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Abstract

Co- and post-transcriptional regulation of gene expression is complex and multi-faceted, spanning 

the complete RNA lifecycle from genesis to decay. High-throughput profiling of the constituent 

events and processes is achieved through a range of technologies that continue to expand and 

evolve. Fully leveraging the resulting data is non-trivial, and requires the use of computational 

methods and tools carefully crafted for specific data sources and often intended to probe particular 

biological processes. Drawing upon databases of information pre-compiled by other researchers 

can further elevate analyses. Within this review, we describe the major co- and post-transcriptional 

events in the RNA lifecycle that are amenable to high-throughput profiling. We place specific 

emphasis on the analysis of the resulting data, in particular the computational tools and resources 

available, as well as looking towards future challenges that remain to be addressed.
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Co- and post-transcriptional regulation encompasses a multifaceted and interconnected 

group of events including RNA processing, translation and decay. Each stage involves 

multiple regulatory steps and interactions with complexes containing RNA-binding proteins 

(RBPs) and non-coding RNAs 1. The list of regulators, which often participate in multiple 

processes, is long, with a possible >1,000 RBPs and thousands of non-coding RNAs in 

human 2, 3. Dissecting co- and post-transcriptional regulatory events at the genomic level 

poses numerous challenges in terms of methods and computational analyses.

RNA biology reached genome-wide scale only recently, when RIP-chip (ribonucleoprotein 

immuno-precipitation followed by microarray analysis), the first approach for en masse 

identification of RBP targets, gained popularity in the early 2000’s 4. Other methods are still 

under development. For instance, ribosomal profiling (RP), which is now the method of 

choice for the study of translation regulation, was developed just a few years ago and 

continues to evolve 5, 6 As a result, computational methods to support these technologies 

have yet to reach the level of maturity seen, for example, in the transcriptomic field. Also in 

contrast to transcriptomics, where some consensus has been reached in terms of methods 

and analysis pipelines 7–10, RNA biologists continue to use a range of different experimental 

and analysis approaches. For example, although still used, RIP-chip and RIP-seq have been 

mostly replaced by a plethora of different cross-linking methods such as cross-linking and 

analysis of cDNAs (CRAC)11 and CLIP (Cross-linking and Immuno-Precipitation) 

approaches, i.e. HITS-CLIP, PAR-CLIP and iCLIP 12–15. All methods have their pros and 

cons and, due to their technical differences and biases, deliver slightly different datasets 16. 

When comparing datasets, it is hard to say why one method but not the others captured a 

particular binding site. We clearly need to conduct more extensive comparative analyses 

coupled with functional assays to better understand what each method is producing. An 

understanding of the idiosyncrasies of each technology used in the lab and how they relate to 

analysis methods is essential. They will give us the means to improve computational tools 

and include filters that at the end will deliver the highest number of functional RBP sites 

with a minimum of false positives.

At a higher level, the need for effective integration of disparate data sources in the study of 

co- and post-transcriptional regulation is particularly pronounced. Assigning function to 

RBP binding can be a complex task due to the polyvalent nature of these proteins. For 

example, binding of a given RBP to 3′UTRs (untranslated regions) could affect mRNA 

decay, translation or interfere with poly(A) site selection; multiple angles of analysis are 

necessary, but data integration is nontrivial. There is need to centralize all co- and post-

transcriptional datasets and develop tools to allow cross-platform comparisons.

Figure 1 summarizes the relation between the major experimental high-throughput assays 

with both the stages and regulators of the RNA lifecycle they inform on. In the next 

sections, we cover different high-throughput approaches used in RNA biology, tailoring the 

discussion to the computational methods available and challenges in terms of development 

and data integration.
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Profiling RNA-binding protein activities

Experimental methods

RNA binding proteins are, next to non-coding RNAs, the central drivers of co- and post-

transcriptional regulation, and can have hundreds to thousands of target mRNAs thanks to 

flexibility in their binding specificity. En masse identification of in vivo binding has become 

possible only within the last decade, first with RIP and then with CLIP. They were 

developed by the Keene and Darnell labs respectively 4, 12. They both consist of immuno-

precipitation approaches where RNPs containing the RBP of choice are isolated and 

associated mRNAs are subsequently purified and identified. Quantification of the resultant 

RNA, was originally carried out using micro-arrays or Sanger sequencing, but is now more 

commonly performed using next- and second-generation deep sequencing. When RIP was 

established, there were some concerns regarding the possibility of re-assortment of RNPs 

during the IP process. This issue was essentially raised by a study from the Steitz lab 17, in 

which a very simplistic analysis was conducted. To the best of our knowledge, similar 

claims have not been reported by other scientists using RIP. In fact, RIP was used 

successfully in cell systems and organisms to generate cell type specific gene expression 

profiles and no problems of cross-contamination between cell types have been 

reported 18–20.

We focus on the analysis of data from these high-throughput assays, termed RIP-seq and 

CLIP-seq. While CLIP-seq is more frequently used, RIP-seq continues to be used, especially 

if there are limitations in terms of antibodies, or the amount and type of tissue. Recently, 

‘reversed CLIP’ assays have been developed in which mRNAs are extracted; the binding 

sites and identities of bound proteins are determined by RNA-seq and proteomics, 

respectively 21, 22. These studies have revealed the enormous extent of the protein-RNA 

interaction landscape. In a more recent study Tombe et al.23 developed a high-throughput 

sequencing–RNA affinity profiling (HiTS-RAP) assay that employs high-throughput 

sequencing to measure RNA aptamer affinities in large scale by quantifying the binding of 

fluorescently labeled protein to millions of RNAs anchored to sequenced cDNA templates. 

This is an extension of high-throughput sequencing–fluorescent ligand interaction profiling 

(HiTS-FLIP) protocol24 that was previously developed to image and analyze the binding of 

fluorescently labeled proteins to DNA clusters for direct quantitative measurement of 

protein-DNA binding affinity.

Finding targets and binding sites of RNA-binding proteins

RIP and CLIP aim to answer two closely related questions: which transcripts are bound by 

an RBP, and where. The key distinction lies in resolution. Generally, RIP-seq does not 

involve digestion of bound RNA fragments, and provides transcript-level resolution, 

enriching reads in bound RNAs but not necessarily with positional information. In contrast, 

CLIP-seq allows for much higher resolution. From a technical perspective though, 

identifying targets at the full transcript level and finding binding sites at the resolution of ten 

or twenty nucleotides are essentially the same problem: we search for genomic regions 

which are enriched for reads. This process is referred to as peak-calling, and forms the basis 

for any downstream analyses. Peak-calling follows read-mapping (alignment of short 
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sequenced reads to the reference genome), which we will not address as it has been covered 

fully elsewhere 25. Peak-calling assumes that some loci will receive reads, but not all of 

these represent true binding sites. There are a number of possible reasons for this, including 

transient or non-specific interactions26–29, cross-linking biases (modest uridine preference 

caused by UV cross-linking in HITS-CLIP and iCLIP)30, re-association after cell lysis17 (the 

artifactual RNA-protein complexes formed in cell lysate, depending on lysis conditions, 

generally only a problem with RIP-seq), and background cross-linking (background caused 

by random UV cross-linking of RNAs to proteins that are not the RBP of interest)31. 

However, it is expected that such false-positive loci will generally accumulate few reads. 

There is generally no specific way of defining such binding activities and different groups 

use different measure. For instance Friedersdorf et al.31 performed an experimental method 

to define background cross-linking in PAR-CLIP data. Freeberg et al. 32 calculated the 

cross-link score (CLS) for each T in the genome, where CLS is the ratio of CLIP reads 

containing one or two T-to-C conversion events to the number of mRNA-seq reads and 

associate low CLS values to transient binding 32. Similar methods can be used to define 

cross-lining biases and background cross-linking. Peak-calling aims to differentiate these 

loci from those that represent targeted binding of the RBP, i.e. are true-positives. This 

differentiation is particularly important in RIP, where the lack of cross-linking and RNAse 

treatment results in much higher background signal. Although CLIP has a high-degree of 

accuracy that cannot be achieved by RIP, it exhibits both cross-link biases and background 

cross-linking. In addition, due to inefficiency of UV cross-linking33 it is not clear what 

proportion of binding activities is really captured by cross-linking. Nonetheless, even with 

these problems CLIP has proven to be useful for identifying mRNA targets of RBPs. 

However, due to the above-mentioned problems rendering careful separation of signal from 

noise essential 17, 30, 31.

The simplest peak-calling scheme considers only the number of reads mapped to a locus. 

The exact read-count threshold to use must be calibrated for each dataset, since sequencing 

depth varies. A major challenge is selecting an appropriate resolution. Reads are counted 

into bins tiled along the genome. If bin size is too small, it is difficult to distinguish the 

underlying distribution of the read counts in peaks from the background. If the bin size is too 

large, resolution suffers. Most methods defer the decision to the analyst, although there are 

some attempts to automize selection of resolution, such as RIP-Seeker 34.

Further, one must consider the statistical distribution of the read counts. In previous work, 

we demonstrated that read-counts are Poisson over-dispersed in CLIP-seq datasets 16. An 

appropriate model to capture their distribution is thus the negative binomial. When only a 

single sample is analyzed, loci with zero-counts are not considered, and in this case it is 

better to use a zero-truncated negative binomial, which appropriately adjusts for the missing 

zero counts. These distributions were used as the basis for the Piranha peak-caller 16. In 

addition, other methods proposed Hidden Markov Model (HMM) for modeling and 

analyzing CLIP-seq data, such as dCLIP35 and MiCLIP36. At the first step, dCLIP 

normalizes CLIP-seq data across datasets and subsequently employs an HMM to detect 

common or different RBP-binding regions across conditions35. MiCLIP uses two rounds of 
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HMM to first infer enriched vs. non-enriched regions and then to distinguish binding sites of 

RBPs vs. non-binding sites within those enriched regions36.

Additional information beyond read-counts can be used to improve peak calling. One 

example is transcript abundance. The number of reads mapping to a given genomic locus 

will be proportional to the binding strength of the RBP to that site, but also the abundance of 

the RNA. Abundant RNAs will take a greater slice of the sequencing pie, leaving less 

abundant RNAs, even if strongly bound, starving for coverage. Piranha was developed to 

account for this sequencing inequality, allowing the significance threshold, at which a locus 

is considered a true interaction, to vary as a function of RNA abundance, measured by RNA-

seq 16. AS-peak 37 is another peak caller, tailored specifically to RIP-seq data, that considers 

transcript abundance.

Other markers of true RBP-RNA interactions are modifications in nucleotide reads as a 

result of UV cross-linking, coined cross-link induced mutation sites (CIMS). In HITS-CLIP, 

CIMS are ‘deletions’ at the cross-linked nucleotide 38, while in PAR-CLIP, reads exhibit T-

to-C nucleotide conversions due to incorporation of 4SU photoactivatable-ribonucleoside 

into transcripts 15. Not only are these changes useful in distinguishing true from false 

interactions, but they have also been used to improve localization. Without considering 

CIMS, only iCLIP achieves single-nucleotide resolution. Zhang & Darnell proposed a 

systematic method based on CIMS for the analysis of HITS-CLIP, elevating HITS-CLIP to 

single nucleotide resolution, and allowing exact localization of the cross-link location 38. 

They applied their genome-wide analysis to Nova and Ago HITS-CLIP data, identifying 

CIMS deletions in ~8% of mRNA tags mapped to Nova targets. Corcoran et al. 39 proposed 

a method for PAR-CLIP data, based on the characteristic conversion. They allow a read to 

contain up to two mismatches restricted to T-to-C conversions during the mapping. At each 

genomic locus, they calculate the likelihood of T to C conversion and use this to predict 

interaction sites.

To date, most analyses employing CLIP- and RIP-seq have been restricted to identifying 

targets and binding sites under single conditions. Moving forward, comparative analyses 

will become more important, and a few studies have already taken steps in this 

direction 35, 40–42. Firstly Tenenbaum et al. 4 used RIP-chip to determine dynamic changes 

in mRNA targets during neuronal differentiation. Moreover, Mukherjee et al. 43 employed 

Gaussian Mixture Modeling to RIP-seq data with probabilistic LOD scores and background 

quantification of each mRNA target to quantify dynamic changes in mRNA targets during T 

cell activation. However, computational tools to facilitate comparative peak-calling are few. 

To date, only Piranha and dCLIP provide support for identifying differential binding 16, 35.

Most tools for identifying interaction sites are stand-alone programs intended to run on a 

local machine. There are some online tools that can be used for CLIP data analysis, for 

example PIPE-CLIP 44 and pyCRAC 45, both of which run on the web-based Galaxy 46 

platform.
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Characterizing and understanding RBP specificity

Nucleic acid binding proteins interact with their substrate (DNA or RNA) and participate in 

biochemical reactions that lead to specific cellular functions 47. In the case of RNA, these 

interactions happen between a subset of residues in the protein (the RNA binding domains, 

or RBDs) and a subset of nucleotides within the RNA (the binding sites). Certain nucleotide 

sequences present high affinity for the protein’s RBDs, causing the protein to bind to these 

locations with high frequency. These patterns are called motifs, and observing these patterns 

in a genomic location is called a motif occurrence. Motifs can be characterized by both 

sequence and structural elements and show tremendous variation amongst RBPs, even 

between members of the same RBP family 48.

Until the early 2000s, characterization of binding sites was mostly restricted to individual 

studies involving a particular RBP and one target gene/binding motif. Such studies include a 

variety of assays from mutagenesis and binding shifts to more elaborate analyses involving 

3D structures of RBP bound to RNA1, 49, 50. One exception, SELEX experiments, combined 

a recombinant RBP and large pools of short random RNA sequences. After several rounds 

of selection, a consensus motif is defined based on the sequence of RNA fragments 

preferentially bound 51, 52. RNAcompete is another in vitro method that is much less 

expensive than SELEX due to a smaller designed pool of RNA oligo-nucleotides 53.

Finding statistically enriched motifs in biological sequences is one of the most well studied 

problems in computational biology. The inherent variability in the motif sequence for RBPs 

renders methods based on exact matches of little use54. More flexible models have been 

proposed, the most well established being the position weight matrix, constructed by 

counting occurrences of each type of nucleotide at each position in the motif 47, 55–57. 

Methods employing this representation can generally be divided into two groups, 1) 

exhaustive enumeration methods, which are based on enumerating possible motifs then 

progressively narrowing the search to the neighborhood of highest scoring motifs and 2) 

probabilistic models, which construct the motif model and find the occurrences of the motif 

simultaneously in an iterative manner 58. Much of the extensive body of work on motif 

discovery is due to the attention paid to transcription factors and the need to understand 

transcriptional regulation through protein-DNA interactions. MEME 59, MDScan 60, 

AlignACE 61 and DME 62 are just a handful of the highly successful methods. The 

interested reader is encouraged to pursue one or more of the extensive reviews written on the 

details of these methods 63–67. In comparison, motif finding in RNA brings its own unique 

set of challenges that must be considered. Early applications of motif-finding algorithms 

optimized for transcription factor binding sites to finding regulatory regions in RNA, 

especially RBP binding sites, encountered a number of challenges, chief amongst which are 

the shorter length of RBP motifs68, 69 and the role of RNA secondary structure in binding 

site recognition 70.

An early approach for modeling RNA structure involves covariance models (CMs) 71, 72. 

CMs deliver both a sequence alignment and a consensus structure for a set of RBP-bound 

RNA sequences. Training a CM constructs a model from a set of sequences, which in turn 

can be used for aligning new sequences in an integrative approach. Other methods, such as 
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Dynalign, a software for simultaneous sequence and structural alignment of RNA molecules 

using dynamic programing73, evolutionary methods 74, and text indexing approaches 75 

have been used for sequence and structural motif discovery for RNAs. However, 

evolutionary and text indexing methods are very limited in terms of the range of RNA 

secondary structures that they can discover, while CM and Dynalign are computationally 

expensive.

MEMERIS 76 was proposed for RNA binding site characterization, and it takes both 

sequence and structure into account. MEMERIS calculates the probability of RNA regions 

to be single-stranded, and uses these values as prior knowledge to guide the search for the 

motif. RNAcontext 77 is another approach for RNA binding site characterization and motif 

discovery that takes both sequence and structure of the RNA into account. The model 

developed in this program has a much simpler representation than MEMERIS: a position 

weight matrix for describing the motif sequence and an additional vector to describe the 

structural context of each nucleotide in the motif. RNAcontext performs well, both in vitro 

and in vivo, in terms of recovering experimentally validated motifs. However, both 

MEMERIS and RNAcontext suffer from the assumption that RNA sequence and structure 

are independent. In addition, MEMERIS takes only single stranded regions into account, 

which is a limiting factor for RBPs that bind double-stranded RNA. More recently, a new 

method called GraphProt was proposed as a machine-learning framework for learning 

models of RBP binding preferences from different types of high-throughput experimental 

data. GraphProt in essence is a supervised learning algorithm that builds a model using 

positive and negative sets of binding sites and then scans the genome to find instances of 

binding sites based on sequence and structure profiles 78. For Identification of miRNA-RISC 

complex target sites, handful of studies has done CLIP experiment for transcriptome-wide 

mapping of miRNA targets, which have proven to be quite useful15, 39, 79, 80. In addition, the 

computational methods take advantage of predictive features of the binding regions, most 

notably sequence characteristics of the seed region, phylogenic conservation of binding sites 

and secondary structure accessibility of the target81–83.

Several databases of RNA-protein interaction sites have been developed. RBPDB 84 

contains a collection of experimental motifs of RNA-binding sites from human, mouse, fly 

and worm. This database includes RBP binding sites derived from in vitro methods, motifs 

in position weight matrix format, and sets of sequences of binding sites obtained from 

immunoprecipitation experiments in vivo. CLIPZ 85 is a database of binding sites that are 

constructed from CLIP data for a limited number of proteins. However, users can upload 

their short read sequences from CLIP, small RNA sequencing, and mRNA sequencing 

experiments for analysis 85. RBPmap is a webserver for prediction of RBP binding sites. 

Users can input their sequences and motif in the form of a consensus sequence or position 

weight matrix or select from a large database of experimentally validated motifs. The 

algorithm then searches sequences for the motif, compares matches to the embedded 

background model, calculates a weighted rank for all the positions, and outputs a summary 

of all predicted binding sites 86.
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Regulators and function

Binding of a given RBP to a target transcript can produce a variety of outcomes, both 

promoting and repressing events – for instance increasing or decreasing translation or 

mRNA decay, promoting or repressing exon skipping or the usage of a distal poly A site. A 

variety of genomics methods are necessary to link binding to function. For instance 

proteomics studies have been combined with RIP-chip and CLIP experiments to identify 

functional RBP binding sites, e.g. to characterize the translation regulators such as HuR 27, 

Msi1 87, IGF2BP1-3, QKI and PUM2 88, or the splicing regulator RBM20 89. Other 

methods combine the analysis of miRNAs with proteome, transcriptome or translatome 

profiling, e.g. for miR-124 90, mir-223 and others 91–93. The analysis of this data (and 

integration with data from binding assays) brings a new set of computational challenges that 

we discuss in the remaining sections.

Regulating transcript abundance

Quantifying gene expression is a well-studied problem in computational genomics. 

Expression profiling is now largely performed by RNA-seq. Read counts are the main 

source of information to calculate a gene’s expression profile, though they must be correctly 

normalized to obtain meaningful information. There are primarily two concerns during 

normalization, which arise from transcript length and sequencing depth. The former is the 

result of RNA fragmentation during library construction in which longer transcripts 

naturally generate more reads than shorter transcripts even if they have similar abundance. 

Sequencing depth refers to the variability in the total number of reads sequenced and 

mapped in each run, which causes variations across samples 8. To account for these issues, 

the reads per kilobase of transcript per million mapped reads (RPKM) metric was introduced 

by Mortazavi et al. 94 to normalize a transcript’s read count by both its length and the total 

number of mapped reads in the sample 8. With paired-end data, to avoid counting reads that 

fall into mapped fragments twice, a similar measure called reads per kilobase of transcript 

per million mapped fragments (FPKM) was developed 95. However, Wagner et al.96 showed 

evidence that RPKM is not suitable for comparison between samples and proposed a new 

measure called transcript per million (TPM) for this purpose96. For a comprehensive review 

on normalization methods for transcript abundance, refer to Dillies et al. 97.

Often the goal of analyses is to compare expression between conditions and identify 

transcripts whose concentration changed. Methods such as Cuffdiff 95, edgeR 98 and 

DESeq 99 are frequently used. Cuffdiff 95 is based on beta negative binomial model and 

estimates the variance of RNA-seq data by t-like statistics from FPKM values. edgeR98 is 

based on an over-dispersed Poisson model in order to explain the variation in the read count 

data. The evaluation of differences across transcripts, are estimated using Empirical Bayes 

method. DESeq99 uses a negative binomial for estimation of variability in read count data. 

Differential expression analysis for RNA-seq is a widely explored area; for a comprehensive 

survey refer to 8, 100.

RNA-binding proteins have the capacity to directly regulate mRNA levels. However, many 

studies observe substantial changes in transcript abundance upon knockdown or knockout of 

RBPs, but find a surprisingly small overlap with the set of RBP targets identified by binding 
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assays 101. This discrepancy is most likely due to a large number of indirect effects. As a 

result, the question of whether data from binding assays can be effectively married with 

mRNA expression data remains open.

Alternative splicing

The “one gene, one enzyme” hypothesis postulated by Beadle and Tatum 102 is no longer 

valid; we know that the number of human genes is much smaller than the number of 

expressed proteins 103. This discrepancy can be explained by several levels of gene 

regulation, co- and post-transcriptional modifications, especially alternative splicing 104.

More than 90% of human genes are alternatively spliced, with a role in many physiological 

functions 105, 106. Alternative splicing, coupled to nonsense-mediated decay (NMD), can 

also directly regulate gene expression by producing unstable transcripts that contain 

premature stop codons 107, 108. Splicing-related changes in gene expression can be triggered 

in response to stress and other environmental signals 109, and are increasingly recognized as 

a participant in many diseases 110–113. Cancer-related studies have revealed specific changes 

in alternative splicing patterns that can be used for diagnosis 65 and therapy 114.

Many mathematical models, algorithms and statistical methods have been developed and 

employed to explore alternative splicing. The goal of these methods is generally to identify 

and quantify the abundance of individual transcripts 115, 116, or more commonly, to profile 

changes in splicing either at the full transcript level or at the level of individual splice sites 

and exons 117–121. The latter task is called differential splicing analysis. An example of such 

an analysis would be to calculate exon inclusion from exon-junction arrays, microarrays or 

RNA-seq data, and then compare the values between samples or conditions to infer 

occurrences of different alternative splicing events. Although some approaches to either 

problem may employ a reference dataset of exons or splice junctions and only considers 

splicing events with known splice junctions, a frequent goal is to identify novel splicing 

events with previously unknown donor and acceptor sites. Addressing this challenge relies 

heavily on split-read mappers, which are able to map reads containing previously unknown 

splice junctions – a task that regular short-read mappers generally fail with, as the read is not 

derived from a single contiguous region of genomic sequence, nor one that can easily be 

constructed in silico 122–132.

Several excellent reviews of computational methods for splicing and alternative splicing 

analysis already exist; for a detailed review of methods and databases refer to Hooper et al. 133, and the EURASNET website 134, respectively. Despite much work in this field, it remains challenging to link the observed changes in splicing regulation with their regulators, such as RNA-binding proteins. In the case of RBPs, one approach is to profile cells with a regulator of interest either silenced or deleted, and compare against the wild-type. RIP and CLIP have been used to match observed changes in splicing to the putative binding sites identified, as has been done for example for Nova 13, hnRNP proteins (namely, hnRNP C 14, H1 116, L 135, A1, A2, A2B1, F, M, U 136), TDP43 137, Fox 138, 139, PTB 140, 141, Mbnl1 142, TIA1, and TIAL1 143. However, the analysis is generally ad-hoc; no effective computational tools yet exist for linking functional assays such as RNA-seq with binding assays such as RIP- or CLIP-seq. One main reason for this problem is that observing binding activities of an RBPs according to RIP or CLIP experiments is not an evidence of direct binding.

Alternative poly-adenylation

Poly-adenylation is the addition of a stretch of adenosine nucleotides to the end of RNA 

molecules. This polyA tail aids nuclear export and translation, and protects the transcript 

from degradation. The point at which the RNA is cleaved and the tail is added can vary – a 

mechanism known as alternative polyadenylation (APA). APA can result in mRNAs with 

differences in coding sequence and 3′UTR, contributing to altered regulation, function, 

stability, localization, and translational efficiency 144. Although alternative polyA sites, that 

are situated between coding exons, can lead to isoforms encoding different proteins 145, 
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more often APA events result in shorter 3′UTRs which lack sequences that are targets of 

microRNAs and RNA-binding proteins 146. The earliest examples of APA were described in 

the mRNAs of IgM and DHFR 147, 148. Subsequently, EST databases and microarray 

analyses allowed the identification of several other APA sites 149, 150. Recent RNAseq 

methods have enormously improved our understanding of APA 151.

Genomic studies have shown that APA is a widespread phenomenon in metazoan genomes. 

For example, about 70% of mammalian genes and about 50% of the genes in flies and 

worms are subjected to APA 146, 152, 153. This mechanism is known to regulate a range of 

biological processes, often associated with development, cellular differentiation and 

proliferation. Shortened 3′ UTRs due to alternative poly-adenylation are associated with 

increased pluripotency and cell proliferation 154, 155, and relaxation of microRNA repression 

of oncogenes 156.

Computational methods for the prediction of alternative polyadenylation are mainly based 

on the Direct RNA Sequencing (DRS) technology 157, in which RNA molecules are 

sequenced without prior conversion to cDNA or the need for biasing ligation or 

amplification steps 157. This method was employed to develop a map of over 1 million 

polyA sites in major cancers and tumor cell lines 158, 159. An alternative method, PolyA-seq, 

allows for the high-throughput sequencing of the 3′ ends of polyadenylated transcripts, and 

has been used to obtain a global map of polyadenylation sites in human, rhesus, dog, mouse, 

and rat 153. Purely computational methods for predicting the locations of polyA signals also 

exist, such as the classification-based method polyA-predict, which was used to construct a 

database of predicted sites 160. Other databases of polyA sites include PACdb 161 and 

PolyA_DB 162.

Stability and decay

Regulation of mRNA stability and decay

Another major contributor to expression regulation is mRNA degradation which has also 

been linked to several diseases163. Two major regulatory routes control mRNA decay: 

quality control mechanisms eliminate the production of aberrant protein products while 

another group of mechanisms influence mRNA life time with the main purpose of 

controlling protein abundance.

A prevalent example of degradation for quality control is Nonsense Mediated Decay 

(NMD), which eliminates mRNAs that prematurely terminate translation 107. It can be 

regulated in multiple ways, such as relative concentration and phosphorylation of NMD 

factors and miRNAs – a detailed review is provided by Kervestin et al. 164.

Another important mechanism is the ARE-mediated mRNA decay. It is predicted that 9% of 

the human transcriptome contains ARE elements in the 3′UTR; these are characteristic short 

AU rich or U-rich sequences 165. ARE-containing mRNAs have been implicated in 

important physiological functions as well as diseases and tumorigenesis 166. Several RBPs 

like TTP, BRF1, KSRP and AUF1 interact with ARE-sequences and help recruit 

degradative enzymes. Another group of RBPs, which include the highly studied HuR, binds 
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ARE elements and increase their stability167. These ARE binding proteins have their 

activities modulated by cell signaling, phosphorylation and cellular localization 168, 169. For 

a comprehensive review on mRNA decay see 170.

Transcriptome-wide profiling and computational tools

Transcriptome-wide analysis of mRNA decay generally relies on time-series data in which 

mRNA levels are measured at different time points 171. For example, data from genomic 

run-on experiments is used by the computational tool mRNAStab to determine mRNA 

stability by calculating mRNA half-lives 172. Dölken et al. 173 developed a pioneering 

approach to separate total cellular RNA into newly transcribed and preexisting RNA upon 

metabolic labeling. Other methods are based on Dynamic Transcriptome Analysis 

(DTA) 174 to calculate mRNA half-lives 175. From a functional perspective, the influence of 

RNA sequence and structural elements on mRNA stability and other post-transcriptional 

regulatory mechanisms has been the subject of recent studies 176. For instance, TEISER 177 

is a computational framework to calculate the correlation between the presence or absence 

of sequence and structural motifs with experimentally determined mRNA stability. MIST-

Seq (Measurement of Isoform-Specific Turnover using Sequencing) is another recently 

introduced method designed to estimate the decay rate of a population of RNAs 

accurately 178. Its application revealed that even minor differences in sequence composition 

could lead to large changes in decay rates between isoforms, highlighting the functional 

effect of particular 3′ UTR elements on mRNA stability. Similar studies have been carried 

out in yeast, comparing mRNA isoform half-lives across different isoforms of particular 

genes and inferring biological functions for particular sequence elements 179.

Micro-RNA biogenesis and function in mRNA decay

Over the last decade though, probably the most heavily studied mechanism for regulating 

mRNA levels has been through micro-RNAs (miRNAs). Micro-RNAs regulate gene 

expression by base-pairing with complementary sequences in mRNAs 180. To accomplish 

this, miRNAs rely on an Argonaute protein to form a complex, called the RNA-induced 

silencing complex (RISC) that facilitates the binding of miRNAs to mRNAs, and their gene 

silencing function. However, the actual mediators of gene silencing are members of the 

GW182 protein family, which regulate all downstream steps in gene silencing 181–186. 

Watson-Crick base-pairing between the miRNA and target mRNA determines the specificity 

of the complex, while the Argonaute protein exerts the gene regulatory function 187. A given 

miRNA can have hundreds of targets and a given gene can be regulated by multiple 

miRNAs. A more comprehensive review on the mechanisms of miRNA gene regulation is 

presented elsewhere 188. The end result of miRNA-mediated gene regulation is reduced 

protein output from the cognate mRNA92.

The most successful methods to date for computational identification of miRNA binding 

sites have been miRanda 189, TargetScan 190, and PicTar 191. miRanda uses a dynamic 

programming algorithm to search for complementarity matches between miRNAs and 3′ 

UTRs. For each match, it estimates the stability of interaction using thermodynamic 

calculation of the complex free energy and calculates a conservation score with closely 

related species 189. Validations have shown this approach to be highly successful. 
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TargetScan 190 takes a similar approach based on the thermodynamics of RNA-RNA 

interactions and comparative sequence analysis to predict miRNA targets conserved 

between species. The algorithm in PicTar is based on Ahab 192, 193, which is a probabilistic 

algorithm for the identification of combinations of transcription factor binding sites 190 and 

identifies common targets of microRNAs in eight vertebrate genomes.

Several research groups have developed databases of miRNA target sites. ExprTargetDB 194 

is a database obtained using an integrative approach combining the results form TargetScan, 

miRanda, and PicTar. Other databases include miRBase 195, the repository for miRNA gene 

set annotations and TarBase 196, which is a collection of miRNA gene interactions coupled 

with experimental observations for any listed interaction. STarMir 197 is a web-server that 

predicts miRNA binding sites and computes several other features of the targets such as 

consensus sequence, thermodynamic and target structure to calculate a measure of 

confidence for each predicted site.

Micro-RNAs act in concert with RBPs. Some databases leverage this for greater accuracy. 

For instance, Starbase 198, which uses CLIP experiments to compile a set of computationally 

predicted miRNA target sites for several species. They also filter false positive miRNA 

target sites, which can be used for the detection of false negative binding sites absent from 

current prediction sets. Another database employing CLIP-seq data is doRiNA 199, which 

uses PicTar 191, and offers the advantage of easy visualization via the UCSC genome 

browser. Target prediction algorithms for miRNAs that rely on a trusted set of miRNA 

target sites can greatly benefit from such a feature 176.

Translation

Translation and its role in biological processes

Translation regulation plays an important role in many biological processes 200–202. It 

accounts for up to 30% of variation in protein expression in both yeast 203 and mammalian 

cells 204. Certain cell types are even more reliant on post-transcriptional regulation than 

others. Examples include blood platelets, which lack nuclei, so their cellular responses must 

be modulated post-transcriptionally, and the final stages of sperm development, where 

transcription is silenced 205, 206. Translation regulation is also essential in development. 

During early embryogenesis it controls embryonic axis, body patterning and cell fate, as 

transcription is largely quiescent at this stage 207. Since translation reacts faster than 

transcription, it often forms the basis for rapid responses to environmental changes 202.

Due to its important role in cellular biology, translation is also recognized as a nexus 

susceptible to disruption in diseases. For example, abnormal translation is now a recognized 

characteristic of tumor cells and a potential target for therapy 208. Elevated levels of the 

translation initiation factor elF4E have been found in many cancer cell lines and tumors, and 

over-expression in rodent cells results in malignancies 209. Close to 60% of the mRNAs 

classified as proto-oncogenes have atypical 5′UTRs with complex structure and high GC 

content, hindering ribosome binding 210. There are implications for understanding cancer 

treatment as well. Radiotherapy is the preferred approach for many tumor types. Genome-
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wide analyses of irradiated cells revealed that the number of genes with translation affected 

by radiation is close to 10-fold greater than those with altered transcription 203.

Methods and challenges

Genome-scale knowledge of translation regulation has lagged behind that of transcription, 

despite its central role. Integrative analysis of RNA-seq and shotgun proteomics and 

comparison of protein to mRNA concentrations is one approach to estimate translation 

efficiency 211. However, this approach is limited, for example by the number of genes 

covered by proteomics analysis and ignorance of protein degradation. More direct 

approaches use ribosome binding to mRNAs as a proxy of translation efficiency. For 

decades polysome profiling has been used to study translation regulation. This method is 

based on separation of mRNAs that are heavily loaded with ribosome from free mRNAs 

using ultracentrifugation on sucrose gradients. Coupling polysomal profiling and 

microarrays or RNA-seq enable translation studies to enter the world of genomics 212, 213. In 

recent years, the field has experienced a dramatic boost with the advent of ribosome 

profiling 6.

Ribosome profiling

Ribosome profiling (RP) is a relatively new method that promises to provide researchers 

with quantitative information about the relative number and locations of ribosomes bound to 

RNA 6. In the RP method, ribosome-protected mRNA fragments are sequenced deeply. 

Figure 2 demonstrates the detailed steps in this protocol. RP can be used for examining 

translational control in a range of settings, from basic mechanistic investigations to studies 

of disease and drug treatments 214, 215. It provides an excellent tool to investigate, discover 

and catalog translational products present in a cell type at single-nucleotide resolution. 

Despite its challenging protocol, the RP technology is now more and more used, and 

computational analysis tools are under development. Currently, the number and position of 

reads is used to estimate ribosome binding.

A fundamental contribution of RP has been the identification of open reading frames 

(ORFs). An ORF is a segment of an mRNA, bounded by a translation initiation site (TIS) 

and translation termination site (TTS), which causes formation of the elongation-competent 

80S ribosome complex 216. Identifying ORFs is one of the classical analysis problems of 

computational genomics 217. HMMs have been used to identify ORFs for more than 20 

years 218, and have done exceptionally well due to their flexibility and the natural sequential 

dependence within ORFs. The most sophisticated ORF-predicting HMMs were developed in 

the context of determining the complete gene structure (promoter, exon, intron, etc.) 219.

However, factors such as transcripts with multiple ORFs, internal ribosome entry sites, leaky 

translation, ribosome shunting, and near-cognate start codons make the purely 

computational identification of ORFs problematic, as evidenced by the discovery of many 

novel ORFs by RP studies 220–223. Despite the success of RP, no public tools are available 

to date. Many studies simply assume known ORFs224. Those that predict them rely on read 

patterns in ribosome profiling data from samples treated with elongation inhibitors, which 

cause ribosome arrest at the TIS (Figure 3). Ingolia et al. 222 employed a classification 
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approach to provide genome-wide maps of protein synthesis. Lee et al. 223 defined a 

measure based on the number of reads at each position and the total number of reads on the 

same transcript in their data to identify peaks of ribosome activities and therefore obtain a 

global map of translation initiation sites in mammalian cells. Fritsch et al. 221 employed a 

neural network method for genome-wide identification of novel upstream ORFs in human. 

Stern-Ginossar et al. 225 used a method similar to Ingolia et al. 222 to discover diverse short 

reading frames in human Cytomegalovirus. Clear read patterns denote both TIS and stop 

codons in untreated samples too, but have not so far been leveraged to improve our 

definition of ORFs.

Another complication is that elongation-inhibited samples only approximately identify the 

TIS, since the start of the reads marking the protected fragment is offset from the A-site – by 

about 12 nucleotides generally 223, 226, 227. The TIS is then determined by searching for a 

sequence (codon) nearby, which requires an existing model and precludes unbiased TIS 

characterization. Existing methods for detecting the read-pattern indicative of TIS in RP data 

have been trained on known exemplars 221, 222, which may not always be available and 

biases towards sites similar to those already known.

Identification of ORFs also opens up the possibility of finding and characterizing regulatory 

reading frames. Many mRNAs contain ORFs upstream of the genic ORF, called uORFs, 

which also engage ribosomes 216, 228. Whether uORFs produce viable proteins with any 

function remains open, though the fact that they regulate translation of their downstream 

genic counterparts is now well established through several recent studies 216, 228–231.

RP analysis provides several measures of translation regulation. It reports the number of 

mRNAs bound by ribosomes compared to unbound mRNAs (occupancy), it reports the total 

number of ribosomes per mRNA (density), and the ribosome position at nucleotide 

resolution. While these data are insufficient to calculate actual rates of translation, they serve 

as a detailed proxy of translation efficiency per gene. Mass-spectrometry based approaches 

have recently provided methods to measure actual translation rates 211, 232, but in contrast to 

RP, these methods only cover a fraction of the human genome. To the best of our knowledge 

no comparison of RP and actual protein expression levels exists to-date.

Via the clever use of time-series data and drug treatments that inhibit translation initiation, 

RP can also provide insights into translation elongation speed using so-called “run-off” 

experiments 222. Following treatment, ribosomes inside active ORFs will move away from 

the TIS leaving a “depleted” region, where RP reads are only observed at the noise level. In 

addition, we can also define the unaffected region, where ribosomes still exist, and the 

“depleting” region, where some intermediate fraction of messages have been depleted of 

ribosomes (i.e. stochastic variation in speed between molecules with the same ORF). 

Analysis of the position and lengths of these regions after specific treatment times provides 

estimates of elongation speed.

Despite the successes of RP, there are a number of outstanding computational challenges. 

One major challenge is correctly adjusting for ribosome pausing. Protein synthesis by 

ribosomes takes place at non-uniform speeds between ORFs, and also with varying speeds 
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within an ORF; one extreme is pausing 227, 233, 234. Metrics aimed at measuring translation 

levels must therefore be adjusted to remove the influence of stalled ribosomes. These might 

be stalled preinitiation complexes, ribosomes paused during elongation or awaiting release 

upon termination. Because these ribosomes are not actively translating, they do not 

contribute to protein levels. Previous studies either ignore the pausing phenomenon, or 

assume important pausing happens near TIS and stop sites, discarding all reads falling 

within a fixed distance to these. This discards information, alters the effective size of the 

region when normalizing, and cannot be done for short coding sequences.

Conclusion

Controlled and coordinated binding of one or more RNA binding proteins or miRNAs is the 

key mechanism that drives co- and post-transcriptional regulation of gene expression. These 

processes are often complex, inter-related, and dynamic in terms of their timing. Efforts to 

understand them at global scale therefore require multiple lines of investigation, and 

necessitate a range of computational methods to interpret the resultant data. Transcriptome-

wide profiling of co- and post-transcriptional regulation is still a young field, and the 

development of computational tools to complement the emerging biological assays is 

pending. Some fundamental problems still exist. For example it remains unclear what 

proportion of sites identified in CLIP or RIP are actual binding sites. Moreover, our 

understanding of what makes a functional RBP binding site, as opposed to one that has little 

or no functional impact is still thin. As a result, there are no effective computational tools for 

determining whether a given RIP- or CLIP-seq site represents functional binding or not. 

Nevertheless, substantial progress has been made and a range of methods aimed both at 

fundamental processing of data, and the more high-level goal of understanding specific 

biological processes are now available. These are supplemented by a growing collection of 

databases and online resources.

Moving forward, new biological questions will be asked. Questions aimed at expanding our 

understanding of the interactions between regulators, regulatory networks, the timing of 

events, and how perturbation of the cellular state affects them. These questions will drive the 

next generation of computational methods. One key issue will be the development of tools 

that effectively handle multi-factorial experimental designs, with multiple replicates, and are 

able to leverage the additional statistical information they bring. First studies exist which 

combine several of these large-scale approaches. For example, to distinguish functional from 

non-functional RBP binding sites, proteomics studies have been combined with RIP-chip 

and CLIP experiments to characterize the translation regulators. Other efforts combine the 

analysis of miRNAs with proteome, transcriptome or translatome profiling. As more and 

more studies on multi-dimensional approaches arise, we need computational methods to 

integrate and analyze these data. In recent years there has been some studies to gain insight 

into functions of RBPs by studying mRNA targets of particular RBPs obtained by RIP or 

CLIP together with changes in mRNA stability or splicing and before and after knockdown 

of that specific RBP235. These approaches will help to drive the consolidation of information 

about co- and post-transcriptional gene regulation into more holistic and comprehensive 

models.
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Figure 1. 
Summary of post-transcriptional regulation processes and corresponding computational 

methods.
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Figure 2. (A) Overview of ribosomal profiling (RP) experiments. (B) Detailed steps in the ArtSeq 
protocol for ribosomal profiling
The protocol starts with cell fragmentation; the resulting cell extract is submitted to nuclease 

digestion, which will generate ribosome-protected RNA fragments. Ribosome-RNA 

complexes are purified using gel filtration columns (SV400 samples) or sucrose cushion 

(sucrose samples), followed by RNA extraction and elimination of ribosomal RNAs 

(rRNA). rRNA-depleted samples are submitted to electrophoresis, and ribosome-protected 

fragments (about 35 nt long) are eluted from gel. These RNAs are used as templates for 

library preparation and sequencing 236. Figure adapted from 237.
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Figure 3. Read profiles of untreated and harringtonine-treated RP data
The genic ORF and two uORFs in the Nanog transcript are shown. Start codons are 

highlighted, and the offset of the 5′ end of reads is indicated.
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