Skip to main content
. 2015 Apr 14;7:48. doi: 10.3389/fnagi.2015.00048

Table 5B.

Post hoc comparisons results.

Diagnostic tasks Tractography algorithm (I) PC number (J) PC number Mean difference (I-J) Sig. 95% confidence interval
Lower bound Upper bound
AD vs. NC Tensor-RK2 15 75 0.16667 0.003 0.0293 0.3040
150 0.16759 0.003 0.0302 0.3050
20 75 0.15370 0.011 0.0163 0.2911
150 0.15463 0.010 0.0173 0.2920
AD vs. MCI Tensor-FACT 10 150 0.14378 0.022 0.0092 0.2784
Tensor-RK2 10 150 0.17437 0.016 0.0150 0.3338
Tensor-SL 10 40 0.12890 0.017 0.0105 0.2473
100 0.12099 0.038 0.0026 0.2394
150 0.19536 0.000 0.0770 0.3137
15 150 0.17532 0.000 0.0569 0.2937
20 150 0.12342 0.030 0.0050 0.2418
Tensor-TL 10 150 0.17099 0.001 0.0383 0.3037
15 150 0.14747 0.013 0.0148 0.2802
ODF-FACT 10 150 0.11424 0.019 0.0084 0.2200
Probtrackx 10 100 0.14219 0.000 0.0519 0.2325
15 100 0.12236 0.000 0.0320 0.2127
20 100 0.10876 0.004 0.0184 0.1991
25 100 0.12500 0.000 00347 0.2153
30 100 0.13544 0.000 0.0451 0.2258
35 100 0.13397 0.000 0.0436 0.2243
40 100 0.10506 0.006 0.0147 0.1954
45 100 0.09726 0.019 0.0069 0.1876
50 100 0.09515 0.026 0.0048 0.1855
Hough 10 150 0.12416 0.008 0.0154 0.2329
15 150 0.11994 0.014 0.0112 0.2287
MCI vs. NC ODF-RK2 40 150 0.11920 0.012 0.0125 0.2259
Probtrackx 10 100 0.12047 0.002 0.0247 0.2162
15 100 0.09728 0.041 0.0016 0.1930

Only tests that passed Bonferroni correction are shown here. Using PCA as a feature extraction method, the AUCs for some tractography algorithms are statistically affected by the number of PCs for specific diagnostic tasks. Moreover, a smaller number of PCs tends to give better performance (higher AUC) than higher numbers of PCs for these tractography algorithms when using PCA.