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Background. Phenome-Wide Association Studies (PheWAS) identify genetic associations across multiple
phenotypes. Clinical trials offer opportunities for PheWAS to identify pharmacogenomic associations. We describe
the first PheWAS to use genome-wide genotypic data and to utilize human immunodeficiency virus (HIV) clinical
trials data. As proof-of-concept, we focused on baseline laboratory phenotypes from antiretroviral therapy-naive in-
dividuals.
Methods. Data from 4 AIDS Clinical Trials Group (ACTG) studies were split into 2 datasets: Dataset I (1181

individuals from protocol A5202) and Dataset II (1366 from protocols A5095, ACTG 384, and A5142). Final anal-
yses involved 2547 individuals and 5 954 294 imputed polymorphisms. We calculated comprehensive associations
between these polymorphisms and 27 baseline laboratory phenotypes.
Results. A total of 10 584 (0.17%) polymorphisms had associations with P < .01 in both datasets and with the

same direction of association. Twenty polymorphisms replicated associations with identical or related phenotypes
reported in the Catalog of Published Genome-Wide Association Studies, including several not previously reported in
HIV-positive cohorts. We also identified several possibly novel associations.
Conclusions. These analyses define PheWAS properties and principles with baseline laboratory data from HIV

clinical trials. This approach may be useful for evaluating on-treatment HIV clinical trials data for associations with
various clinical phenotypes.
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Access to safe and effective antiretroviral medications
is critical for the global response to the acquired immuno-
deficiency syndrome (AIDS) pandemic. Polymorphisms

in drug absorption, distribution, metabolism, and elim-
ination (ADME) genes and off-target genes have been
associated with side effects and/or pharmacokinetics
of antiretroviral drugs including abacavir [1], atazanavir
[2], efavirenz [3–5], etravirine [6], lopinavir [7], and ne-
virapine [8], and genetic screening to prevent abacavir
hypersensitivity reaction is now standard of care. Ge-
netic testing to inform antiretroviral prescribing may
benefit from considering polymorphisms associated
with end-organ and physiologic pathway effects in
human immunodeficiency virus (HIV)-negative popu-
lations, especially if associations are not abrogated by
HIV-1 infection.
Genome-Wide Association Studies (GWAS) explore

whether an individual trait (ie, phenotype) is associated
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with single-nucleotide polymorphisms (SNPs) across the ge-
nome. In GWAS, each analysis considers only 1 (or relatively
few) phenotype, ignoring other potentially informative pheno-
types in the dataset. Phenome-wide association studies (Phe-
WAS) compliment GWAS by testing for genotype-phenotype
associations across many phenotypes [9, 10].
Data from prospective clinical trials offer unique opportuni-

ties to apply PheWAS. The National Institutes of Health-funded
AIDS Clinical Trials Group (ACTG) is the world’s largest HIV
therapeutics trials network. In ACTG protocols 384 [11],A5095
[12, 13], A5142 [14], and A5202 [15, 16], treatment-naive indi-
viduals were randomized to specific antiretroviral regimens as
initial therapy. Before initiating therapy, blood was obtained
for chemistry, hematology, virology, and immunology assays.
We used data from these protocols for a proof-of-concept Phe-
WAS, exploring associations between SNPs and antiretroviral-
naive laboratory data.
This PheWAS was performed: (1) to establish baseline associ-

ations between clinical laboratory measurements and SNPs be-
fore pursuing PheWAS of on-treatment phenotypes; (2) to
identify properties and principles of PheWAS using baseline lab-
oratory data from clinical trials; (3) to test the utility of a data
analysis pipeline for this first-ever PheWAS to use clinical trials
data; (4) and to perform the first PheWAS using genome-wide
genotypic data. We show that analyses are robust, demonstrate
associations with multiple phenotypes in 2 independent datasets,
and demonstrate some results that replicate previously reported
associations. We also identify associations previously reported
only in HIV-negative populations. We replicate a well established
association with control of plasma HIV-1 RNA [17]. We also de-
scribe potentially novel associations that may warrant further
study, and we demonstrate the principle of pleiotropy.

MATERIALS AND METHODS

Study Participants
The 4 ACTG protocols enrolled antiretroviral treatment-naive in-
dividuals at least 18 years of age. Study designs and primary study
results have been reported [11–16]. Table 1 provides samples
sizes and self-reported race or ethnicities. Informed consent for
genetic research was obtained under ACTG protocol A5128.

Laboratory Phenotypes
Data for 27 pretreatment and baseline laboratory assays (ie, be-
fore initiating therapy) were available. Using a MySQL database,
we assembled data for these laboratory phenotypes and applied
quality control (QC) measures (Figure 1). For each phenotype,
we inspected frequency distribution plots and reviewed summary
information, identified phenotypes requiring transformation to
approximate normality, assured consistent units of measurement,
and censored outliers judged to be implausible. Post-QC infor-
mation is summarized in Table 2. In regression analyses, CD4
T-cell count was only used as a covariate, not as a dependent phe-
notype. Absolute basophil count measurements were both natu-
ral log-transformed and used as a binary variable.

Genotyping
A total of 2917 individuals were genotyped by 2 assays and in 3
phases, as part of a separate immunogenomics project [17]:
Phase I (A5095) was genotyped with Illumina HumanHap
650Y array; Phase II (ACTG384 and A5142) and Phase III
(A5202) were genotyped with the Illumina 1M duo array, as
summarized in Table 3. Genotyping occurred in 3 phases,
which we combined into 2 datasets for association testing and
identifying results present in both datasets.

Table 1. Information Regarding ACTG Protocols

Genotyping Phase PheWAS Dataset Study Number Subjects
Self-Reported
Race/Ethnicity % Provided DNA References

I I A5095 1147 40% White 88 [12, 13]
37% Black

21% Hispanic

II I ACTG 384 898 46% White 63a [11]
35% Black

17% Hispanic

II I A5142 757 36% White 87 [14]
42% Black

19% Hispanic

III II A5202 1864 47% White 87 [15, 16]
26% Black

25% Hispanic

Abbreviations: ACTG, AIDS Clinical Trials Group; PheWAS, Phenome-Wide Association Studies.
a Genetic consenting and DNA from protocol ACTG 384 is lower than other protocols because the ACTG’s genetic consent protocol A5128 became available in 2002
because follow-up of ACTG 384 participants was ending.
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Figure 1. Study flowchart for genotypic and phenotypic data and analyses. The graphic illustrates steps used for quality control for genotypic and phenotype data, imputation of genotypic data, criteria for
passing filtering threshold for associations across 2 datasets, and software tools used for result interpretation. Abbreviations: GWAS, Genome-Wide Association Studies; MAF, minor allele frequency; PheWAS,
Phenome-Wide Association Studies; SNP, single-nucleotide polymorphisms.
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Quality Control and Imputation
The PLINK program and R statistical programming language
were used for QC procedures [18, 19] (summarized in Figure 1).
Polymorphisms were censored for call rates <98%. We excluded
22 samples in which genetically inferred sex differed from

clinical data, or missing sex status that could not be inferred.
We excluded 30 samples from Phase II for specimen/data label-
ing inconsistency. We excluded 54 samples with overall geno-
typing call rates <98%. We excluded 4 samples with cryptic
relatedness based on identity-by-descent estimates > 0.3 from
approximately 100 000 pruned SNPs. This yielded 2811 samples
for imputation.
Post-QC data from each phase were imputed to 1000 Ge-

nomes [20] after converting to genome build 37 using liftOver
[21] and stratifying by chromosome to parallelize imputation
processing. ShapeIt2 [22] was used to check strand alignment
and to phase data. The IMPUTE2 algorithm [23] was used to
impute additional genotypes that were available in the 1000 Ge-
nomes reference panel but not directly genotyped. Each chro-
mosome was segmented into 6 Mb regions with at least 3500

Table 2. Data for 27 Pretreatment Laboratory Phenotypesa and Summary Statistics

Phenotypes Sample Size Median Min Max Transformation

Absolute basophil countb 2739 – – – Binary

Absolute eosinophil count 2809 2.06 0 3.51 Natural log
Absolute lymphocyte count 2847 3.13 0 4.83 Natural log

Absolute monocyte count 2823 2.6 0 4.36 Natural log

Absolute neutrophil count 2957 3.32 2.54 4.03 Natural log
ALT 2960 1.51 0.3 2.29 Natural log

alkaline Phosphatase 2966 1.89 0.78 2.72 Natural log

AST 2964 1.48 1.04 2.27 Natural log
Blood urea nitrogen 2954 1.11 0.2 2.17 Natural log

Carbon dioxide/bicarbonate 2664 26 12 35

CD4 T-cell countb 3286 224 0 1336 Square root
CD8 T-cell count 3286 2.88 1.54 3.76 Natural log

Chloride 2773 103 89 116

Creatinine 2986 0.9 0 2.5
Glucose (fasting) 1761 1.93 1.53 2.64 Natural log

Triglycerides (fasting) 2023 2.06 1.11 3.45 Natural log

Glucose (nonfasting) 1175 1.93 1.48 2.6 Natural log
Hematocrit 3010 40 18 57.5

Hemoglobin 3026 13.9 6 20

HDL-C 2456 1.56 0.7 2.17 Natural log
LDL-C 2235 94 12 262

Platelet count 3000 202 36 648

Potassium 2773 4.1 2.2 5.7
HIV-1 RNA 3269 4.61 0.95 7.27 Natural log

Sodium 2776 139 127 151

Total bilirubin 2925 0.5 0.1 2.3
Total cholesterol 2852 158 6 350

Abbreviations: ALT, alanine amino transferase; AST, aspartate amino transferase; HDL-C, high-density lipoprotein cholesterol; HIV, human immunodeficiency virus;
LDL-C, low-density lipoprotein cholesterol; Max, maximum; Min, minimum.
a Original units (before transformations) for each phenotype were as follows: cells × 103/µL for absolute basophil count, absolute eosinophil count, absolute
lymphocyte count, absolute monocyte count, absolute neutrophil count, and platelet count; U/L for ALT, alkaline phosphatase, and AST; mg/dL for blood urea
nitrogen, creatinine, glucose (fasting), glucose (nonfasting), triglycerides (fasting), HDL-C, LDL-C, total bilirubin, and total cholesterol; mmol/L for carbon dioxide/
bicarbonate, chloride, potassium, sodium; cells/µL for CD4 T-cell count and CD8 T-cell count; % for hematocrit; g/dL for hematocrit; copies/mL for HIV-1 RNA.
b Absolute basophil count measurements were used for regressions both natural log transformed as well as dichotomized into a binary variable, and CD4 T-cell
counts were only used as a covariate and not as a dependent variable.

Table 3. Genotyping Summary by Dataset and Phase

Dataset Phase Study N
Number
of SNPs Assay

Dataset 1 Phase I A5095 798 631 476 Illumina 650Y
Phase II A384, A5142 898 1 199 187 Illumina 1M Duo

Dataset 2 Phase III A5202 1221 1 199 187 Illumina 1M Duo

Abbreviation: SNP, single-nucleotide polymorphism.
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reference variants in each region. Imputed genotypes were in-
cluded if posterior probabilities exceeded 0.9.
Quality of imputed data was assessed following the Electronic

Medical Records and Genomics (eMERGE) protocol [24]. Each
chromosome from each phase was checked for 100% concor-
dance with genotyped data. No batch effects were found. We
dropped imputed SNPs with imputation scores <0.3, genotyp-
ing call rates <98% and minor allele frequencies < 0.01.

Statistical Analysis
Phase III represented many more subjects than Phase I or Phase
II. Therefore, to seek replication, we divided the data into 2
comparable-sized groups: Dataset I (Phase III representing pro-
tocol A5202) and Dataset II (Phases I and II representing pro-
tocols ACTG384, A5095, and A5142). When linked with
available clinical laboratory data, final datasets included 1181
subjects for Dataset I, 1366 subjects for Dataset II, and
5 954 294 SNPs for each dataset. Statistical analyses were limited
to genetic loci shared by all genotyping phases after imputation.
Using the R statistical package, continuous traits were mod-

eled with linear regression and dichotomous traits with logistic
regression [19]. The first 5 principal components, calculated
using EIGENSOFT [25], were used to adjust for global ancestry.
Each analysis was also adjusted for sex and age. In the secondary
analyses, we also adjusted for CD4 T-cell counts (square-root
transformed), a marker of HIV-1 disease progression. All results
presented herein are for PheWAS associations adjusted for
square-root transformed CD4 T-cell counts. Results were not
substantially different when not adjusted for this covariate
(data not shown).
We first identified SNP-phenotype associations with P val-

ues < .01 and with the same direction of association in both da-
tasets, using replication to reduce the impact of multiple testing
[26]. In addition to seeking internal replication across the 2 da-
tasets (instead of P-value correction to control type-I error), for
external replication we leveraged SNP associations posted to the
GWAS Catalog [27].

Biological Annotation of Results
Biofilter [28] was used to annotate PheWAS results with previ-
ously reported associations from the GWAS Catalog through
October 2013, with GWAS Catalog P values < 1 × 10−5 [27]. Bi-
ofilter was also used to annotate (1) SNPs with gene informa-
tion as well as (2) biological pathway information from the
Kyoto Encyclopedia of Genes (KEGG) [29].

Summarizing Association Results
Many SNPs were correlated with each other due to extensive ge-
notypic coverage provided by imputation. Using all SNPs that
passed our PheWAS P-value filter threshold for associations
across Dataset I and Dataset II, we estimated SNP haplotype
blocks with Haploview [30] implemented in PLINK [18]

separately for each dataset. We grouped these SNPs into linkage
disequilibrium (LD) haplotype blocks using 10 000 kb win-
dows. For Dataset I, 4246 SNPs collapsed into 668 LD blocks,
and 6338 SNPs did not collapse into an LD block. For Dataset
II, 4428 SNPs collapsed into 694 LD blocks, and 6156 SNPs did
not collapse into an LD block. Haplotype blocks and association
results were imported into a MySQL database. This process al-
lowed results to be collapsed based on LD, streamlining explo-
ration of association signals across correlated SNPs and
facilitating evaluation of groups of SNPs in LD associated con-
sistently with multiple phenotypes.
We provide all association results with haplotype block in-

formation for each dataset, as well as the nearest gene(s), and
any known GWAS Catalog associations, at http://ritchielab.
psu.edu/publications/supplementary-data/actg-phewas (Sup-
plementary Table 1).

Visualizing Association Results
Synthesis-View [31] was used to visualize results that replicated
GWAS Catalog associations. Phenogram [32] was used to visu-
alize results for potentially pleiotropic SNPs. GGPlot2 [33] was
used to generate Manhattan plots.

Phenotype Network Exploration Among Single-Nucleotide
Polymorphisms, Genes, and Pathways
For SNPs passing the previously stated P-value threshold and
associated with multiple phenotypes, we explored network con-
nections and phenotypes in the context of pathways, and we vi-
sualized the results. Results are available at http://ritchielab.psu.
edu/publications/supplementary-data/actg-phewas (File 1).

RESULTS

Among 2547 individuals, 5 954 294 SNPs were tested for asso-
ciation with 27 pretreatment laboratory phenotypes listed in
Table 2. We summarize our overall data management, analysis,
and interpretation strategy in Figure 1. For further study, we
considered results with P ≤ .01 in both Datasets I and II for
the same SNP and phenotype, with the same direction of asso-
ciation. These criteria were met by 10 584 (0.17%) of the SNPs,
representing 10 963 SNP-phenotype associations. A Manhattan
plot showing −log10 P values for these SNP-phenotype associ-
ations is shown in Figure 2.

Replication of Previously Reported Associations From Genome-
Wide Association Studies
Among these 10 584 SNPs, we identified those matching any
GWAS Catalog SNP regardless of phenotype. The GWAS Cat-
alog includes results from published GWASmeeting catalog cri-
teria [27]. A total of 43 SNPs from our study was represented in
the GWAS Catalog. Summary information regarding associa-
tions for these 43 SNPs is in Figure 3.
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Of the 43 SNPs, 20 (47%) SNP-phenotype pairs matched
identical or very closely related GWAS Catalog associations
(Figure 4, details at http://ritchielab.psu.edu/publications/
supplementary-data/actg-phewas [Supplementary Table 2]).
The lowest P value in our study was for higher total bilirubin
levels and rs887829-T in UGT1A1 on chromosome 2 (Dataset
I: β = 0.149 and P value = 4.04 × 10−35, Dataset II: β = 0.115 and
P value = 7.05 × 10−31) [34]. A second example was lower abso-
lute neutrophil counts associated with rs2814778-C in DARC
on chromosome 1 (Dataset I: β =−0.106, P = 1.5 × 10−10; Data-
set II: β = −0.11, P = 3.2 × 10−17) [35].Another very close match
was rs1535-G within FADS2 on chromosome 11 associated with
low-density lipoprotein cholesterol (LDL-C) levels in our study
(Dataset I: β =−5.17 and P value = .0013, Dataset II: β = −5.11
and P value = .0037), which was previously associated with
high-density lipoprotein cholesterol (HDL-C levels) [36], plas-
ma phospholipid levels [37], and HDL-C response to statin
therapy [38].
Of the 20 SNPs with identical or very closely related phenotypes

in the GWAS Catalog, 3 traits associated with 6 SNPs had not been
previously reported in HIV-positive individuals: alanine amino
transferase (ALT) levels, alkaline phosphatase levels, and absolute
neutrophil count, indicating that these associations were not
completely abrogated by HIV-1 infection. External replications

of PheWAS associations for 20 SNPs using the GWAS Catalog in-
dicate that our PheWAS analysis pipeline is robust.

Potentially Novel Associations for Genome-Wide Association
Studies Catalog Single-Nucleotide Polymorphisms
We identified 23 SNPs with 29 associations where the GWAS
Catalog phenotype differed considerably from that in our
study (http://ritchielab.psu.edu/publications/supplementary-
data/actg-phewas) (Supplementary Table 2). For example,
rs10494326 was associated with neutrophil count (Dataset I:
P = 5.53 × 10−5, β = −0.062; Dataset II P = .0013, β = −0.049),
but in the GWAS Catalog it was associated with C-reactive pro-
tein levels. Likewise, rs2201841 in IL23R-G was associated with
plasma chloride concentrations (Dataset I: P = .0042 and
β = −0.40, Dataset II: P = .0064 and β = −0.40), but in the
GWAS Catalog it was associated with psoriasis, ulcerative coli-
tis, and Crohn’s disease [35, 39, 40].

Summary of All Results
As noted above, 10 584 SNPs passed our PheWAS P-value filter
for association with at least 1 phenotype in more than 1 data-
set, yielding 10 963 SNP-phenotype associations, because some
SNPs were associated with multiple phenotypes. Separate Man-
hattan plots for each phenotype are provided at http://ritchielab.

Figure 2. A Manhattan plot representing phenotype-single-nucleotide polymorphism (SNP) pairs that meet the P-value threshold. Each marker represents
a phenotype-SNP pair with P < .01 in both datasets, with the same direction of association. Red markers represent Dataset I, and blue markers represent
Dataset II. The peak on chromosome 2 is for total bilirubin with rs887829 in the UGT1A locus (Dataset I, β = 0.149 and P value = 4.04 × 10−35; Dataset II,
β = 0.115 and P value = 7.05 × 10−31).
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Figure 3. Results for single-nucleotide polymorphisms (SNPs) also in the Genome-Wide Association Studies (GWAS) Catalog and regardless of catalog
phenotype. The track on the left indicates the chromosomal location of each SNP, the next track indicates the SNP, the associated phenotype in our study,
and (in parenthesis) the GWAS Catalog phenotype. The next track indicates whether our association was as follows: an “exact” match with the GWAS
Catalog phenotype; “related” with similarity to the GWAS Catalog phenotype; or “novel” with no apparent similarity to the GWAS Catalog phenotype. All
P values less than 1 × 10−10 are represented by a larger triangle. Triangles point to the right if beta is positive and to the left if beta is negative. Abbre-
viations: HDL-C, high-density lipoprotein cholesterol; HIV, human immunodeficiency virus; LDL-C, low-density lipoprotein cholesterol.
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psu.edu/publications/supplementary-data/actg-phewas (Sup-
plementary Figure 1). We leveraged LD between SNPs to iden-
tify regions of concomitant results that passed our PheWAS
P-value filter threshold. These results are available at http://

ritchielab.psu.edu/publications/supplementary-data/actg-phewas
(Supplementary Table 1), sorted by SNP, chromosome, coordi-
nate position, indicating LD blocks, nearby genes, and reported
GWAS Catalog traits.

Figure 4. The graphic illustrates study associations replicating previously reported genotype-phenotype associations. The left-most track indicates chro-
mosome and coordinate position. The single-nucleotide polymorphism (SNP) for each association is listed, with the associated clinical laboratory measure-
ment. Each phenotype where we replicated a previous reported result is listed in the next track, with boxes to the right indicating the phenotype for the
previously reported SNP-phenotype association: green, total bilirubin levels; brown, high-density lipoprotein cholesterol (HDL-C); blue, absolute neutrophil
count; black, total cholesterol levels. Dark green triangles and dark blue triangles represent P values from Dataset I and Dataset II, respectively. Right-
pointing triangles indicate positive direction of association, and left-pointing triangles indicate negative direction of association. Abbreviations: HDL, low-
density lipoprotein; HIV, human immunodeficiency virus.
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The most significant and consistent associations were with
bilirubin. A region on chromosome 2 containing 166 SNPs,
within multiple LD blocks in Dataset I and Dataset II, was as-
sociated with total bilirubin, including UGT1A rs887829-T,
which replicates previous reports (Figure 3). This region con-
tains 4 other SNPs replicating reported GWAS associations
with bilirubin: UGT1A rs11891311-A, rs4148325-T, and
rs6742078-T, and nearby HEATR7B1 rs2361502-C [41].
As another example, 160 closely located SNPs passed our Phe-

WAS P-value filter threshold for association with neutrophil
count. These include DARC rs2814778-C, a peak in Manhattan
plot for neutrophil counts (http://ritchielab.psu.edu/publications/
supplementary-data/actg-phewas) (Supplementary Figure 2).
This SNP has been associated with lower neutrophil counts in Af-
rican Americans [42], and it confers protection against malaria in
West Africans [43]. This locus has been reported to have a wide
peak of associations on chromosome 1, with white blood cell
count associations in African Americans [42], consistent with
our findings.
Our PheWAS P-value filter threshold also revealed clusters of

associations with neutrophil counts on chromosome 2 (22 in-
tergenic SNPs) and chromosome 6 (24 SNPs within OPRM1).
Results are available in Supplementary Figure 2 (see link above)
(http://ritchielab.psu.edu/publications/supplementary-data/
actg-phewas). Loci on chromosome 2 do not match GWAS Cat-
alog SNPs, whereas on chromosome 6, rs675026-A was previ-
ously associated with coronary disease in African Americans
[44]. Associations with neutrophil counts for the SNPs on chro-
mosome 6 are shown in Supplementary Figure 2 (link above)
(http://ritchielab.psu.edu/publications/supplementary-data/
actg-phewas).
Another example of a cluster of associations involves SNPs

associated with hematocrit and hemoglobin levels, which is vis-
ible in a peak on chromosome 2 in Manhattan plots, available at
http://ritchielab.psu.edu/publications/supplementary-data/
actg-phewas (Supplemental Figures 1 and 3).

Evidence of Pleiotropy
An important property of PheWAS is the ability to reveal cross-
phenotype associations and potential pleiotropy [45]. Several
laboratory phenotypes in the present study were correlated
(eg, LDL and total cholesterol), so it was expected that some
SNPs would associate with multiple phenotypes. Locations of
SNPs that passed our PheWAS P-value filter threshold and
associated with multiple laboratory phenotypes are shown at
http://ritchielab.psu.edu/publications/supplementary-data/
actg-phewas (Supplemental Figure 4). For example, 45 SNPs in
an 89 kb LD block on chromosome 7 were associated with the
correlated phenotypes LDL-C and total cholesterol. In addi-
tion, there were associations of CD8 T-cell count and absolute
lymphocyte count with 39 SNPs in an LD block of 183 kb on
chromosome 6.

Exploration of Network Connections
We explored potential connections between SNPs and multi-
ple phenotypes linked via gene information to biological path-
ways using KEGG, and we visualized these networks (presented
at http://ritchielab.psu.edu/publications/supplementary-data/
actg-phewas) (Supplementary File 1). Correlated phenotypes
tended to cluster together (eg, hematocrit with hemoglobin;
HDL-C with LDL-C and total cholesterol) because the same
SNPs/genes had associations with correlated phenotypes. Inte-
gration of gene and KEGG pathway information showed a lipid
measurement phenotype cluster in the network, with many con-
nections to various metabolic pathways. For example, PGLS (a
pentose phosphate pathway gene) connected with both total cho-
lesterol and HDL phenotypes, because PGLS SNPs were associat-
ed with both phenotypes. Likewise, NT5M (a gene in purine
metabolism and nicotinate and nicotinamide metabolism path-
ways) had SNPs connected with all 3 phenotypes.

DISCUSSION

The present proof-of-concept PheWAS considered pretreat-
ment laboratory phenotypes collected from HIV-infected indi-
viduals enrolled in prospective, randomized clinical trials. We
show that PheWAS effectively identified previously reported
SNP-phenotype associations or associations with phenotypes
very similar to SNP-phenotype associations reported in the
GWAS Catalog. Several of the associations were not previously
reported in HIV-infected cohorts. We also replicate a known ge-
netic association with control of HIV-1 replication. These find-
ings establish the utility of this PheWAS pipeline for detecting
true associations, in anticipation of analyses that will be per-
formed using on-treatment phenotypes during these clinical tri-
als. We also identified potentially novel associations, supporting
the utility of this PheWAS pipeline for hypothesis generation.
To date, PheWAS has only been pursued with electronic

medical health data [46] and data from large epidemiological
studies [9, 10]. The present study is the first PheWAS to use phe-
notypes collected from subjects enrolled in a prospective clinical
trial (albeit focused on pretreatment phenotypes), and it is also
the first PheWAS to use genome-wide genotypic data.
Among previous GWAS results also identified in this Phe-

WAS, our most significant result was for UGT1A1 rs887829-T
associated with bilirubin levels. Nearby SNPs were also associ-
ated with bilirubin levels at the UGT1A locus, including 4 SNPs
that also had been previously reported in the GWAS Catalog as
associated with bilirubin levels. We replicated other previously
reported GWAS associations across the 27 phenotypes for iden-
tical or very closely related phenotypes. Phenotype associations
that replicated previous reports included SNPs associated with
absolute neutrophil counts, alkaline phosphatase levels, HDL-C
levels, total cholesterol levels, LDL-C levels, HIV-1 RNA levels,
and fasting triglycerides. With the high coverage of the
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genotypic data of this study, we found additional potentially
novel associations, some of which were in LD with previously
reported SNPs, whereas other associations were in separate re-
gions and uncorrelated with previously reported SNPs. These
included associations with neutrophil counts and fasting glu-
cose levels. All potentially novel results may warrant further re-
search to determine whether these represent biologically
relevant relationships between genotype and phenotype.
There were limitations to the present study. Our samples size

was relatively small compared with many GWAS. Although we
readily identified multiple true associations, a larger sample size
may have revealed additional associations. However, clinical tri-
als data typically have sample sizes considerably smaller than
epidemiological studies of complex traits. Despite this limita-
tion, data from prospective clinical trials offer a unique oppor-
tunity for PheWAS. We did not use a Bonferroni correction for
our P values in this study, for multiple reasons. First, Bonferroni
corrections are usually applied to datasets in which replication
is not sought in an independent dataset. Furthermore, the Bon-
ferroni correction assumes independent tests, and we had
correlated phenotypes (shown at http://ritchielab.psu.edu/
publications/supplementary-data/actg-phewas) (Supplementa-
ry Figure 5) as well as correlated genotypes. Thus, we divided
our larger dataset in 2 so we could seek replication across
more than 1 dataset, to assist in filtering results for consistent
association results for further study. Potentially novel associa-
tions reported herein will need further research to determine
any relevant biology underlying these associations. We also re-
lied heavily on reported associations of the GWAS Catalog, al-
though some thoroughly validated SNP associations have not
been posted to the GWAS Catalog. This is particularly the
case for ADME SNPs, where many functional polymorphisms
have been well replicated outside the context of GWAS. For on-
treatment PheWAS, known functional polymorphisms in
ADME genes will also be used for external replication, increas-
ing our likelihood of detecting true associations. These may be
particularly informative because effect sizes for ADME SNP as-
sociations are often marked. In this study, we limited analyses to
individual SNPs, but for some phenotypes combinations of
multiple SNPs provide better prediction. For example, plasma
exposure for the antiretroviral drug efavirenz is best explained
by a composite genotype comprising 3 SNPs in CYP2B6 and
1 SNP in CYP2A6 [3, 4, 47]. Such composite genotypes will
be included in on-treatment PheWAS.

CONCLUSIONS

This analysis provides a better understanding of the properties
of PheWAS, and principles that will inform PheWAS that we
will apply to on-treatment data from these clinical trials.
Using our criteria for evaluating results (ie, by seeking replica-
tion across 2 independent datasets), we identified numerous

associations. All associations that may be novel will require ad-
ditional study to determine whether they accurately reflect novel
biological findings. Seeking replication across datasets has pro-
vided an initial filter to reduce false discovery. More important-
ly, we heavily leveraged a priori knowledge of SNP associations
represented in the GWAS Catalog. With such knowledge, we
readily identified associations previously reported only in
HIV-negative populations. This empirically shows the utility
of PheWAS for such SNPs. The present proof-of-concept Phe-
WAS only considered 27 phenotypes, a modest number com-
pared with some PheWAS analyses of large observational
datasets that may consider hundreds or thousands of pheno-
types. Our decision to analyze fewer phenotypes reflects an ap-
preciation of issues that may arise in PheWAS using clinical
trials data before embarking on more aggressive PheWAS, in-
cluding on-treatment data. It is apparent that disease-specific
knowledge will be essential to interpret associations and to pri-
oritize potential associations for further replication and study. It
has been possible to codify the principles of GWAS largely be-
cause the human genome is relatively static, and because pheno-
types can typically be evaluated through either logistic or linear
regression. Because every “phenome” is unique, PheWAS, at pre-
sent, benefits more than GWAS from disease-specific knowledge
and understanding, including relationships among phenotypes.
Identifying SNPs associated with drug response for HIV-

infected patients has the potential to improve treatment safety
and efficacy. This proof-of-concept PheWAS identified associa-
tions with multiple baseline laboratory phenotypes, thus vali-
dating this genome-wide PheWAS approach in anticipation of
applying PheWAS to on-treatment data from prospective clini-
cal trials. Identifying relationships with various phenotypes may
benefit from analyses that consider intermediate phenotypes,
sub-phenotypes, biomarkers, and endophenotypes that may
be more closely tied to underlying mechanisms. We can also
leverage networks of connections between phenotypes and ge-
notypes, combined with additional biological information, to
better understand associations. In the future, we will apply Phe-
WAS to on-treatment phenotype data from prospective, ran-
domized clinical trials.

Supplementary Material

Supplementary material is available online at Open Forum Infectious
Diseases (http://OpenForumInfectiousDiseases.oxfordjournals.org/).
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