Table 5B.
Post hoc comparisons results.
Diagnostic tasks | Tractography algorithm | (I) PC number | (J) PC number | Mean difference (I-J) | Sig. | 95% confidence interval |
|
---|---|---|---|---|---|---|---|
Lower bound | Upper bound | ||||||
AD vs. NC | Tensor-RK2 | 15 | 75 | 0.16667 | 0.003 | 0.0293 | 0.3040 |
150 | 0.16759 | 0.003 | 0.0302 | 0.3050 | |||
20 | 75 | 0.15370 | 0.011 | 0.0163 | 0.2911 | ||
150 | 0.15463 | 0.010 | 0.0173 | 0.2920 | |||
AD vs. MCI | Tensor-FACT | 10 | 150 | 0.14378 | 0.022 | 0.0092 | 0.2784 |
Tensor-RK2 | 10 | 150 | 0.17437 | 0.016 | 0.0150 | 0.3338 | |
Tensor-SL | 10 | 40 | 0.12890 | 0.017 | 0.0105 | 0.2473 | |
100 | 0.12099 | 0.038 | 0.0026 | 0.2394 | |||
150 | 0.19536 | 0.000 | 0.0770 | 0.3137 | |||
15 | 150 | 0.17532 | 0.000 | 0.0569 | 0.2937 | ||
20 | 150 | 0.12342 | 0.030 | 0.0050 | 0.2418 | ||
Tensor-TL | 10 | 150 | 0.17099 | 0.001 | 0.0383 | 0.3037 | |
15 | 150 | 0.14747 | 0.013 | 0.0148 | 0.2802 | ||
ODF-FACT | 10 | 150 | 0.11424 | 0.019 | 0.0084 | 0.2200 | |
Probtrackx | 10 | 100 | 0.14219 | 0.000 | 0.0519 | 0.2325 | |
15 | 100 | 0.12236 | 0.000 | 0.0320 | 0.2127 | ||
20 | 100 | 0.10876 | 0.004 | 0.0184 | 0.1991 | ||
25 | 100 | 0.12500 | 0.000 | 00347 | 0.2153 | ||
30 | 100 | 0.13544 | 0.000 | 0.0451 | 0.2258 | ||
35 | 100 | 0.13397 | 0.000 | 0.0436 | 0.2243 | ||
40 | 100 | 0.10506 | 0.006 | 0.0147 | 0.1954 | ||
45 | 100 | 0.09726 | 0.019 | 0.0069 | 0.1876 | ||
50 | 100 | 0.09515 | 0.026 | 0.0048 | 0.1855 | ||
Hough | 10 | 150 | 0.12416 | 0.008 | 0.0154 | 0.2329 | |
15 | 150 | 0.11994 | 0.014 | 0.0112 | 0.2287 | ||
MCI vs. NC | ODF-RK2 | 40 | 150 | 0.11920 | 0.012 | 0.0125 | 0.2259 |
Probtrackx | 10 | 100 | 0.12047 | 0.002 | 0.0247 | 0.2162 | |
15 | 100 | 0.09728 | 0.041 | 0.0016 | 0.1930 |
Only tests that passed Bonferroni correction are shown here. Using PCA as a feature extraction method, the AUCs for some tractography algorithms are statistically affected by the number of PCs for specific diagnostic tasks. Moreover, a smaller number of PCs tends to give better performance (higher AUC) than higher numbers of PCs for these tractography algorithms when using PCA.