprspace
http://dx.doi.org/10.5061/dryad.jf7b3
http://dx.doi.org/10.5061/dryad.jf7b3
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We cannot similarly assume that these golden runs
have accurately estimated the posterior probability
of all topologies. We do, however, assume that the
golden runs have accurately estimated the posterior
probability of high probability topologies, namely the
top trees taken from the combined golden runs. To
test this assumption, we estimated the topological
error between replicated golden runs (maximum
standard error of the posterior probability of the
top trees) for the eukaryote data sets, analogously to
the split frequency error calculation (Supplementary
Fig. 2 and Supplementary Table 3 available at
http://dx.doi.org/10.5061/dryad.jf7b3). The estimated
standard error among high probability topologies was
generally at least an order of magnitude smaller than
the posterior probability, validating this assumption.
However, data sets DS9 and DS11 were notable
exceptions as each topology was sampled exactly once,
with no overlap between runs. As such, we do not
assume that the empirical distribution on topologies for
DS9 and DS11 are close to their posterior distributions.

We ran MrBayes on each of our data sets with 10
replicates of a varying number of runs (2 through 8) and
chains (1 or 4) until the runs had ASDSF less than 0.01 or
a maximum of 100 million iterations. We sampled these
runs every 100 iterations and again discarded the first
25% of samples. We then compared the effect of these
parameters on running time and error in practice, where
error was measured by the RMSD of split frequencies as
compared with the golden runs.

Finally, we repeated our tests with the more complex
HKY85 model (Hasegawa et al. 1985) (MrBayes
commands: lset nset=2 rates=gamma), to
examine the effect of the substitution model on
the posterior distributions of DS1–DS11. This was
the model used by Larget (2013) to study these data
sets (personal communication, note that the paper
erroneously states that the GTR model was used). The
HKY85 model allows for unequal base frequencies
and accounts for the difference between transitions
and transversions. Unless otherwise stated, the below
results were obtained with the Jukes Cantor model.

RESULTS

The Shape of Tree Posteriors and Identification of Peaks
Distance SPR graphs of the combined golden run tree

posteriors from the eukaryote alignments revealed a
wide variety of posterior shapes (Supplementary Fig. 3
available at http://dx.doi.org/10.5061/dryad.jf7b3).
The shapes and complexity of these graphs were clearly
not exclusively determined by the number of species
or nucleotides in the data set. Topological peaks were
evident as large disconnected components (DS1, DS5,
DS6) or sets of high probability trees separated by paths
of low probability (DS4, DS7). In particular, the trees
with highest posterior probability in the two peaks of
DS1 were separated by only two SPR operations but
moving between these peaks required leaving the 95%

credible set. Large subgraphs of lower probability trees
appeared as interesting substructures (e.g., the “tail” on
the right-hand side of the DS8 graph). No graph could
be constructed for DS9 or DS11 as no topology was
sampled twice and arbitrary 4096-node subsets were
not adjacent in SPR space.

Distance SPR graphs of the combined golden run
tree posteriors from the “VL” bacterial and archaeal
alignments also showed a wide variety of posterior
shapes (Fig. 2). Several posteriors were composed of
clumps of trees with similar probability, as in data
set DS7, which came from identical or near-identical
sequences. These also indicated small changes in
uncertain areas of the trees that seldom affect their
likelihood but drastically inflate the true 95% credible
set of topologies (Supplementary Table 4 available
at http://dx.doi.org/10.5061/dryad.jf7b3). We refer to
this as the true credible set for brevity. Data set
VL6 provided a striking example of peaks. The 4096
most probable topologies (25.3% credible set) formed 3
disconnected components and the 8192 most probable
topologies (31.9% credible set) showed only small paths
of connectivity between the 3 peaks. We focused on the
eukaryote (“DS”) data sets in the remainder of our tests
to focus our efforts, unless mentioned otherwise.

Clustering regions of tree space by descending
probability (see “Methods” section) highlighted
topological peaks and other interesting features (Fig. 3).
In addition to the peaky data sets (DS1, DS4, DS5, DS6,
DS7) identified with unclustered graphs, DS10 appears
to contain at least two peaks. The disconnected subpeaks
of DS1 and DS6 contained the second cluster of both data
sets and, thus, the most probable trees outside of the first
cluster from each data set. Conversely, the disconnected
component of DS5 contained trees of relatively low
probability. In nonpeaky data sets (e.g., DS3 and DS5)
clusters expanded radially from the most probable tree,
which indicates relatively easy MCMC mixing.

The number of unique topologies was greatly inflated
by ambiguous relationships (Supplementary Table 4
available at http://dx.doi.org/10.5061/dryad.jf7b3). For
example, the posterior of data set DS7 had an
interesting “grid” structure composed of clumps of
15 trees with similar topology and probability. On
closer inspection, trees within a clump differed only in
the configuration of a subtree containing four nearly
identical Microcebus rufus sequences. In fact, these
sequences differed in four nucleotides, with one unique
mutation per sequence, providing no distinguishing
information and inflating the true credible set by a
factor of 15 (the number of configurations of four
taxa). To verify this effect, we removed three of these
four sequences, computed 10 new golden runs, and
plotted the resulting tree space (Supplementary Fig. 4
available at http://dx.doi.org/10.5061/dryad.jf7b3). As
expected we obtained the same structure, but with
one tree per 15-node clump and proportional posterior
probabilities. The extreme flatness of DS9 and DS11
arose similarly. The majority rule consensus tree for data
set DS9 contained two 4-way multifurcations and one

http://dx.doi.org/10.5061/dryad.jf7b3
http://dx.doi.org/10.5061/dryad.jf7b3
http://dx.doi.org/10.5061/dryad.jf7b3
http://dx.doi.org/10.5061/dryad.jf7b3
http://dx.doi.org/10.5061/dryad.jf7b3
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VL1 VL2 VL3

VL4 VL5

VL6

FIGURE 2. Distance SPR graphs of the combined bacterial and archaeal golden runs showing at most the 4096 topologies with highest
posterior probability (8192 for VL6). Node areas are scaled relative to posterior probability (PP; larger = higher probability) within each graph
(but not with respect to the other graphs). Node color indicates SPR distance from the topology with highest posterior probability in each data
set on a red–yellow–white scale (dark-light in the print version), with the highest probability tree colored red.
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DS1 DS2 DS3

DS4 DS5 DS6

DS7 DS8 DS10

FIGURE 3. Cluster SPR graphs of the combined golden run eukaryote posteriors. Each graph contains either the 95% credible set or the 4096
topologies with highest PP (DS5, DS6, and DS10). Nodes are scaled relative to posterior probability within each graph (but not with respect to
the other graphs). Nodes are colored by SPR-based descending PP clusters (gray scale in the print version).

5-way multifurcation. Resolutions of these multifurca-
tions occurred with approximately equal frequency,
inflating the true credible set by a factor of 15∗15∗105=
23,625. Much of the ambiguity was caused by a set of 4
identical sequences and a set of 3 identical sequences.
The remaining ambiguity seemed to arise from
substantially similar sequences. Similarly, the consensus
tree for DS11 contained numerous multifurcations

including a multifurcation with 12 edges. The number
of samples was insufficient to compare resolutions of
this multifurcation and determine if each was equally
likely. However, 9 of the taxa involved had the same
sequence, which alone inflated the true credible set by at
least a factor of 2,027,025, and this multifurcation likely
inflated the credible set by orders of magnitude more.
Moreover, the posteriors of data sets DS5, DS6, and DS10
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TABLE 2. A comparison of data set difficulty and posterior shape
parameters

Data �Iter �MaxErr �RMSD Radius 95CI Cred Peaks

DS1 850,200 0.0819 0.0375 4 41 95 Y
DS2 8200 0.0976 0.0272 2 5 95 N
DS3 12,800 0.0757 0.0225 4 16 95 N
DS4 160,800 0.1139 0.0332 6 210 95 Y
DS5 626,000 0.0864 0.0163 16 (8) 240,311 38.9 Y
DS6 397,000 0.1046 0.0244 12 (7) 157,435 39.1 Y
DS7 62,600 0.1616 0.0397 9 735 95 Y
DS8 283,400 0.0882 0.0205 8 3545 95 N
DS9 347,200 0.1063 0.0208 23 712,502 0.6 ?
DS9-U 255,200 0.1019 0.0216
DS10 322,400 0.1087 0.0226 15 (12) 286,604 30 Y
DS11 338,200 0.0503 0.0119 24 712,502 0.6 ?
DS11-U 167,000 0.0533 0.0143

Notes: The first three columns show the mean number of iterations
required to reach ASDSF less than 0.01 (�Iter) using the MrBayes
default parameters (4 runs, 2 chains) as well as the resulting mean
maximum split frequency error (�MaxErr) and mean split frequency
RMSD (�RMSD) as compared with the golden runs. From the golden
runs, we considered properties of the top trees—the at most 4096 highest
probability trees from the 95% credible set. We inferred the SPR radius
(Radius) which we define as the maximum SPR distance from any top
tree to the topology with highest posterior probability, the size of the
95% credible set (95CI), the cumulative posterior probability of the
top trees (Cred), and the presence of peaks. Note that our credible
set clearly underestimates the true credible set size when it exceeds
the number of samples (e.g., DS9 and DS11). “-U” data sets include
only one member from each set of identical sequences. Note that each
golden run contained 750,000 samples.

were also inflated by ambiguity. In these cases, none of
the sequences involved were identical and resolutions
occurred with similar but not equal probability.

The shape of a posterior tree space explains the
difficulty of sampling from that distribution (Table 2).
Peaky distributions often required a large number of
iterations to reach the ASDSF cutoff and/or had high
error rates respective to other data sets with a similar
number of taxa. In particular, DS1 required the largest
number of iterations to reach the ASDSF cutoff and had
the second highest RMSD of split frequencies despite
having the fewest number of species. The number of
credible trees and the radius of the tree space also
appears to be a factor. DS5 has a large, wide credible
set and required a large number of iterations to reach
the ASDSF cutoff. DS7 has a smaller credible set and
required relatively few iterations for the split frequencies
to converge. The high error rates of DS7, however, may
indicate that the subpeak or posterior shape caused the
chain to stop prematurely. Despite the large number of
taxa and explored topologies of DS9 and DS11, these
flat posteriors had low error rates and average times
to achieve an ASDSF of 0.01. To remove the effect of
identical sequences, we ran 10 new MrBayes replicates
of these two data sets with all but one member of each
set of identical sequences removed (DS9-U and DS11-U).
Removing duplicate sequences reduced the number of
iterations required to reach an ASDSF of 0.01 with little
effect on error rates as compared with the DS9 and DS11
golden run splits with the corresponding taxa removed.

Identifying Bottlenecks in Tree Space
We were able to explicitly identify bottlenecks in

tree space by examining SPR paths between high
probability trees separated by regions of low probability.
As mentioned above, the most probable topologies
of DS1’s two peaks are separated by only two SPR
operations. However, these SPR operations have an
inverted nested structure (Fig. 4). The intermediate
topology in this shortest path was so unlikely that it
was never sampled in any of our tests. This induces
a severe bottleneck that results in the two peaks
of DS1. The peaks of DS6 arise from a different
type of bottleneck (Supplementary Fig. 5 available
at http://dx.doi.org/10.5061/dryad.jf7b3). Three SPR
operations are required that move three subtrees into
a common clade. Both types of bottleneck are caused by
a dependence between splits.

Topological peaks can lead to incorrect estimation
of posterior distributions. In addition to long times to
achieve small ASDSF and high error rates, there is a risk
of missing a peak entirely. This was particularly evident
for data set DS1 where 2 of our 10 tests with the MrBayes
default settings failed to sample the subpeak before
reaching the ASDSF cutoff. The cumulative posterior
probability of this subpeak (as calculated via golden
runs) was approximately 20%. Four splits receive 95–
99% support when this subpeak is missed as opposed
to 75–80% support (Supplementary Fig. 6 available at
http://dx.doi.org/10.5061/dryad.jf7b3).

Metropolis-Coupling Improves Mixing Between Peaks
Metropolis-coupling (Geyer 1992; Huelsenbeck and

Ronquist 2001), also known as MCMCMC, connected
peaks together for these data sets (Fig. 5). Weighted
MCMC graphs of the peaky DS1 for posterior samples
without Metropolis-coupling revealed that a single
Markov chain rarely transitions between the peaks. For
example, there were only 4 observed transitions between
peaks in one million-tree sample subsampled from an
100-million iteration MCMC run (Fig. 5a). Given the large
number of iterations and lack of Metropolis-coupling, it
is unlikely that the chain frequently traversed between a
peak and returned to the same peak between sampling
periods. MCMCMC, however, frequently jumps between
the peaks. In one approximately 1.2-million tree sample,
subsampled from a 12-million iteration MCMCMC run
with 4 chains (Fig. 5b), there were more than 4000
observed transitions between the central peak trees. The
effect of squashing these graphs together was more
pronounced for the deep valley of DS1 as opposed to
DS4 (Fig. 5c,d).

To quantify mixing, we computed commute time
statistics for each topology in the 95% credible set; the
commute time here was defined to be the number of
Markov chain iterations necessary to move from the
highest probability topology to the given tree and back.
The round trip cover time is the number of iterations
necessary to visit every topology in the credible set and

http://dx.doi.org/10.5061/dryad.jf7b3
http://dx.doi.org/10.5061/dryad.jf7b3
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FIGURE 4. Central trees of the two topological peaks in data set DS1. Only two SPR operations separate these trees, moving the blue (gray in
the print version) and then green (light gray) clade to traverse from peak 1 to peak 2 and vice versa in the reverse direction. However, the sole
intermediate topology is so unlikely that it was never visited in any of our tests, inducing a severe topological bottleneck. Longer paths through
multiple trees outside of the 95% confidence interval are taken instead, resulting in long transit times between the peaks.

return to the highest probability topology. Metropolis-
coupling also reduced the mean commute time (Fig. 6)
and round trip cover time (Table 3). This effect was
particularly pronounced for data set DS1. The round
trip cover time decreased by more than a factor of
four for DS1, DS4, DS5, DS6, and DS8, outweighing the
factor of four increase in computation time, whereas
on data sets DS2, DS3, DS7, and DS10 the improved
mixing rate of Metropolis-coupling did not outweigh the
increased computation. However, Metropolis-coupling
reduced total computation time substantially, as the
data sets where it did not reduce total computational
effort to achieve a fixed ASDSF mixed relatively quickly
compared with the ones for which it did. Commute
and cover time statistics could not be estimated for
the flat DS9 and DS11 posteriors. These results suggest
that Metropolis-coupling does improve mixing between
peaks and reduce total computational effort on average,
but may not be beneficial for all posterior shapes.

Trees within subpeaks were observed to have
much larger commute times than other trees with a
similar posterior probability. This effect was particularly
prominent in data sets DS1, DS4, DS6, and DS7 (Fig. 6).
For example, the commute time of the central tree
in the subpeak of DS1 was 2.6 million iterations
as opposed to 3300–5500 iterations for trees with
similar probability. This reduced to 80,200 and 2100–
3700 iterations, respectively with Metropolis-coupling.
Similarly, the most probable trees within the three
subpeaks of DS4 (Fig. 3) had commute times between

200,000 and 307,000 iterations (37,000-47,000 with
Metropolis-coupling). Other trees of similar probability
had commute times between 16,000 and 25,000
iterations. Generally, our commute time analysis further
demonstrates the difficulty of sampling subpeaks and
allows quantification of this difficulty.

A Small ASDSF When Calculated with Two Runs is not
Always Sufficient to Ensure that Empirical Split Frequencies

are Close to Their Posterior Distribution;
Metropolis-coupling aids in Split Frequency Mixing

As described in the “Methods” section, ASDSF
compares split frequencies between runs (we emphasize
that these runs are completely distinct and not coupled as
for MCMCMC). Increasing the number of simultaneous
Markov chain runs greatly increased the stringency of a
given ASDSF cutoff (Supplementary Fig. 8 available at
http://dx.doi.org/10.5061/dryad.jf7b3). We found that
ASDSF calculated using two runs is not sufficient for
estimating the convergence of split frequencies. Adding
additional runs both increased the number of iterations
required to reach the ASDSF cutoff and decreased the
amount of error. This effect varied by data set and peaky
distributions saw the greatest decrease in error with
additional runs.

In most cases, a small ASDSF implied that other
convergence diagnostics were satisfied, regardless of the
number of runs. The mean potential scale reduction

http://dx.doi.org/10.5061/dryad.jf7b3
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a) DS1 (1-chain) b) DS1 (4-chain)

c) DS4 (1-chain) d) DS4 (4-chain)

FIGURE 5. Weighted MCMC graphs for DS1 and DS4. Node diameters are scaled relative to posterior probability. Nodes are colored on a
red–yellow–white scale (dark-light in the print version) with increasing distance from the topology with highest posterior probability. Edges
connect trees in successive 100-iteration samples. Edge thickness and color are proportional to the number of MCMC transitions.

factor (PSRF; see the “Methods” section) for branch
lengths was less than 1.01 in all but the 2-run DS2 and
DS3 cases and 4 2-run DS7 cases, where the mean PSRF
was less than 1.042. Similarly, the ESS for the treelength
parameter was greater than 200 except for data sets DS2
and DS3 and 8 of the 4-chain 2-run DS7 cases.

The ASDSF and split frequency error varied
considerably over Markov chains of peaky data sets
as runs transitioned between peaks. These statistics
often dipped below commonly applied thresholds only
to increase rapidly after one run began exploring
an alternative peak. The subsequent rise and fall of
these statistics decreased in magnitude as we gathered
a sufficient sample. However, current convergence
diagnostics assume that these statistics decrease
smoothly and, in particular, do not rise sharply. The
first time that an ASDSF cutoff is reached may not

indicate that split frequency estimates are close to their
posterior probabilities in peaky posteriors. Moreover, the
stopping time for Markov chains is often determined by
the first occurrence of a sufficiently small split frequency
deviation from golden runs (Höhna and Drummond
2012). This approach may underestimate the time needed
to run these chains in the presence of topological peaks
because the running observation of the split frequency
may get close to the golden run split frequency because
of stochasticity.

Metropolis-coupling decreased error when peaky
distributions were sampled with a small number of runs.
Dataset DS1, in particular, required 7 or more runs to
achieve a mean RMSD below 0.02 without Metropolis-
coupling but only 3 runs with Metropolis-coupling
(Table 4). Much of this error occurred when runs
prematurely stopped using a split frequency criterion on
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FIGURE 6. Comparison of posterior probability and mean commute time with (gray) and without (black) Metropolis-coupling.

TABLE 3. The mean round trip cover time (MRT) for each data set
with and without MCMCMC

Data set 1-chain MRT 4-chain MRT Ratio

DS1 3,388,506 171,339 19.8
DS2 2471 1653 1.5
DS3 11,182 5246 2.1
DS4 545,726 97,442 5.6
DS5 2,913,041 540,336 5.4
DS6 9,028,010 1,094,21 8.3
DS7 211,873 87,779 2.4
DS8 1,083,837 245,794 4.4
DS10 2,141,752 789,460 2.7
All 19,326,398 3,033,266 6.4

the larger peak. Even with 8 runs, one replicate without
Metropolis-coupling reached an ASDSF of 0.01 after only
740,000 iterations, compared with the mean 82 million
iterations. None of the 8 runs visited any tree in the sub-
peak, resulting in an RMSD of 0.08 and similar effects to
those detailed above (Supplementary Fig. 6 available at
http://dx.doi.org/10.5061/dryad.jf7b3). The common

diagnostics were satisfied for this replicate, including
an ASDSF value less than 0.01, tree length ESS value
of 3054, tree length PSRF of 1.000 and a maximum split
frequency PSRF of 1.001. Even with Metropolis-coupling,
the MrBayes default of two runs was insufficient to
adequately sample data sets DS1, DS4, and DS7 at the
0.01 ASDSF threshold.

Topological Gelman–Rubin-like Statistic
Because split frequency is a projection of the actual

posterior on phylogenetic trees rather than the posterior
itself, we wondered to what extent split-based measures
being small implies that the empirical frequency on
phylogenetic tree topologies is close to the posterior.
To explore this question, we developed a variant of
the Gelman–Rubin statistic that used SPR distances
(“Methods” section). This measure compares the mean
square topology deviation within independent Markov
chains to that between the chains. The corresponding

http://dx.doi.org/10.5061/dryad.jf7b3
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TABLE 4. A detailed look at performance on data set DS1 with and
without MCMCMC using varying number of runs

Ch Runs Peak Conv Lim Iterations Run Time MaxErr RMSD

1 2 0 0 0 2.42E+06 4.84E+06 0.266 0.106
1 3 6 3 0 2.06E+07 6.18E+07 0.108 0.045
1 4 8 3 1 3.39E+07 1.36E+08 0.081 0.036
1 5 9 7 3 5.88E+07 2.94E+08 0.052 0.024
1 6 9 6 3 6.64E+07 3.98E+08 0.053 0.024
1 7 9 8 4 7.52E+07 5.26E+08 0.041 0.018
1 8 9 8 6 8.26E+07 6.61E+08 0.037 0.016
4 2 8 5 0 8.50E+05 6.80E+06 0.082 0.038
4 3 10 6 0 4.05E+06 4.86E+07 0.038 0.018
4 4 10 6 0 4.07E+06 6.51E+07 0.03 0.015
4 5 10 8 0 6.52E+06 1.30E+08 0.026 0.013
4 6 10 9 0 1.20E+07 2.88E+08 0.021 0.01
4 7 10 10 0 1.36E+07 3.81E+08 0.013 0.006
4 8 10 10 0 1.38E+07 4.42E+08 0.011 0.005

Notes: The number of replicates (out of 10) with a given number of
chains (Ch) are shown which found both peaks (Peak), converged to
an RMSD at most 0.02 (Conv), or exceeded the iteration limit (Lim).
The mean number of iterations, running time (iterations*chains*runs),
maximum split frequency error (MaxErr), and RMSD are also shown.

PSRF will approach 1 as the independent runs converge
in topology distribution.

On our data sets, a small ASDSF generally implied
that the topological measure was small (Table 5).
PSRF estimates with our topological Gelman–Rubin-like
measure approached 1, regardless of the number of runs.
Surprisingly, this also held for the flat posteriors of DS9
and DS11. This suggests that similar trees were explored
between runs of these posteriors, even if no two trees
were identical. There was little difference in topology
deviation or PSRF with or without Metropolis-coupling.
Moreover, topological PSRF and ASDSF showed similar
trends over time (Supplementary Fig. 7 available at
http://dx.doi.org/10.5061/dryad.jf7b3), although the
scale of this relationship appears to vary between
different data sets and even different replicated tests on
the same data set.

MDS
In general, MDS projections were insufficient to

diagnose peaks (Fig. 7) and extra information is
required such as commute time, posterior density,
and connectivity. For flat posteriors, however, where
extra information is unavailable, MDS remains the only
method of visualizing tree space (Supplementary Fig. 9
available at http://dx.doi.org/10.5061/dryad.jf7b3).

Specifically, MDS plots often highlighted topological
differences that did not impede mixing and missed
subpeaks. For data set DS1, MDS displayed 4 clusters.
One axis separated the two peaks of DS1, but the other
axis separated trees according to a common difference
that did not impede mixing. MDS plots of DS4 identified
only one of three difficult to reach areas of tree space.
MDS plots were generally similar between RF and SPR.
In DS6, however, the plots differed significantly. This
highlighted the fact that the peaks of DS6 are quite close

TABLE 5. Estimated topology deviation (RMSD) and potential
scale reduction factor (PSRF) using our topological Gelman-Rubin-like
measure (TGR)

Data Ch TGR-RMSD TGR-PSRF

2-runs 8-runs 2-runs 8-runs

DS1 1 1.9 1.001 2.2 1.002
DS1 4 1.9 1.001 2.2 1.001
DS2 1 0.9 1.005 1.1 1.005
DS2 4 0.9 1.007 1.1 1.005
DS3 1 0.9 1.004 1.2 1.007
DS3 4 1 1.004 1.2 1.004
DS4 1 1.8 1.002 2.3 1.002
DS4 4 2 1.001 2.3 1.001
DS5 1 5.7 1 6.4 1.001
DS5 4 6.3 1 6.3 1.001
DS6 1 5.6 1.001 6 1.001
DS6 4 6 1.001 6 1.001
DS7 1 2.5 1.002 3.3 1.005
DS7 4 3.1 1.002 3.3 1.004
DS8 1 3.1 1.001 3.3 1.002
DS8 4 3.3 1.002 3.4 1.001
DS9 1 16.3 1 16.4 1.001
DS9 4 16.2 1 16.4 1.001
DS10 1 6.8 1.001 5.8 1.001
DS10 4 7.6 1.001 6.2 1.001
DS11 1 18.5 1.001 18.6 1.001
DS11 4 18.5 1 18.6 1.001

Notes: Ch = number of chains.

in SPR terms (despite their separation by a valley of
improbable trees) but had very different splits. We also
compared MDS plots on the peaky microbial data set
VL6. Only one of the peaks was separated from the others
in the SPR plot and the RF plot broke the peaks into
multiple clumps.

Effect of Peaks on Conditional Clade Probabilities
Recent work uses a product of conditional posterior

probabilities on splits as a proxy for the corresponding
phylogenetic posterior probability (Höhna and
Drummond 2012; Larget 2013; Szöllősi et al. 2013).
This assumes an independence between the split
probabilities of sister clades conditioned on their
parent clade. Larget (2013) found several examples
of trees where CCD probabilities differ from well-
sampled empirical frequencies in the eukaryote data
sets and where the simple estimates were well above
the sampling threshold. Larget (2013) conducted two
tests per eukaryote data set using MrBayes 3.2 with
the HKY85 model for 5,500,000 iterations, subsampling
100,000 trees with a 500,000-tree burn-in period. He
used these long runs as being representative of the
posterior distribution, noting that “A second set of runs
under the same conditions, but with different random
numbers, shows very similar results, indicating that
these MCMC samples are likely not to suffer from
poor convergence (data not shown).” We extended his
investigation of differences between CCD probabilities
and well-sampled empirical frequencies with our
substantially larger 1-billion iteration MCMC golden

http://dx.doi.org/10.5061/dryad.jf7b3
http://dx.doi.org/10.5061/dryad.jf7b3
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a) DS1 (SPR) b) DS1 (RF)

c) DS4 (SPR) d) DS4 (RF)

e) DS6 (SPR) f) DS6 (RF)

g) VL6 (SPR) h) VL6 (RF)

FIGURE 7. Comparison of multidimensional scaling representations with SPR and RF distances. Nodes are colored by identified peaks to
match the primary cluster of the peak (gray scale in the print version).
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FIGURE 8. A comparison of posterior probability and CCD estimates for the aggregated golden runs on data sets DS1, DS3, DS4, and DS6.
Probability is shown on a log-log scale in base 10. The top trees for each data set are colored by peak in DS1 and cluster for the other data sets.
Transparency of points increases as posterior probability decreases.

runs, subsampling 750,000 trees with a 250,000,000-tree
burn-in period, replicated 10 times. We examined these
differences with both the simple Jukes Cantor model
and the HKY85 model.

We found that conditional independence clearly did
not hold in peaky distributions sampled with the
Jukes Cantor model (Fig. 8). Specifically, conditional
clade probabilities systematically underestimated the
probability of trees within subpeaks and overestimated
the probability of trees between the peaks. This effect
was exemplified in data set DS1 where highly unlikely
trees between peaks had conditional clade probabilities
exceeding one percentage point (points significantly
above the line in Fig. 8a). We observed similar effects in
DS4 and DS6. Surprisingly, even in the relatively simple
posterior of DS3, CCD underestimated the posterior
probability of three trees in the 95% credible set by
an order of magnitude. However, CCD performed well

overall on nonpeaky data sets and is currently the
only way to estimate probabilities below the sampling
threshold (e.g., DS9 and DS11).

Our results were similar for the peaky
distributions of DS1 and DS4 sampled with the
HKY85 model (Supplementary Fig. 10 available at
http://dx.doi.org/10.5061/dryad.jf7b3). However,
CCD showed no significant bias in data set DS6 when
sampled with the HKY85 model.

Effect of the Substitution Model on Phylogenetic Tree Space
Phylogenetic inference is typically applied with better

fitting substitution models than the oversimplified Jukes
Cantor model. In particular, the Jukes Cantor model has
been suggested to produce tree spaces that are difficult
to sample (Lakner et al. 2008). To test this belief and the

http://dx.doi.org/10.5061/dryad.jf7b3
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generality of our results, we replicated our tests with the
HKY85 model.

We found that most posteriors sampled with the
HKY85 model were similar in many respects to those
sampled under the Jukes Cantor model—peaky data sets
remained peaky and posteriors tended to have a similar
shape (Supplementary Fig. 11 and Table 5 available at
http://dx.doi.org/10.5061/dryad.jf7b3). In particular,
we again observed significant subpeaks in the posteriors
of DS1 and DS4, and verified that these subpeaks were
difficult to sample (Supplementary Fig. 12 available
at http://dx.doi.org/10.5061/dryad.jf7b3). Moreover,
as indicated above, these subpeaks appeared to
bias the results of CCD probability estimates for
these data sets (Supplementary Fig. 10 available
at http://dx.doi.org/10.5061/dryad.jf7b3). Credible set
inflation due to similar and identical sequences was
again a concern and we again identified repeated
patterns in the posterior of DS7.

We also found significant differences in the posteriors
sampled with the HKY85 model. In particular, each
credible set grew substantially as compared with its
Jukes Cantor counterpart. Moreover, this expansion
occured nonuniformly. Changing the substitution model
had a much larger impact on data sets DS5, DS6, and
DS10 than the other data sets. Data sets DS5 and DS10
had very sparse posteriors under the HKY85 model,
although not quite to the extent of DS9 and DS11. As
such, our golden runs did not provide sufficient samples
to accurately estimate the posterior probability of the top
trees in these data sets (Supplementary Fig. 13 available
at http://dx.doi.org/10.5061/dryad.jf7b3). Although
DS6 still appeared to contain a subpeak in the SPR graph,
we did not see other signs of peakiness in the MCT or
CCD results, unlike our results with the Jukes Cantor
model.

DISCUSSION

We developed the first practical method for examining
the subtree prune-and-regraft tree space of Bayesian
phylogenetic posteriors. Our novel graph-based
approach uses size and color to visualize connectivity,
posterior probability, and relative distance. Our simple
clustering procedure identified topological peaks in
several real data sets. Additionally, we investigated
the impact of Metropolis-coupling, the number of
runs used for ASDSF calculation, and developed a
convergence diagnostic that uses phylogenetic tree
topologies directly.

We find that multimodal or “peaky” posteriors are
common in data sets with 30 or more taxa, confirming the
suggestion by Beiko et al. (2006). Markov chains on peaky
posteriors often required a large number of iterations
to obtain small ASDSF values and had high error
rates relative to the number of taxa. We used dynamic
programming to compare tree commute times and found
that trees within subpeaks were difficult to sample.
The “height” of a peak compared with the “depth” of
the corresponding valley influenced sampling difficulty.

Data set DS1, despite its relatively small number of taxa,
has a large subpeak separated by a particularly deep
valley. In many cases, this led to premature termination
of chains by the ASDSF measure and erroneously
assigning greater than 95% confidence to some
relationships with an actual frequency less than 80%.

We explicitly identified tree space bottlenecks in
two data sets with tall subpeaks and found that
they were caused by a dependence between splits.
These peaks were only isolated by a handful of SPR
operations. However, the intermediate valley topologies
were exceedingly unlikely and the SPR operations
modified a large number of splits.

Dependence between sister clades caused systematic
errors in CCD probability estimates. Specifically, CCD
overestimated the probability of trees between peaks
and underestimated the probability of trees in subpeaks.
These observations suggest that CCD-guided proposal
operators could hide subpeaks and further aggravate
the difficulty of sampling peaky phylogenetic posteriors.
On the other hand, CCD-guided proposal operators
may sample valley trees more frequently and therefore
provide more chances to cross valleys and sample
subpeaks. Tree space sampling methods that penalize
or even prevent SPR and TBR operators that change a
large number of splits could also hide subpeaks, such
as the “pruning distance” of Höhna and Drummond
(2012) and similar suggestions (Huelsenbeck et al. 2008;
Lakner et al. 2008). Moreover, an anti-peak bias would
be undetectable and, perversely, decrease running times
using an ASDSF rule or other common convergence
diagnostic. One strategy to alleviate bias, while still
retaining the benefit of CCD, might be to use CCD or
other biased proposal distributions in a subset of Markov
chains (Metropolis-coupled or otherwise) along with
chains using a general proposal distribution. CCD has
also begun to see use in phylogenomic methods such
as amalgamated likelihood estimation (Szöllősi et al.
2013), which uses CCD directly as a proxy for posterior
probability in order to infer a species tree joint with a set
of gene trees. Biases in CCD will bias the results of this
approach.

Identical and closely related sequences cause
ambiguity which greatly inflated the tree space sampled
by MCMC methods. Such data sets had large and
flat posteriors, which were difficult to quantify and
visualize. Ignoring duplicate sequences reduced mean
run time (determined by the ASDSF stopping rule)
by 26% and 50% in our two flattest posteriors. Thus,
we suggest that users of MCMC should identify and
ignore duplicate sequences, maintaining only a single
representative from each set of identical sequences.
The post-processing of such an analysis could either
expand the representative to a multifurcating clade
containing each ignored sequence from a set or
spread the probability of each sampled tree uniformly
across each full tree with clades for the expanded
sets. Ignoring duplicate sequences may make branch
length priors harder to interpret, due to a consequent
ascertainment bias. This may make little difference in

http://dx.doi.org/10.5061/dryad.jf7b3
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http://dx.doi.org/10.5061/dryad.jf7b3
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practice, however, as commonly used priors do not
allow for large numbers of simultaneous or nearly
simultaneous branching events. Intelligently handling
duplicate sequences may be a useful feature of future
MCMC software. Moreover, future work should explore
methods for handling closely related sequences without
inflating tree space. This could be done with reversible
jump Markov chain Monte Carlo (Lewis et al. 2005).
Tree space inflation will be of particular importance
when estimating trees for a large number of closely
related sequences as in personalized medicine and
metagenomics.

Metropolis-coupling was effective in reducing
commute times and decreased the mean cover time
of the 95% credible set by more than a factor of 4 in
peaky distributions. Metropolis-coupling increased
the number of transitions between peaks by three
orders of magnitude in our peakiest data set. However,
Metropolis-coupling may not be effective for all posterior
shapes. The observed cover time decrease in non-peaky
data sets did not outweigh the increased computation
of Metropolis-coupling, however because Metropolis-
coupling significantly reduced computational load
for the most difficult and time-consuming posteriors,
it appears to be a useful default option on average.
We tested the effect of Metropolis-coupling with 4
chains, the default number of chains in MrBayes, and
future work should investigate the optimal number of
Metropolis-coupled chains for peaky and nonpeaky
posteriors. Moreover, further research could investigate
whether it is heating, multiple chains, or both that
improves mixing in peaky posteriors.

The magnitude of the ASDSF convergence diagnostic
depends heavily on the number of Markov chains used
for comparison. We found that using two independent
runs with an ASDSF cutoff of 0.01 resulted in insufficient
chain lengths for peaky posterior distributions. Indeed,
MCMC runs often stopped using a 2-run ASDSF
stopping rule before sampling a subpeak. This is a
serious consideration, as MrBayes uses two runs by
default, and MrBayes uses a default ASDSF termination
threshold of 0.05 when ASDSF termination is enabled
but no threshold provided. Moreover, MrBayes does not
provide a warning message unless the ASDSF exceeds
0.1 when run for a fixed number of iterations. ExaBayes
uses ASDSF termination by default with a threshold of
0.05. We did not test similar single-chain convergence
diagnostics (e.g., the methods of Raftery and Lewis
(1992) or Geweke (1991)) but they may experience
similar problems. MCMC analyses should use at least
three independent runs and an ASDSF threshold of at
least 0.01 in any MCMC analysis for which accurate
topological posterior estimation is an important concern.
Moreover, multiple independent MCMC replicates
should be compared—using even 8 runs was not enough
to prevent one of our MCMC tests from stopping with
an ASDSF stopping rule before sampling the sub-peak
of DS1. A wide variance in chain lengths using split
frequency stopping rules on independent replicates may
be a sign of topological subpeaks.

We developed a topological Gelman–Rubin-like
convergence diagnostic which works directly on tree
topologies. This diagnostic can be applied with any
distance metric on tree topologies. Tests with this
topological Gelman–Rubin-like measure suggest that
small ASDSF often implies a small topological Gelman–
Rubin-like diagnostic for high-probability topologies,
although neither measure can detect unsampled
topological peaks.

A major and natural difficulty of peak detection is
that the peaks must be sampled in order to be detected.
Similarly, it is difficult to accurately estimate time to
satisfy some convergence criterion. Convergence time
estimates using golden runs (Höhna and Drummond
2012) are based on the first time that split frequencies of a
Markov chain approach the golden run split distribution.
However, this approach may underestimate the running
time of MCMC methods in practice because sampled
split frequencies can approximately hit the golden run
split distribution before they have stabilized. It may be
worth checking that split distributions have stabilized
in addition to requiring them to hit the golden run split
distribution.

The choice of substitution model can have a substantial
impact on the tree space explored by phylogenetic
MCMC search. We found that posteriors tended to have
similar features under both the Jukes Cantor and HKY85
models, but posteriors sampled with the HKY85 model
had less substantial peaks and valleys in some cases.
On the other hand, posteriors sampled with the more
complex model had much larger credible sets (by many
orders of magnitude in some cases) and thus increased
the commute times between particular phylogenies and
reduced our confidence in the posterior probability of
any given topology. In select cases, peaks may be a sign of
a poor-fitting subsitution model (e.g., DS6), but in others
(DS1 and DS4) other factors appear to be at work.

Our methods could be expanded in several ways. We
limited many of our comparisons to subsets of at most
4096 trees due to the computational overhead of pairwise
comparisons. Our approach would benefit greatly
from faster methods for unrooted SPR comparisons
or a way to construct SPR graphs without comparing
every pair of trees. There also are special challenges
in moving through the space of rooted trees with
a time component (as estimated by BEAST), which
would be interesting to investigate; our methods would
also be much more efficient on posteriors of these
rooted trees. We developed a very simple method
for highlighting topological peaks that was designed
to dynamically select cluster radii with few SPR
comparisons. Our clustering procedure worked well
in our tests, but in multiple situations could select
unreasonably small cluster sizes (e.g., if the standard
deviation approached or exceeded the mean). Improved
methods for identifying such peaks and analyzing tree
space graphs should be explored. In particular, methods
are needed to rapidly scan posteriors for common
bottlenecks in order to develop new phylogenetic
operators that cross those bottlenecks. Moreover, future
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work should determine the cause of such bottlenecks
in terms of sequence features (e.g., mixtures of tree
topologies). Nontrivial methods will be required to
do so in the likelihood-based framework. Finally, our
observations need to be confirmed on other data sets.
This work is but a first step in quantifying MCMC
exploration of phylogenetic tree space using topological
methods.
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