Skip to main content
. 2015 Jan 27;64(3):472–491. doi: 10.1093/sysbio/syv006

Table 2.

A comparison of data set difficulty and posterior shape parameters

Data μIter μMaxErr μRMSD Radius 95CI Cred Peaks
DS1 850,200 0.0819 0.0375 4 41 95 Y
DS2 8200 0.0976 0.0272 2 5 95 N
DS3 12,800 0.0757 0.0225 4 16 95 N
DS4 160,800 0.1139 0.0332 6 210 95 Y
DS5 626,000 0.0864 0.0163 16 (8) 240,311 38.9 Y
DS6 397,000 0.1046 0.0244 12 (7) 157,435 39.1 Y
DS7 62,600 0.1616 0.0397 9 735 95 Y
DS8 283,400 0.0882 0.0205 8 3545 95 N
DS9 347,200 0.1063 0.0208 23 712,502 0.6 ?
DS9-U 255,200 0.1019 0.0216
DS10 322,400 0.1087 0.0226 15 (12) 286,604 30 Y
DS11 338,200 0.0503 0.0119 24 712,502 0.6 ?
DS11-U 167,000 0.0533 0.0143

Notes: The first three columns show the mean number of iterations required to reach ASDSF less than 0.01 (μIter) using the MrBayes default parameters (4 runs, 2 chains) as well as the resulting mean maximum split frequency error (μMaxErr) and mean split frequency RMSD (μRMSD) as compared with the golden runs. From the golden runs, we considered properties of the top trees—the at most 4096 highest probability trees from the 95% credible set. We inferred the SPR radius (Radius) which we define as the maximum SPR distance from any top tree to the topology with highest posterior probability, the size of the 95% credible set (95CI), the cumulative posterior probability of the top trees (Cred), and the presence of peaks. Note that our credible set clearly underestimates the true credible set size when it exceeds the number of samples (e.g., DS9 and DS11). “-U” data sets include only one member from each set of identical sequences. Note that each golden run contained 750,000 samples.