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Abstract

Advances in stem cell technology have engendered keen interest in cell-based therapies for 

neurological disorders. Postnatal engraftments of most neuronal precursors result in little 

migration, a critical step for transplants to integrate within the host circuitry. This may occur 

because most neurons migrate along substrates, such as radial glial processes, that are not 

abundant in adults. However, cortical GABAergic interneurons migrate tangentially from the 

subcortical forebrain into the cerebral cortex. Accordingly, transplants of cortical interneuron 

precursors migrate extensively after engraftment into a variety of CNS tissues, where they can 

become synaptically connected with host circuitry. Here we review how this remarkable ability to 

integrate post-transplant is being applied to the development of cell-based therapies for a variety 

of CNS disorders.
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Tangential (non-radial) migration of cortical GABAergic interneurons, and 

initial transplantation studies

GABAergic interneurons represent about 20% of the neurons in the cerebral cortex [1]. In 

most instances, GABA hyperpolarizes target cells largely via postsynaptic chloride-

permeable receptors. In addition to an inhibitory effect on cortical activity, a single 

interneuron can synchronize the firing of projection neuron ensembles, which is crucial to 
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normal cerebral cortical function. Accordingly, cortical interneuron dysfunction is 

associated with a variety neuropathologies, including epilepsy, schizophrenia, and autism.

Multiple studies have demonstrated that cortical interneurons in rodents are born in 

subcortical regions and migrate tangentially (non-radially) over long distances to populate 

both the neocortex and the hippocampus [2] [3] (Figure 1). Similar migrations were also 

identified in gyrencephalic mammals, including ferrets and humans [4, 5]. While a cortical 

source of cortical interneurons has also been suggested to occur in primates [5–7], two 

recent studies found that the vast majority of GABAergic interneurons in primate cortex 

arrive there via non-radial migration from subcortical origins [8, 9] (Figure 1).

The discovery of this remarkable capacity for cortical interneurons to migrate substantial 

distances, across the radial-glial scaffold, led Alvarez-Buylla and colleagues to test the idea 

that this capacity would permit their dispersion following engraftment into adult brain. 

Indeed, transplantation of interneuron progenitors from the medial ganglionic eminence 

(MGE; Figure 2) into the adult striatum resulted in widespread migration and survival [10] 

(Figure 2). Neither transplants of progenitors of striatal GABAergic projection neurons 

(from the lateral ganglionic eminence; LGE), nor transplants of neocortical glutamatergic 

projection neurons, showed a significant capacity to migrate into host brain tissues. This 

differential capacity to migrate post transplantation into the adult brain may relate to the 

general tendency for forebrain projection neuron populations to migrate radially, in contrast 

to forebrain interneuron populations [11]. These results suggested that MGE-derived 

interneuron precursors may be especially suited for use in cell-based therapies [10], a notion 

supported by the finding that MGE transplants into postnatal cortex differentiate into 

GABAergic interneurons that enhance local synaptic inhibition [12] (Figure 3a).

MGE transplants to study interneuron fate

While analysis of transgenic mice and genetic fate-mapping have made invaluable 

contributions to understanding cortical interneuron development, the migration and 

differentiation of MGE-derived cortical interneurons post-transplant has enabled a variety of 

studies on interneuron migration, fate determination, and function. Embryonic 

transplantation studies revealed that MGE interneurons will migrate into the overlying 

cortex, and differentiate into parvalbumin (PV) or somatostatin (SST) expressing 

interneuron subgroups when transplanted heterotopically into more caudal regions of the 

basal forebrain [13]. In addition, MGE interneurons lacking reelin signaling, transplanted 

homotopically into the wild-type MGE in utero, still migrate into the temporally-appropriate 

layers of cortex [14]. This study and others led to the important conclusion that cortical 

pyramidal neurons have a major influence on the layer-specific targeting of temporally-

defined cohorts of MGE-derived interneurons [14–16].

Transplantations of MGE-derived interneuron progenitors into postnatal cortex have also 

been used to study interneuron subgroup origins. Neonatal cortical transplantation of 

different regions of the MGE (dorsal vs. ventral), revealed a strong bias for SST-expressing 

interneurons to originate early from the dorsal-most region of the MGE, and a weaker bias 

for PV-expressing interneurons to originate in the ventral two thirds of the MGE later in 

Tyson and Anderson Page 2

Trends Neurosci. Author manuscript; available in PMC 2015 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neurogenesis [17–19]. This approach also revealed a remarkable bias for a subtype of 

cortical interneuron, the axo-initial segment targeting Chandelier cell, to be generated from 

the ventral most region of the MGE at the latest stages of cortical neurogenesis [18, 20]. 

This latter finding is spurring follow-up studies to discover the fate determination of 

Chandelier cells, a neuron whose dysfunction is implicated in epilepsy and schizophrenia 

[21–23].

In addition to their utility for studying interneuron origins, MGE transplantation methods, by 

allowing the examination of chemically or genetically manipulated cells developing within 

an otherwise wild-type cortex, have also been invaluable for studying interneuron fate. For 

example, addition of the morphogen sonic hedgehog to slice cultures, followed by 

transplantation of the MGE region into wild-type cortex, can convert ventral MGE 

progenitors from the generation of PV to the generation of SST-expressing fates [24]. The 

approach can also be used to study the transcriptional regulation of interneuron fate. 

Electroporation of Lhx6, a target of the interneuron-fate determining transcription factor 

Nkx2.1, into the MGE-like region of slices cultures from Nkx2.1 nulls, can rescue the ability 

of these cells to express PV or SST after transplantation into neonatal neocortex [25].

In addition to the study of early aspects of interneuron development, MGE transplantation 

approaches can also be used to study the regulation of interneuron maturation and survival. 

For example, Dlx1 is required for the dendritic maturation and survival of interneuron 

subclasses [26]. Remarkably, interneuron survival both in vivo and in transplantation studies 

appears to be determined by an interneuron-intrinsic mechanism that results in the death of 

roughly 50% of cells, independently, in the case of transplant studies, of the number of cells 

transplanted [27].

MGE transplants in the study of interneuron-induced cortical plasticity

A potential role for cortical interneuron maturation in the process of adolescent-age range 

cortical plasticity was posited based on the tight correlation between PV expression in a 

subset of cortical interneurons, and dendritic spine density on pyramidal neurons, during 

prefrontal cortical development in the macaque [28]. Subsequent studies using transgenic 

mice and visual cortical plasticity in response to monocular deprivation revealed that the 

maturation of GABAergic interneurons is indeed crucial in determining the temporal 

window of plasticity [29, 30]. To examine whether the maturation of inhibition induces this 

type of plasticity based on cell-intrinsic aspects of inhibitory circuitry, MGE progenitors 

were transplanted into either neonatal (P0–2) or postnatal (P9–11) mouse cortex. The 

transplants were able to re-open ocular dominance plasticity in recipient cortex according to 

the age of the engrafted interneurons, specifically when they reached an age equivalent to 

when this plasticity occurs normally (P26–28) [31]. Of note, the effects of transplanted 

MGE on cortical plasticity probably cannot be exclusively attributed to increased inhibition, 

since enhancing inhibition pharmacologically does not similarly modulate plasticity after the 

end of the critical period [32]. However, this study raises the intriguing possibility that MGE 

transplants could facilitate aspects of circuitry repair by reopening a developmentally 

transient window of enhanced plasticity.
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MGE transplants in the development of cell-based therapies

Seizure disorders

As noted above, cortical transplants of MGE-progenitors migrate from the site of 

engraftment and differentiate into interneurons that are synaptically connected to excitatory 

projection neurons in the recipient cortex [12, 31, 33] (Figure 2b–e). Accordingly, in the 

past few years a number of groups have established pre-clinical models of interneuron-based 

therapies to treat neurological disorders where impaired balance of excitation and inhibition 

results in pathology (Table 1). Epilepsy is one such disorder where a decrease of GABA-

mediated inhibition is among the known pathological mechanisms. Drug treatment is 

ineffective for many epileptic patients, and surgical resection can itself cause neurological 

defects; these failures necessitate the development of alternative treatments for seizure 

disorders [34, 35]. In fact, the concept of treating seizures using interneuron-based cell 

therapy was first enumerated over two decades ago [36, 37], but awaited progress in 

identifying the sources of cortical interneurons in the subcortical forebrain that are amenable 

to transplantation.

The first study of MGE-derived interneuron transplants in a rodent model of epilepsy found 

that MGE progenitors, transplanted into the neonatal neocortex of mice lacking the 

potassium channel Kv1.1 resulted in a significant reduction of spontaneous electrographic 

seizures [38]. Subsequently, a series of papers from multiple groups have together shown 

that interneuron precursor transplantation into neonatal or adult neocortex or hippocampus 

can ameliorate both the development of seizure activity and the intensity of seizures already 

established [33, 39, 40] and even attenuate behavioral phenotypes [41] in rodent seizure 

models. Additionally, transplantation of fetal CA1 hippocampus also demonstrated potential 

seizure reducing properties. However, these studies did not confirm seizures by EEG, 

making it difficult to assess their therapeutic implications [42],[43] (Table 1; for reviews of 

this topic, see [35, 44, 45]).

The general assumption is that these transplants reduce seizure-related activity via their 

demonstrated enhancement of synaptic inhibition [12, 31, 33]. However, one study used the 

acute focal induction of epileptiform activity in adult neocortex to evaluate seizure 

propagation across a previously established MGE transplant, then compared the density of 

transplanted interneurons within a given mouse to the seizure propagation across the 

transplant in that same mouse [40]. Surprisingly, relatively low transplant densities still 

significantly influenced this propagation. Conceivably, the transplanted cells could have 

exuberant connectivity with the somata of host projection neurons, thus concentrating their 

inhibitory effects close to the source of axon-potential generation (Figure 2d). However, an 

additional possibility is that MGE transplants can affect local activity via a non-synaptic 

mechanism, such as the enhancement of tonic (extrasynaptic) inhibition, or the regulation of 

local blood flow.

Parkinson’s Disease

Parkinson’s Disease (PD) is characterized by motor deficiencies in addition to cognitive 

dysfunction and disturbances of mood. The hallmark motor symptoms arise from loss of 
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dopamine producing (DA) neurons that originate in the substantia nigra pars compacta 

(SNc) and project to the striatum. Many studies have attempted to replace DA neurons 

directly in models of Parkinson’s related pathology, with varied levels of success (reviewed 

in [46]). However, alterations in striatal inhibition also occur in PD, and enhanced striatal 

inhibition can improve symptoms associated with PD [47, 48]. Accordingly, MGE-

progenitors transplanted into rats that had received unilateral SN lesions with 6-OHDA 

differentiated into interneuron and glial subclasses and partially rescued motor behavior in 

lesioned animals [49]. While the physiological relationships between the transplants and the 

motor behaviors are unclear, this study highlights the capability of MGE progenitor 

transplants to affect complex neuronal circuits and improve deficits in a diseased brain. The 

survival of some interneurons at least one year after transplantation into lesioned brains also 

highlights the possibility of using these cells as a vector for the long-term delivery of a 

therapeutic agent.

Neuropathic Pain & Stroke

Neuropathic pain (NP) is defined as a chronic and debilitating condition characterized by 

abnormal and unpleasant sensations produced by otherwise innocuous stimuli [50]. Damage 

to inhibitory interneurons in the spinal chord is thought to significantly contribute to 

persistent pain caused by nerve injury, and dorsal spinal cord transplants of a neuronal cell 

line engineered to overexpress GABA reduced measures of pain in a rodent model of NP 

[51]. Astoundingly, MGE progenitors can migrate, survive, and differentiate into 

GABAergic interneurons upon transplantation into the spinal chord of adult mice [52] 

(Figure 2b). Grafted cells display mature interneuronal markers, integrate into spinal chord 

circuitry and achieve an almost complete reversal of mechanical hypersensitivity in a 

standard mouse model of nerve injury-induced neuropathic pain [52].

Additionally, interneuron-based therapies may enhance recovery after stroke. MGE 

progenitors were transplanted into multiple cortical regions in a rat model of stroke via 

transient middle cerebral artery occlusion [53]. Cells were delivered focally to regions 

surrounding the infarction two weeks after the occlusion, and grafted animals displayed 

reduced motor deficits compared to sham and fibroblast-transplanted controls. Curiously, 

unlike many of the other transplant studies reviewed herein, authors report only 20% of 

MGE-derived cells differentiated into GABAergic neurons in the occluded animals, 

suggesting the stroke environment may alter transplant fate. Regardless, transplanted 

animals displayed axonal sprouting and reformation in concert with neurite outgrowth 

suggesting that the graft reorganized circuitry in the stroke region.

Anxiety & Psychosis

The GABAergic system is implicated in modulation of overall anxiety levels, and depleted 

GABA tone may contribute to the development of generalized anxiety disorders [54]. In 

support of this connection, mice with GABAA deficits display behavioral, cognitive, and 

neuroendocrine hallmarks of melancholic anxious depression [55]. Interestingly, MGE-

derived transplants delivered bilaterally to the neocortex of neonatal mice were also able to 

reduce anxiety like behavior in an elevated plus maze paradigm [56].
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Schizophrenia is also associated with abnormalities of GABA signaling [57]. For example, 

PCP, arguably the psychotomimetic drug that best produces schizophrenia-like symptoms, 

may act primarily by blocking NMDA receptors on cortical interneurons [58]. Interestingly, 

acute PCP administration in mice results in schizophrenia-related cognitive deficits that can 

be prevented by MGE transplantation into the prefrontal cortex, but not by transplants into 

other cortical regions [59]. While the mechanisms underlying illness progression in 

schizophrenia are not well understood, one hypothesis suggests that hyperactive dopamine 

signaling in the mesolimbic system underlies the “positive” symptoms, hallucinations and 

delusions [60]. Hippocampal hyperactivation at rest has also been observed in schizophrenic 

patients [61], and rodent studies have identified a hippocampal-nucleus accumbens-

substantia nigra circuit whereby hippocampal overactivation results in hyperactivation of 

midbrain dopaminergic neurons and their striatal targets [62]. While the mechanism behind 

hippocampal overactivation in schizophrenia is likely to be complex and heterogenous, 

reductions of MGE-derived hippocampal interneurons have been reported in post-mortem 

studies of the hippocampus from schizophrenic patients [63]. Based on this link between 

hippocampal overactivation and striatal dopamine release, a recent study examined the 

effects of MGE progenitor transplants into the adult hippocampus of mice treated by the 

methylazoxymethanol (MAM) model of psychosis-related phenotypes. The MAM model 

recapitulates some of the behavioral abnormalities and alterations in forebrain networks seen 

in schizophrenia, through perturbing embryonic brain development [64]. Remarkably, these 

transplants normalized measures of hippocampal hyperactivation [65]. Additionally, 

transplanted animals showed a reversal in hyperactive locomotion in response to 

amphetamine, implying that the hippocampal MGE transplants corrected the enhanced 

striatal dopamine release (by substantia nigra neurons) that is associated with the model 

used. While this paper did not explore how the transplants influence hippocampal activity, 

these results suggest that MGE-transplant based therapy targeting the hippocampus may be a 

future option for severely affected, treatment-resistant patients who also show hippocampal 

hyperactivation at rest by functional MRI.

In sum, MGE transplants can affect neuronal activity in remarkably diverse contexts, 

including neonatal and adult ages, and cortical as well as some non-cortical brain regions. 

The precise mechanisms by which MGE interneuron transplants affect this activity remain 

to be determined, and will probably be interneuron-subtype specific. However, it is likely 

that the mechanisms allowing for their normal process of non-radial migration across 

developmental domains followed by synaptic integration have endowed them with this 

extraordinary capacity.

Generation of GABAergic interneurons from stem cells

As demonstrated through the above findings, progenitors of MGE-derived GABAergic 

cortical interneurons appear to be extraordinarily suitable for a variety of cell-based 

therapeutic applications. But what cell source is amenable to a therapeutic trial? MGE 

derived cells from rats can be passaged many times while retaining a small capacity to 

differentiate into GABAergic interneuron-like cells [66]. These cells can also diminish 

hippocampal seizures post transplant, although the contribution of the minority of neurons in 

these cultures to seizure-reducing effects is not clear. However, this work does raise the 
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possibility that a similar approach could generate a large amount of transplantable, MGE-

related cells from fetal tissue.

Perhaps a more realistic approach would be application of pluripotent stem cell technology 

to the generation of cortical interneurons. Mouse embryonic stem cells have been directed 

into MGE-like cells with the capacity to differentiate into neurons with migratory and 

neurochemical features of cortical interneurons (Figure 3) [67–72]. These features included 

expected electrophysiological properties of neurochemically-defined cortical interneuron 

subgroups one-month following transplantation into neonatal neocortex [68]. In addition, 

mESCs differentiated towards MGE-like fates could survive and differentiate upon 

transplantation into the adult hippocampus in a mouse model of temporal lobe epilepsy 

(TLE) [70]. These heterogeneous mESC-sourced cells cannot be directly compared to MGE 

cells as upon differentiation few cells (<10%) went on to express markers of mature 

interneurons, which may explain why no changes in epilepsy were observed [70]. Despite 

the lack of an effect, it is likely that additional studies will be conducted where particular 

subgroups of interneurons are enriched in the ESC-derived transplant to maximize the 

epilepsy-ameliorating effects on host circuitry.

It has also become possible to generate MGE and cortical interneuron-like cells from human 

stem cells [73–76] using similar protocols to those that have been successful in mouse 

owing to the similar origins of cortical interneurons in these species [8, 9]. The stem cell-

derived human interneuron precursors can undergo non-radial migration from MGE to 

cortex in an embryonic mouse forebrain slice preparation [75], and also migrate extensively 

into the surrounding cortical parenchyma following transplantation into neonatal mouse 

neocortex in vivo [75, 77]. Unfortunately, although the human stem cell-derived 

interneurons show input and output synaptogenesis and neurochemical interneuron subgroup 

expression after one month of culture with mouse neocortical cells [75], they show limited 

evidence of maturation in vivo even 6 months after transplantation into neonatal mouse 

neocortex [77]. Perhaps it should not be surprising that human interneurons follow their 

highly protracted, intrinsic developmental program in xenographic transplants. However, 

since the first human trials of stem cell derived interneuron transplants would likely involve 

very ill patients, the protracted maturation may be problematic for such trials unless 

approaches are discovered to accelerate human interneuron differentiation.

One study has transplanted human stem cell derived MGE-like cells into adult mouse 

hippocampus, resulting in a mixed population of astrocytes, GABAergic neurons, and 

cholinergic neurons [78], with survival to at least 6 months. Prior to transplant, some mice 

were subjected to a toxic lesion to the septal area, resulting in cognitive deficits. 

Remarkably, transplanted mice showed recovery on cognitive deficits relative to sham 

transplant controls. In sum, exciting progress is underway with human stem cell derived 

MGE-like transplants, such that we consider it likely that an interneuron-fated or mixed 

transplant of MGE-like progenitors will be feasible for a human trial in interneuron-related 

illnesses. Some remaining challenges are listed in Box 1.
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Future directions

As noted above, transplantation studies involving MGE progenitors have been used to study 

aspects of interneuron development, function, and have been applied to the development of 

cell-based therapies for seizures, Parkinson’s disease, neuropathic pain, stroke, psychosis, 

and anxiety (Table 1). A comprehensive discussion of the implications of this work is 

beyond the scope of this article, but a few areas warrant special mention. First, further 

elucidation of the intrinsic mechanisms for interneuron non-radial migration could be used 

to develop genetic tools for inducing the post - transplant migration and integration of 

projection neuron populations, such as cholinergic neurons for Alzheimer’s disease, medium 

spiny neurons for Huntington’s disease, or cortical pyramidal neurons for stroke. In addition, 

from fundamental studies methods can be learned to reliably control interneuron migratory 

behavior, for example by introducing hyperpolarizing signals [79, 80], in order to optimize 

their final density within a given distance from the initial graft. On a related topic, 

optogenetic methods can be combined with the generation of MGE-like progenitors from 

stem cells to allow the transplantation of photoactivatable interneurons. In addition to further 

studies on inhibition in plasticity, such a tool could be used in conjunction with patient or 

EEG-activated LEDs to instantly modulate seizure propagation [81], neuropathic pain, or 

perhaps even psychotic symptoms. Finally, the possibility of using stem cell derived 

interneurons as vectors for the delivery of therapeutic agents beyond GABA remains an 

underexplored possibility for a wide variety of therapeutic interventions.
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Highlights

• Cortical GABAergic interneurons migrate tangentially from the subcortical 

forebrain into the cerebral cortex.

• Transplants of cortical interneuron precursors migrate extensively after 

engraftment into a variety of CNS tissues.

• This ability to integrate post-transplant is being applied to the study of aspects 

of development and excitingly to the development of cell-based therapies for a 

variety of CNS disorders.
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Box 1 Challenges to the Implementation of MGE/Interneuron

Transplantation Therapy

Despite results from animal studies suggesting that MGE/Interneuron transplantation 

therapy may have a variety of applications in humans, major hurdles remain to bringing 

this approach to the bedside. What will the source of the cells be? There have been 

tremendous advances in generating MGE progenitor and also interneuron-like cells from 

mouse and human stem cells, but the protracted differentiation, particularly of the human 

cells, after xenographic transplantation raises serious concerns about the feasibility of this 

approach. If a human stem cell source is used, what method will ensure that no tumor-

producing cells are transplanted along with therapeutic ones? The use of reporters of 

newly born post-mitotic interneurons, such as Lhx6, in mouse ESC studies is 

encouraging. However, the application of this approach to human cells, and the use of 

this approach to generate or identify surface antigens that can be used to FACS-purify the 

fate committed, post-mitotic interneurons from any human source, remains to be 

explored. In addition, how long will an interneuron transplant function, and what will be 

the long-term effects on circuitry that is not dysfunctional? For example, would 

transplant of interneurons into a neocortical seizure focus reduce seizures, but alter local 

circuitry in a manner that disrupts cortical function? Perhaps most importantly, the 

interneuron subgroups and subtypes that derive from the MGE have remarkably distinct 

properties, such as axon targeting, sensitivity to extrinsic factors, and firing rate and 

pattern. To date, studies of MGE transplantation have barely scratched the surface of the 

question of how distinct types of interneurons are influencing host circuitry and activity 

in the transplantation context. As methods are discovered for the selective generation of 

cells committed to distinct interneuron fates, the potential of interneuron-based 

transplantation therapy, first proposed more than two decades ago, may finally be 

realized.
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Box 2. Outstanding Questions

• How will the large size of the human brain impact the potential for developing 

interneuron-transplantation based therapeutics?

• Will it be possible to accelerate the maturation of human stem cell derived 

interneurons?

• Do subtypes of interneurons differentially affect host neural activity post 

transplant? Are there implications of such differential effects for the 

development interneuron-based therapies?

• Since key aspects of interneuron function depend not only on the presence of 

class-defining markers, but also on specific patterns of inputs, intrinsic activity, 

and axonal targeting onto other neurons, what assays will allow us to study these 

features?

• How do we direct the differentiation of ESCs into interneuron subtypes, how 

can we efficiently purify these subtypes from the differentiation culture, and 

how can we define these subtypes outside of the human brain?

• Can we use our knowledge of the regulation of non-radial migration to control 

the dispersion of interneurons post transplant?

• Can we use our knowledge of the regulation of non-radial migration to modify 

stem cell derived projection neuron populations such that they undergo 

interneuron-like migration after transplantation into adult brain?
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Figure 1. Subcortical origins and migration of mouse and human neocortical interneurons
Cortical interneurons in rodents and primates originate embryonically in subcortical 

structures, then migrate non-radially into the cerebral cortex (MGE in red, a=human post 

conception week 12 and b=mouse embryonic day 13.5). Unlike radially migrating pyramidal 

cells born in the cortical ventricular zone (VZ) (box c, blue cells), the movement of 

interneurons is not restricted to radial glial scaffolds (boxes c and d, red cells). Mouse 

interneuron migration routes schematized as reviewed in [2], human interneuron migratory 

routes schematized from data in [8, 9].

Tyson and Anderson Page 16

Trends Neurosci. Author manuscript; available in PMC 2015 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. MGE-sourced interneurons survive and synaptically integrate upon transplantation 
into a variety of CNS tissues
Interneurons sourced from embryonic mouse MGE are amenable to transplantation. GFP+ 

MGE tissue is dissected out, and resuspended as single cells (a) then injected into the 

desired host tissue (b). Various adult and neonatal tissues have been proven to be permissive 

to support transplanted interneurons derived from GFP+ MGE. These cells migrate away 

from the transplant core and many are able to integrate within the host circuitry (c and d, 

MGE derived interneurons = green, host cells = grey). Transplanted interneurons mature 

into GABAergic cells competent to release GABA upon depolarization along with trophic 

factors that can influence the downstream activity of host cells via opening GABA selective 

ion permeable channels (e).
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Figure 3. Migration of MGE and mESC-sourced interneuron precursors in neonatal cortical 
transplantation
Composite image from ([68] and [40]). Interneurons sourced from either mouse embryonic 

MGE (a) or mouse embryonic stem cells (b) differentiated towards an Lhx6+, cortical 

interneuron precursor fate are capable of extensive dispersion from a transplant core in both 

neonatal (2mm+ ([68]) and adult (1mm+ [40]) brains. Top Panel (a): MGE sourced 

interneuron progenitors migrating from a transplant core. Left panel = 7 days post transplant 

(DPT). Right panel = 19 days post transplant (DPT). The X-Axis shows rostral-caudal 

distance from the injection site. The Y-axis shows the percentage of cells in each 250-µm 
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bin. R=rostral and C=caudal. Bottom Panel (b): A–F, Immunofluorescence labeling of GFP 

in 50µm coronal sections. Arrows indicate cells shown at higher magnification in the insets 

At 1 DPT, the GFP+ cells were distributed close to the injection site, and many appear to be 

migrating into the cortical parenchyma. B, E, At 7 DPT, the GFP+ cells are much more 

broadly distributed, and many have multipolar morphologies suggestive of postmigratory 

neurons. C, F, The mediolateral extent of these cells at 30 DPT is 2.5-0.3 mm. G–I, 

Distributions of transplanted cells 1 (G), 7 (H), or 30 (I) days after transplantation. The x-

axes show rostral–caudal distance from the injection site. The y-axes show cell profile 

number per 250µm bin made conservatively by multiplying the number of GFP+ cell 

profiles in the most distal section of that bin by 5. Note that in I, the y-axis scale is larger. G, 

After 1 DPT, most transplanted cells are within 300µm of the injection site. H, By 7 DPT, 

some of the cells have dispersed as far as 2 mm from the injection site. I, Although the 

survival or detectability of GFP+ cells had significantly decreased by 30 DPT, the rostral– 

caudal distribution is similar to that seen at 7 DPT. Scale bars: A, 200µm; B, C, 400µm. 

Permission has been granted to reproduce the copyrighted elements of this figure.
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