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In much of neuroimaging and neuropsychology, regions of the brain have been associated with ‘lexical representation’,
with little consideration as to what this cognitive construct actually denotes. Within current computational models of word
recognition, there are a number of different approaches to the representation of lexical knowledge. Structural lexical
representations, found in original theories of word recognition, have been instantiated in modern localist models.
However, such a representational scheme lacks neural plausibility in terms of economy and flexibility. Connectionist
models have therefore adopted distributed representations of form and meaning. Semantic representations in connectionist
models necessarily encode lexical knowledge. Yet when equipped with recurrent connections, connectionist models can
also develop attractors for familiar forms that function as lexical representations. Current behavioural, neuropsychological
and neuroimaging evidence shows a clear role for semantic information, but also suggests some modality- and task-
specific lexical representations. A variety of connectionist architectures could implement these distributed functional
representations, and further experimental and simulation work is required to discriminate between these alternatives.
Future conceptualisations of lexical representations will therefore emerge from a synergy between modelling and
neuroscience.
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The term ‘lexical representation’ is commonly found in
much recent work concerning the neural bases of normal
and disordered language processing, and has a longer
history in the context of experimental and theoretical
psycholinguistics. Indeed, a search for this term on
SCOPUS yields more than 3300 results. Yet, when this
term is used, it is often without any formal definition: if
one adds ‘definition’ to our search, this currently yields
less than 100 results. Both the popularity of the term and
the paucity of formal definition arise from the fact that
most researchers in the field of language processing feel
that we have an intuitive sense of what ‘lexical repres-
entation’ means. Broadly, it derives from our sense that
there is some form of ‘mental lexicon’ or internal
dictionary, in which the knowledge we have concerning
the words we know is represented. Of course, our
semantic system represents the meaning of known words,
and there has been considerable debate concerning the
extent to which this obviates the need for any other form
of whole word representations. This paper surveys a range
of possible implementations of lexical representations
within current computational models of word recognition
and production with particular attention to the role of
semantics. In addition to semantic activation for familiar
words, a proposal is put forward for distributed functional
lexical representations, which incorporate a degree of
modality and task specificity. Recent neuroimaging liter-

ature concerning lexical representations is then considered
that supports a proposal for multiple levels of distributed
functional lexical representations. This highlights the areas
in which further research is needed to understand the
nature of lexical representations at the cognitive and
neural levels.

Why do we need lexical representations?

The existence of some form of lexical representation is
inferred when a behavioural processing advantage
emerges for a familiar string of letters or phonemes (e.g.,
DOG) over a novel string (e.g., POG), which is termed the
lexicality effect. The lexicality effect is pervasive across a
variety of psycholinguistic tasks, with the key ones that
have informed the development of models of written and
spoken word recognition including letter/phoneme identi-
fication, visual/auditory lexical decision and reading
aloud/repetition. In surveying this literature, two issues
emerge as important for theoretical interpretation of the
lexicality effect. The first is the extent to which the
advantage for words is seen over comparable nonwords,
namely those with subword components that are similar to
those seen in words (as measured by bigraph/biphone
probabilities and/or neighbourhood/cohort sizes). If a
lexicality effect is seen with nonwords that are distin-
guishable in terms of their subword properties (e.g., DOG
vs ZQF), this is not necessarily evidence for lexical
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representation, but rather of familiarity with subword
components. The second is the extent to which lexicality
effects seen with comparable nonwords may be driven by
activation of semantic representations. If we see lexicality
effects with closely matched nonwords that are always
accompanied by significant effects of semantic variables
such as imageability, then this suggests that in fact lexical
representations could potentially be reduced to semantic
information.

The classic version of the letter identification task
involves brief presentation of a string of letters followed
by two alternatives over a particular letter position (e.g.,
DOG, followed by a choice of G or T over the third
position). In this task, there is a clear advantage for letters
presented in a pseudoword relative to an unpronounceable
letter string (i.e., better identification of G in POG vs
PZG) (McClelland & Johnston, 1977; Paap, Newsome,
McDonald, & Schvaneveldt, 1982). This pseudoword
superiority effect indicates familiarity with subword
components. More importantly, there is an additional
advantage for letters presented in a real word relative to
a pronounceable pseudoword (i.e., better identification of
G in DOG vs POG) (Manelis, 1974; McClelland &
Johnston, 1977). There is some evidence that this word
superiority effect emerges from the familiarity of not only
orthography, but also phonology, as participants can be
misled when presented with pseudohomophonic non-
words, although the activation of phonology may be
subject to strategic influences (Hooper & Paap, 1997).
While the word superiority effect equates to a lexicality
effect, to date there has been no exploration of the
influence of semantic variables upon letter identification
performance. In the auditory domain, there is a clear
influence of lexical knowledge on perception such that
when required to judge whether ‘p’ or ‘b’ is heard, this is
biased by lexicality, such that the shift occurs earlier when
moving from ‘beace’ to ‘peace’, and later when moving
from ‘beef’ to ‘peef’ (Ganong, 1980; Miller, Dexter, &
Pickard, 1984). We are also more likely to fail to notice a
missing phoneme in a heard word than nonword (Samuel,
1996). Whether this effect can be reduced to semantics is
unclear, as while semantic context increases the likelihood
of phoneme restoration (Liederman et al., 2011), the
magnitude of such effects relative to those of lexicality
have yet to be directly compared.

Turning to lexical decision, where the task is simply to
judge if a string is a word, there is universally a clear
advantage for words over nonwords. Lexical decision is a
type of signal detection task where the nature of the
nonword foils (the noise) relative to the word targets (the
signal) critically determines the ‘depth’ of processing
needed for effective discrimination. In visual lexical
decision, the lexicality effect is negligible when the
nonwords are less plausible (e.g., KZT), and increases
with pronounceable foils (e.g., KET) and is largest with

pseudohomophones (e.g., KAT). At the same time,
semantic effects, like imageability or semantic priming,
increase as the nonwords foils become more word-like
(Evans, Lambon Ralph, & Woollams, 2012; James, 1975;
Joordens & Becker, 1997). Although lexicality and
semantic effects in visual lexical decision emerge in
parallel, the lexicality effects observed are larger than the
semantic effects (Evans et al., 2012). This difference is,
however, difficult to interpret, given that lexicality is
inherently confounded with the response required. In
auditory lexical decision, lexicality effects are also seen,
and semantic effects are apparent for items from larger
cohorts (Tyler, Voice, & Moss, 2000). Similar to the visual
domain, it is harder to reject more word-like spoken
nonwords (Vitevitch & Luce, 1999; Vitevitch, Luce,
Pisoni, & Auer, 1999), although the influence of foil
type upon performance for words has yet to be investi-
gated in the auditory domain.

A clear lexicality effect is also seen when a spoken
response is required, as in reading aloud (McCann &
Besner, 1987) and repetition (Vitevitch & Luce, 1998). In
repetition, there is an advantage for words over nonwords,
and this diminishes the more wordlike the nonword
(Vitevitch & Luce, 2005). There is also evidence of
semantic effects in repetition (Tyler et al., 2000; Wurm,
Vakoch, & Seaman, 2004), although these have not been
directly compared to those of lexicality. In reading aloud,
there is an issue around the consistency of the spelling to
sound correspondences, both for words and nonwords. For
words, performance is slower for items containing atypical
correspondences, particularly when these items are low in
frequency (Jared, 1997, 2002). For nonwords, the same
effect can be seen, such that items containing inconsistent
correspondences are slower (Andrews & Scarratt, 1998).
Hence, the lexicality effect in this task is largest when
comparing words with typical correspondences to non-
words containing inconsistently pronounced elements.
The issue of consistency is also relevant for the presence
of semantic effects in this task, with these being strongest
for words with atypical correspondences (Shibahara,
Zorzi, Hill, Wydell, & Butterworth, 2003; Strain, Patter-
son, & Seidenberg, 1995, 2002; Woollams, 2005). How-
ever, there has yet to be a direct comparison between the
size of the semantic effects seen in naming and the
lexicality effect obtained with comparable nonwords. It
is worth noting that the lexicality effect reflects familiarity
of both form and meaning, whereas most semantic
manipulations concern variations amongst meanings, and
hence may be expected to be weaker.

Evidence from psycholinguistics indicates that the
lexicality effect is a basic phenomenon that all models of
visual and auditory word recognition must accommodate.
To the extent that this cannot be reduced to a semantic
contribution, then the existence of some form of lexical
representation is therefore necessary in any model. The
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nature of such representations, as will become apparent,
can vary from model to model across a variety of
dimensions.

What do lexical representations look like?

Models of word recognition have adopted two broad
approaches to the implementation of lexical representa-
tions: a localist structural view and a distributed functional
view. Models that adopt localist representations have one
or more sets of units within which there is a unit
corresponding to each known word (see Figure 1a). These

units are dedicated to the representation of words only,
and cannot support accurate processing of novel strings.
The lexical units are fixed, in the sense that they exist
irrespective of the current stimulus or task requirements.
As there is an identity relationship between lexical items
and the representational units in the model, then words
can be seen as existing as part of the structure of the
model.

The localist structural approach has its origins in the
earliest modern conceptions of lexical representations,
outlined by Morton (1969) in his proposal of the logogen
model. Within this verbal theory, the written form of each
known word is represented by a unit, or logogen. Each
logogen can hold activation for an entry generated by
presentation of a letter string, with a higher level of
activation the closer the match between the internal and
external representation of that string. The resting level of a
particular logogen is higher the greater our familiarity
with that word, and recognition occurs when activation of
a particular logogen exceeds threshold, which explains the
advantage for high over low-frequency words (Forster &
Chambers, 1973).

The logogen model formed the basis for one of the first
implemented computational models of visual word recog-
nition, the Interactive Activation and Competition (IAC)
model of Rumelhart and McClelland (1982). In this
model, letter features activate letter representations, and
in turn these activate localist structural lexical representa-
tions. Crucially, this model included full bidirectional
connectivity between the word and letter levels, as well as
within level inhibitory connections. This allowed the
model to account for the lexicality effect in letter
perception. An analogous approach to auditory word
recognition can be seen in the TRACE model (McClelland
& Elman, 1986), which can explain the influence of
lexical knowledge on perception of ambiguous phonemes.

The IAC model then provided a foundation for the
implementation of the lexical pathway of the Dual Route
Cascaded model of visual word recognition and reading
aloud (Coltheart, Rastle, Perry, Langdon, & Ziegler,
2001). This model went beyond previous implementations
as it also aimed to describe the process of reading aloud in
terms of co-operation between whole word lexical proces-
sing and subword rule–based grapheme-to-phoneme con-
version. The model, therefore, included not only localist
structural orthographic lexical representations in the form
of the orthographic input lexicon, but also localist
structural phonological representations in the form of the
phonological output lexicon, both of which are independ-
ent from semantic representation. These two elements are
also seen in other models of visual word recognition and
reading aloud (e.g., MROM (Grainger & Jacobs, 1996);
CDP+ and CDP++ (Perry, Ziegler, & Zorzi, 2007, 2010)).
In the auditory domain, localist models have tended to
focus more on either perception (e.g., MERGE (Norris,

Figure 1. A schematic representation of activation of units
encoding (a) localist representations and (b) distributed repre-
sentations. In (a) representation of six words requires six units. In
(b) representation of twelve words also requires six units. In (b)
the representations are distributed at the word level but localist at
the letter level for the purposes of exposition. A fully distributed
scheme would have the capacity to represent many more words.
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McQueen, & Cutler, 2000)) or production (e.g., WEAVER
(Levelt, Roelofs, & Meyer, 1999)).

The localist structural lexical representation approach is
intuitively appealing and computationally relatively easy
to implement, and models using this approach have
accounted for a great deal of behavioural data concerning
word recognition (Coltheart et al., 2001; Levelt et al.,
1999; Perry et al., 2007). Yet, one of the major disadvan-
tages of the localist approach of a dedicated structural unit
of representation for every word is that it is by no means
an efficient system of representation when scaled up to the
vocabulary levels of a skilled adult (around 75,000 words
(Sibley, Kello, Plaut, & Elman, 2008)). This obviously has
consequences when thinking about how such a system
may be implemented in the brain, which, although it has
billions of neurons, nevertheless needs to accommodate
many other functions apart from language processing.

In an attempt to address these concerns, Seidenberg
and McClelland (1989) introduced a new approach to the
modelling of visual word recognition and reading aloud.
Within this model, orthographic and phonological repre-
sentations consisted of subword units more akin to groups
of neurons. These representations are distributed in the
sense that the activation of multiple structural units
contributes to the representation of a single written or
spoken word, and these same units can also represent not
only other words but also nonwords. Knowledge concern-
ing words is not stored in the units of the model, but rather
on the learnt weights on the connections between them. In
this context, lexical representations for a given word are
constructed each time they are presented, and hence are
functional rather than structural – they do not have a direct
relationship to the representational units of the model.
This kind of system is more efficient in the sense that a
given unit can participate in the representation of multiple
different words (see Figure 1b) – more than 6000 units
required to represent the written or spoken forms of all
monosyllabic words in English can be reduced to 111
orthographic units or 200 phonetic feature units (Harm &
Seidenberg, 2004). A similar shift to functional distributed
representations of phonology and semantics can be seen in
the domain of spoken word recognition (Gaskell &
Marslen-Wilson, 1997) and production (Harm & Seiden-
berg, 2004).

The Seidenberg and McClelland (1989) model repre-
sented a major shift in thinking about reading, and its
ability to perform lexical decision was scrutinised closely
(Besner, Twilley, Seergobin, & McCann, 1990; Fera &
Besner, 1992; Seidenberg & McClelland, 1990). Lexical
decision is rapidly and accurately achieved by skilled
readers and considered to be a basic function that any
model of visual word recognition must be able to capture.
As distributed functional representations involve units that
can also represent nonwords, this was taken by some as
problematic for lexical decision. While the initial model

was able to discriminate between words and nonwords on
the basis of their subword orthographic and/or phonolo-
gical familiarity when the nonwords were less familiar,
form-based representations were not sufficient in the case
where the nonword foils were closely matched to the
words (Seidenberg & McClelland, 1990).

In models using distributed functional representations,
when the task is to discriminate words from very word-
like nonwords, recourse has to be made to semantic
information. For example, Plaut’s (1997) model included
an opaque set of semantic representations (in that each
unit did not correspond to an underlying feature). Harm
and Seidenberg’s (2004) model included a transparent set
of semantic representations (where each unit did corres-
pond to an underlying feature), as did Chang, Lambon
Ralph, Furber, and Welbourne’s (2013) model. All of
these models were able to discriminate between words
(e.g., BRAIN) and closely matched nonwords that are
homophonic with real words (i.e., pseudohomophones like
BRANE) effectively, albeit via different metrics. In Plaut’s
(1997) model, discrimination was based on semantic
stress, which reflects how easily a pattern of activation
settles. In Harm and Seidenberg’s (2004) model, the
discrimination was based on how closely the internally
generated orthography matched the stimulus. In Chang
et al.’s (2013) model, the decision was made on the basis
of pooled activation over orthographic, phonological and
semantic units. This latter model has also simulated the
larger semantic effects are seen in lexical decision
performance for words when presented in a difficult
relative to an easy foil context. In these models, therefore,
semantic information clearly contributes to the representa-
tion of lexical items.

Lexical versus semantic representations

The emergence of an alternative to localist structural
representations in the form of distributed functional
representations led to considerable debate in the literature
concerning the existence of structural lexicons in the mind
and brain (e.g., Coltheart, 2004; Elman, 2004). As
described earlier, while there is evidence of the involve-
ment of semantic information in tasks demonstrating
lexicality effects, it is only neuropsychological evidence
that speaks to the necessity of such information in visual
and auditory word recognition. The localist structural view
invokes one or more form-based lexica that are dedicated
to the representation of words, irrespective of semantics.
In contrast, the distributed functional view invokes
activation of semantic information to support word
recognition in the absence of a structural form–based
lexicon. This would seem parsimonious given that the
ultimate goal of language processing is of course to
communicate meaning.
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Localist versus distributed approaches offer contrasting
perspectives on lexical representation that make rather
different predictions concerning the consequences of
semantic damage for word recognition. According to the
localist structural account, accurate lexical decision should
still be possible in the face of severe semantic deficits, as
lexical and semantic representations are independent.
Evidence for this view is provided by preserved perform-
ance in visual and auditory lexical decision tasks in some
cases of neuropsychological patients with impaired access
to word meaning (Blazely, Coltheart, & Casey, 2005;
Bormann & Weiller, 2012). Cases of co-occurring deficits
in word recognition and semantic knowledge are consid-
ered to be due to the contiguity of semantic and lexical
processing areas in the brain (Noble, Glosser, & Gross-
man, 2000).

The distributed functional approach predicts that se-
mantic impairments will undermine lexical decision per-
formance, but only if the foils are equally familiar to the
words in terms of their orthographic and phonological
components. Indeed, patients with semantic dementia
show very impaired recognition of words when presented
with close nonword foils, but accurate performance with
distant nonword foils (Patterson et al., 2006; Rogers,
Lambon Ralph, Hodges, & Patterson, 2004). This view
proposes that the cases of semantic impairment with
preserved lexical decision performance arise from the
use of distractors that can be discriminated from words on
the basis of their orthographic or phonological properties
(Woollams, Ralph, Plaut, & Patterson, 2007).

It is worth noting that the implementation of semantic
representations does vary over models employing distrib-
uted functional representations. Most models dealing with
word recognition are trained to instantiate target semantic
patterns, and in this sense, meaning functions as an output
layer (Chang et al., 2013; Gaskell & Marslen-Wilson,
1997; Harm & Seidenberg, 2004; Plaut, 1997). In other
models considering multiple modalities beyond word
recognition, then the hidden units that mediate between
the external input/output layers are allowed to develop
their own representational structure (Dilkina, McClelland,
& Plaut, 2008, 2010; Rogers, Lambon Ralph, Garrard,
et al., 2004). In either case, amodal semantic representa-
tions can function as lexical representations. However, this
is not the only possible location for distributed representa-
tions that can index word knowledge within connectionist
models.

Lexical representations as attractors

Connectionist models of word recognition have usually
considered inputs and outputs as some form of ortho-
graphic or phonological representations (Dilkina et al.,
2010; Gaskell & Marslen-Wilson, 1997; Harm & Seiden-
berg, 2004; Plaut, McClelland, Seidenberg, & Patterson,

1996). As such, these do not encode the visual or auditory
signal per se, but our judgement as to a representational
system that captures the salient aspects of the domain
(e.g., letter or phonetic features). When semantic and
phonological representations are trained in the presence of
recurrent connections, attractors form that represent
known patterns (Plaut et al., 1996; Plaut & Shallice,
1993). Recurrence involves feedback connections between
levels of representation, and/or connections between units
within a layer (this latter can also be accomplished via
connections to a smaller set of clean-up units, e.g. Plaut &
Shallice, 1993). The point of recurrence is that it allows
the activation of a unit to be affected by other units in a
continuous fashion over time. This means that there is a
variety of initial activation values that will come to
converge on the same final pattern. The initial range of
activation values forms the attractor basin for a particu-
lar item.

The utility of attractor networks in the simulation of
normal and impaired reading has been demonstrated at the
level of semantics (Plaut & Shallice, 1993) and at the level
of phonology (Plaut et al., 1996, Simulation 3). This latter
simulation demonstrated that although semantics seems to
naturally encode whole word knowledge in connectionist
networks, functional lexical representations can develop in
networks with a direct mapping between orthographic and
phonological forms. The formation of such attractors does
not imply that novel patterns cannot be represented
effectively, but rather that words, as familiar patterns,
will have their distributed functional representation instan-
tiated more easily over time, as initial approximate
patterns of activation can fall into the attractor, whereas
the initial patterns for novel strings must avoid doing so.
Attractor networks therefore naturally reproduce a proces-
sing advantage for words over nonwords.

It is possible that such attractors could be harnessed to
inform word recognition and support performance in tasks
like lexical decision independently of semantic activation,
although this possibility has been under-explored to date.
This is because recurrence at the input level risks
drowning out the original signal – if pre-existing internal
knowledge is allowed to influence activation very early
via top–down connections, then perception will be biased
towards familiar items and may become inaccurate as
processing progresses (e.g., novel strings come to be seen
as familiar words). As most connectionist models start
with input layers of orthographic or phonological repres-
entation, then recurrent connections are not included and
attractors will not form. This is not, however, because
there is an assumption that this is in fact the raw input to
the word recognition process, but rather because the
challenges associated with modelling perception of raw
inputs have been so great that it was more tractable to start
with higher-level representations.
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More recently, models using distributed functional
representations have begun to consider mapping from
raw visual inputs to meaning (Chang et al., 2013; Plaut &
Behrmann, 2011), or from the acoustic signal to meaning
to articulatory features (Kello & Plaut, 2004; Plaut &
Kello, 1999). In these kinds of models, what we think of
as orthographic or phonological lexical representations are
more likely to be found in the activations of the hidden
units that map between the physical inputs to outputs,
either directly or via meaning (a similar idea has been
eloquently articulated by Elman (2004)). The intermediate
location of the orthographic/phonological representations
in such models allows for recurrent connections and
the formation of attractors as these are no longer direct
input layers. A depiction of this kind of model is given in
Figure 2. In addition, the structure of such representations
will be fully distributed, in that the units no longer need to
correspond to letters or phonetic features, which is even
more economical. Although it has been suggested that the
notion of lexical representation as hidden unit activations
lacks explanatory capacity (Green, 1998), the structure of
such units can be revealed using techniques such as cluster
analysis (e.g., Chang, Furber, & Welbourne, 2012;
Rogers, Lambon Ralph, Garrard, et al., 2004).

Specificity of lexical representations

The concept of a lexical representation is an internal one,
in that it implies at some level a degree of abstraction from

physical inputs and outputs. The idea that connectionist
models could contain a form of ‘lexical’ representation in
the hidden units that map between different input and
output domains has the advantage that it allows for a
degree of specificity in terms of modality (written/spoken)
and task (recognition/production), as shown in Figure 2.
The need for such specificity has been suggested by the
study of neuropsychological patients. With respect to
modality there have been a number of reports of brain-
damaged patients with problems with reading yet intact
speech comprehension associated with damage to regions
of the left ventral occipito-temporal cortex (vOTC)
(Roberts, Lambon Ralph, & Woollams, 2010; Roberts
et al., 2013; Woollams, Hoffman, Roberts, Lambon Ralph,
& Patterson, 2014). Conversely, there are reports of
patients with clear deficits in speech comprehension as a
result of perisylvian lesions who nevertheless demonstrate
relatively proficient reading comprehension (Ellis, Miller,
& Sin, 1983; Lytton & Brust, 1989).

There is also some evidence of specialisation according
to task requirements for comprehension or production.
One of the most striking demonstrations is seen in pure
alexia, where patients with profound reading difficulties
are nevertheless able to write proficiently (Turkeltaub
et al., 2014). This contrasts with cases of pure dysgraphia,
where spelling is compromised but reading ability is
retained (Miceli, Silveri, & Caramazza, 1985). Turning
to spoken language processing, rare patients with word

Figure 2. A schematic diagram of a model of visual and auditory word recognition and production showing the location of hidden unit
layers that could house distributed functional lexical representations in the form of attractors. Note bidirectional connections in all cases
bar those from input. Additional hidden layers are shown in black. Within level connections are shown with U-shaped arrows.
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deafness due to bilateral posterior perisylvian damage are
unable to understand single words but manage to speak
fluently (Best & Howard, 1994). Conversely, many
nonfluent patients with profound speech difficulties due
to damage to Broca’s area can still show good speech
comprehension at the single word level (Hickok, Cost-
anzo, Capasso, & Miceli, 2011). It should be noted,
however, that it is not yet clear to what extent these
modality-specific problems are due to disruption of
internal orthographic/phonological representations or
rather to deficits in more basic visual and auditory
processing.

Modality and task specificity of hidden unit representa-
tions can be handled in a number of different architectures
in connectionist models, with the most widely used to date
being the separation of hidden units onto different
processing pathways (e.g., Harm & Seidenberg, 2004;
Chang et al., 2013), as shown in Figure 2. A different
solution in which modality specificity was captured across
a set of hidden units linked their inputs or outputs was
adopted by Plaut (2002), and this framework was
extended to word recognition by Dilkina et al. (2010).
Plaut’s (2002) model set out to simulate performance in
optic aphasia, where a patient is unable to name an item
when presented visually, but can do so on the basis of
other inputs, such as touch. Within this model, the
proximity of the hidden units in two-dimensional space
to a particular set of inputs or outputs captured their
degree of specialisation in a graded rather than categorical
way. The graded specialisation emerges because the
weights on the connections of input to hidden units are
biased to become stronger for closer units. When the
hidden units close to visual inputs and phonological
outputs were lesioned, the modality-specific naming
deficit seen in optic aphasia emerged. A version of this
approach applied to visual and auditory word recognition
is presented in Figure 3. An interesting aspect of this
approach is that as lesions to the model move towards the
middle of the hidden unit space, the more domain general
(i.e., semantic) their effects become. Although the spatial
location of the hidden units in such models is not intended
to map directly on to neural structure (Plaut, 2002), these
models are interesting in that the graded specialisation
according to modality and task seems to map well on to
recent neuroimaging evidence concerning visual and
auditory word recognition (e.g., Binney, Parker, & Lam-
bon Ralph, 2012; Vinckier et al., 2007).

Localisation of lexical representations

Although connectionist approaches with distributed repre-
sentations were initially motivated by a desire to seek a
model that is more neurally plausible than those described
previously, it is only in more recent times that neural data
has been used explicitly as an additional constraint in

model construction and evaluation (Dell, Schwartz,
Nozari, Faseyitan, & Branch Coslett, 2013; Laszlo &
Plaut, 2012; Ueno, Saito, Rogers, & Lambon Ralph,
2011). Not all agree that information concerning neural
structure and function are informative in terms of under-
standing the cognitive mechanisms that permit written and
spoken word recognition and production (Coltheart, 2006,
2013). If, however, ‘the fact of the matter lies in the brain’
(Davis, 2004), then neuroimaging data provides a valuable
source of information with which to limit the space of
potential computational implementations.

The notion of distributed functional representations that
are to some extent modality and task specific predicts that
there will be more than one area of the brain that will
show sensitivity to lexicality. Recent meta-analyses of
both written (Cattinelli, Borghese, Gallucci, & Paulesu,
2013; Taylor, Rastle, & Davis, 2013) and spoken word
recognition and production (Gow, 2012; Vigneau et al.,
2006) have converged on a framework in which direct
mappings between form representations (i.e., reading
aloud/repetition) are attributed to a dorsal pathway while
semantically mediated mappings used for word recogni-
tion are associated with a largely ventral pathway. In all of
these reviews, lexicality effects are observed in multiple
areas along both pathways. The subword direct mappings
between input and outputs are flagged by greater activa-
tion for nonwords than words. In contrast, the whole word
semantically mediated mappings are indicated by greater
activation for words than nonwords.

It is in the areas more responsive to words than
nonwords that some form of lexical representation would
seem indicated. Interestingly, posterior parietal regions
including the angular gyrus that show lexicality effects
overlap with areas implicated in both semantic and
phonological processing, and it has been suggested that
this area acts as a ‘phonological lexicon’ (Davis &
Gaskell, 2009; Gow, 2012; Taylor et al., 2013). Similarly,
the inferior temporal regions including the fusiform gyrus
that show lexicality effects have been implicated in both
semantic and orthographic processing, suggesting that it
functions as an ‘orthographic lexicon’ (Cattinelli et al.,
2013; Davis & Gaskell, 2009; Gow, 2012; Taylor et al.,
2013). These lexicality effects hold even when only
studies that have carefully matched their nonwords to the
words are included (Taylor et al., 2013). The interpretation
of the effects in these areas is not straightforward,
however. They may indicate form-based lexical represen-
tations independent of semantic activation, or the inter-
section of form-based and semantic processing. Both of
these are consistent with the proposal of lexical represen-
tations as attractors (Chang et al., 2013; Plaut, 1996),
although they vary in the units across which these would
form (form-based representation vs. hidden units closer to
semantics). But there is another possibility, which is that
these areas are only showing higher activation for words
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due to feedback from higher-level semantic representa-
tions, which is consistent with the idea that lexical
representations equate to semantic representations.

The use of more parametric or graded approaches to the
design of neuroimaging studies on written and spoken
word recognition can be informative in teasing apart
alternative interpretations of the lexicality effect. An
elegant study by Vinckier et al. (2007) revealed that with
the progression of activation from raw visual input along
the ventral pathway to the most anterior portions of the
temporal lobe that contain amodal semantic representa-
tions, there is increasing sensitivity to larger orthographic
clusters from single letters, to bigrams, to quadrigrams.
Similarly, work by Hauk, Davies et al. (2006) has used an
item-based regression approach to identify areas asso-
ciated with different dimensions of form through to
meaning during visual lexical decision (see also Graves,
Desai, Humphries, Seidenberg, & Binder, 2010 for
reading aloud). The results revealed sensitivity to more
form-based variables like length and typicality for both
words and nonwords in posterior brain areas, moving
through to higher-level intermediate form-based represen-
tations that indexed lexicality and frequency, with more
anterior areas reflecting an influence of semantic coher-
ence (the degree to which meaning is consistent across
morphologically related words). These imaging studies
indicate a gradient of representation from more posterior
form based to more anterior meaning based along the
temporal lobe in visual word recognition. Sensitivity to

lexicality in mid to posterior regions does not seem to
reduce to semantic feedback as these areas are not
sensitive to semantic dimensions.

As proposed earlier, in connectionist models, what we
think of as orthographic or phonological lexical represen-
tations may well be found in the activations of the hidden
units that map between physical inputs and outputs.
Within models that incorporate a single set of hidden
units and encode their modality and task specificity in
terms of proximity between inputs and outputs (e.g.,
Dilkina et al., 2008; Plaut, 2002), the gradation from
modality-specific form-based representation at the edges
of the space to progressively more amodal semantic
representations at the centre of the space agrees with
recent conceptions of the ventral pathway in visual and
auditory word recognition (see Figure 4 from Binney
et al., 2012). Linking the previous proposal concerning
lexical representations in hidden units to neuroimaging,
along the ventral pathway, ‘lexical representations’ would
be located at the intersection of form and meaning-based
information. They can be localised by looking for
activation that permits reliable discrimination between
words and nonwords in a particular task, with newer
approaches such as searchlight analysis of patterns of
activation over multiple voxels seeming particularly
promising in this regard (e.g., Nestor, Behrmann, & Plaut,
2013). The more similar the nonwords to words in any
given task, the closer activation should move to areas
involved in representation of meaning.

Figure 3. A version of the previous model of visual and auditory word recognition and production containing one large set of hidden
units. Learning in the network occurs under a topographic bias that favours short connections. This allows graded modality specificity to
emerge in the network, such that units close to a particular input or output participate more in tasks involving them, while units close to
the centre are increasingly amodal.
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Not only would the precise location of lexical repres-
entation depend on stimulus properties, it would also be
affected by task requirements (e.g., Binder, Medler, West-
bury, Liebenthal, & Buchanan, 2006; Chen, Davis,
Pulvermüller, & Hauk, 2013; Gan, Büchel, & Isel, 2013;
Twomey, Kawabata Duncan, Price, & Devlin, 2011). For
example, the direction of the lexicality effect observed in
vOTC depends upon whether the task involves passive
viewing or active discrimination (e.g., Vinckier et al.,
2007; cf. Woollams, Silani, Okada, Patterson, & Price,
2011), and its presence appears to depend on the
opportunity for phonological recoding (Mano et al.,
2013). Perhaps even more strikingly, differing patterns of
lexicality effects are observed across multiple brain
regions in matching versus reading tasks for exactly the
same stimuli (Vogel, Petersen, & Schlaggar, 2013).
Moreover, while we see higher activation for words than
nonwords in areas that process orthographic and phono-
logical input, there is also a network of left frontal regions,
which show less activation for easy-to-pronounce words
than hard-to-pronounce words and nonwords (Cattinelli
et al., 2013; Taylor et al., 2013). In this case, the lexicality
effect occurring in speech production regions shows less
effort associated with familiar word stimuli. The mediat-
ing effects of stimulus and task on the location of the brain
areas specifically sensitive to the lexicality of orthographic
or phonological strings emphasises the fluidity of lexical
representations, as expected according to a distributed
functional view.

Activation of lexical representations

Connectionist models of word recognition are highly
interactive, and feedback from higher to lower levels is
integral in terms of the formation and operation of these
models. As noted earlier, recurrent connections are essen-
tial for the formation of the attractors that this paper
nominates as a potential candidate for functional lexical
representations. From IAC and TRACE onwards, the
majority of models of word recognition permit some
degree of feedback activation from whole to subword
information (although this is not carried as far as the input
layer). A commitment to feedback is also reflected in
current neural models of language processing (e.g., Price
& Devlin, 2011; Ueno et al., 2011). However, others have
strongly challenged the necessity of feedback connections
in cognitive models of word recognition (e.g., McQueen,
Cutler, & Norris, 2003; Norris et al., 2000) and also neural
models (Davis, Ford, Kherif, & Johnsrude, 2011). It is
very difficult to conclusively establish a role for feedback
in word recognition in behavioural studies, as the response
represents a summation of activation over the course of
processing, and is therefore subject to ‘post-lexical’
effects. The same problem arises in studies using PET or
fMRI, as again, the brain activation observed is a

summation of processes over time. This leads to interpret-
ative difficulties when dealing with lexicality effects in
areas associated with form-based processing, as it is
unclear to what extent these may be reduced to feedback
from higher-level semantic representation.

However, neuroimaging modalities that offer good
temporal resolution, such as EEG or MEG, can offer
insight into the flow of brain activation during word
recognition and production (for reviews see: Carreiras,
Armstrong, Perea, & Frost, 2014; Mattys, Davis, Bradlow,
& Scott, 2012). This can allow an understanding of the
time course of the component processes involved in a
behaviour, such as picture naming (Indefrey, 2011), and
can also speak to the interactivity between these different
levels of representation. There is now an emerging
imaging literature that strongly supports the very rapid
influence of higher-level semantic and phonological
knowledge upon visual and auditory word recognition.
For example, in an ERP study of visual lexical decision
(Hauk, Patterson, et al., 2006), initial activation in the
region of left vOTC at 100 ms was driven by bigram
frequency in a visual lexical decision task, but after strong
activation in the left anterior temporal lobe at around 150
ms for words of low bigram frequency, the next surge of
left vOTC activation patterned with lexicality at 200 ms,
which was well before the behavioural response (see also
Hauk, Coutout, Holden, & Chen, 2012). Turning to
speech, Sohoglu, Peelle, Carlyon and Davis (2012)
manipulated prior knowledge of the content of degraded
speech using previously presented text, and found that this
modulated EEG/MEG activity in the left inferior frontal
gyrus as early as 90–130 ms, which was well before that
seen in the superior temporal gyrus after 270 ms.

These results are very interesting because they indicate
a role for feedback during word recognition in a way not
permitted by consideration of behaviour alone. There is
clearly very early activation of regions involved in
semantic processing. The fact that these areas show
sensitivity to lexicality/familiarity before more posterior
form-based regions could be interpreted as supporting a
view in which lexical representations reduce to top–down
activation from semantic representations. However, it may
also be that these form-based regions follow a different
time course of activation, with initial sensitivity to
subword properties shifting to a lexicality effect. This
latter possibility could be accommodated by the distrib-
uted functional view where attractors act as lexical
representations. It is very difficult to determine the extent
to which early activation in one brain region causes a
pattern of activation in another region, and consideration
of the time course of unit activations in connectionist
models could provide concrete predictions to test in future
neuroimaging experiments.
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Development of lexical representations

Connectionist models, by definition, derive their repre-
sentations via adjustments on initially random weights
between processing units through a process of learning
that involves exposure and usually error correction. As
such, issues around learning of lexical representations may
seem to map fairly directly onto the issue of distributed
versus localist representations; however, this is not neces-
sarily so. There are in fact models that include localist
structural representations where the weights on connec-
tions between them are learnt (e.g., Dandurand, Hanna-
gan, & Grainger, 2013; Mirman, McClelland, & Holt,
2006; Perry et al., 2007, 2010). When this is adopted as a
theoretical standpoint, it can be considered ‘localist
connectionism’ (Grainger & Jacobs, 1998); however,
localist structural representations have also been adopted
in the connectionist domain to render large-scale models
tractable in terms of computational processing demands
(Kello, 2006; Sibley et al., 2008).

Allowing the connections between localist representa-
tions to be learnt does not speak directly to their initial
formation, yet understanding of this process is crucial if
we are to accurately capture language development. A
recent simulation allows for the formation of a localist
lexical orthographic representation once initial translation
of a letter string via subword orthography to phonology
mappings makes contact with a pre-existing phonological
lexical representation (Ziegler, Perry, & Zorzi, 2014). This
process is a computational implementation of Share’s
(1995) self-teaching hypothesis, but it merely defers the
problem of formation of a lexical entry from the ortho-
graphic to the phonological level – it does not tell us how
the phonological lexical representations are formed. In
contrast, in models that map directly from raw visual or
auditory inputs, distributed lexical representations will
emerge over the course of learning in the hidden units that
mediate access to semantic and articulatory outputs via
recurrent connections within and between layers (Chang
et al., 2013; Plaut & Kello, 1999). The formation of
distributed functional lexical representations therefore falls
naturally from models that focus on mapping raw inputs to
meaning and speech.

While connectionist models learn their representations,
this does not mean that they necessarily do so in precisely
the same way as children. Some connectionist models of
reading development have captured this process well with
a standard training regime (e.g., Harm & Seidenberg,
1999; Karaminis & Thomas, 2010; Ueno et al., 2011).
Other models have used pre-training and more psycholo-
gically plausible training vocabularies and techniques,
which have improved the fit of the models to children’s
data considerably (Hutzler, Ziegler, Perry, Wimmer, &
Zorzi, 2004; Powell, Plaut, & Funnell, 2006). Clearly,
developmental trajectories, like functional neuroanatomy,

reflect a potential source of constraint upon model design
that can be utilised in future. More generally, the fact that
connectionist models can learn their representations
allows them to speak to issues concerning not only normal
and disordered language development (Harm, McCan-
dliss, & Seidenberg, 2003; Harm & Seidenberg, 1999;
Joanisse & Seidenberg, 2003), but also language function
in progressive disorders (Rogers, Lambon Ralph, Garrard,
et al., 2004; Woollams et al., 2007) and the possibility for
relearning and rehabilitation after brain damage (Abel,
Grande, Huber, Willmes, & Dell, 2005; Plaut, 1996;
Welbourne & Lambon Ralph, 2005, 2007).

Conclusions and future directions

This paper has considered a number of different computa-
tional implementations of lexical representations that seem
warranted to account for the lexicality effects seen in
visual and auditory language-processing tasks. Distributed
functional representations were favoured by virtue of their
efficiency and flexibility. Within connectionist models
using such representations, one possibility is that lexical
knowledge reduces to semantic activation. An alternative
proposal outlined here is that whole word knowledge is
also captured by a system of attractors at levels interme-
diate between form and meaning, formed during learning
via recurrent connections between units within and across
levels. Within this view, the nature of the stimuli and the
demands of the task will determine where and when these
functional lexical representations emerge, hence they are
fluid. This latter proposal has the virtue of allowing a
degree of modality and task specificity suggested by
selective impairments in some neuropsychological
patients and variability in the timing and location of
lexicality effects in neuroimaging studies.

Further research is needed to tease apart the contribu-
tions of semantic versus form-based lexical knowledge to
word recognition. This will require direct comparisons
between lexicality effects and semantic effects, and also
more parametric manipulations sensitive to graded specia-
lisation. Comparisons over modalities and tasks are
needed to determine the degree of specificity of lexical
representations. Such research will preferably use neuroi-
maging techniques with sufficient temporal resolution to
understand the flow of activation within the system prior
to behavioural response. Simulation of these data will
require models that start with approximations of raw
visual and auditory inputs and incorporate at least some
degree of recurrence between and within levels. Within
such attractor networks, it is necessary to explore how the
various possible performance metrics correspond to both
behavioural and neuroimaging data.

In summary, this paper has highlighted that there are a
variety of implementation options for lexical representa-
tions in connectionist models, both in terms of the nature
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of the semantic system and also for distributed functional
representations as hidden unit attractors, ranging from
discrete sets of hidden units for each modality/task to
graded specialisation within a single integrative layer.
Neuroimaging evidence can be used to constrain the
range of possible implementations, but most current
analysis techniques yield discrete cortical areas and are
not sensitive to graded influences of form- and meaning-
based variables. Neuroimaging evidence has its own
limitations in terms of the cognitive interpretation of
activation differences, and consideration of hidden unit
dynamics in connectionist models with different archi-
tectures may shed light on the neural data. Ultimately, a
full understanding of the source of lexicality effects in
behaviour will require a dialogue between modelling and
neuroscience through which they will converge on the
precise form of lexical representations in the mind and
brain.
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