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A B S T R A C T

Purpose
Current diagnostic tests for diffuse large B-cell lymphoma use the updated WHO criteria based on
biologic, morphologic, and clinical heterogeneity. We propose a refined classification system
based on subset-specific B-cell–associated gene signatures (BAGS) in the normal B-cell hierarchy,
hypothesizing that it can provide new biologic insight and diagnostic and prognostic value.

Patients and Methods
We combined fluorescence-activated cell sorting, gene expression profiling, and statistical
modeling to generate BAGS for naive, centrocyte, centroblast, memory, and plasmablast B cells
from normal human tonsils. The impact of BAGS-assigned subtyping was analyzed using five
clinical cohorts (treated with cyclophosphamide, doxorubicin, vincristine, and prednisone [CHOP],
n � 270; treated with rituximab plus CHOP [R-CHOP], n � 869) gathered across geographic
regions, time eras, and sampling methods. The analysis estimated subtype frequencies and
drug-specific resistance and included a prognostic meta-analysis of patients treated with first-line
R-CHOP therapy.

Results
Similar BAGS subtype frequencies were assigned across 1,139 samples from five different
cohorts. Among R-CHOP–treated patients, BAGS assignment was significantly associated
with overall survival and progression-free survival within the germinal center B-cell–like
subclass; the centrocyte subtype had a superior prognosis compared with the centroblast
subtype. In agreement with the observed therapeutic outcome, centrocyte subtypes were
estimated as being less resistant than the centroblast subtype to doxorubicin and vincristine.
The centroblast subtype had a complex genotype, whereas the centrocyte subtype had high
TP53 mutation and insertion/deletion frequencies and expressed LMO2, CD58, and stromal-
1–signature and major histocompatibility complex class II–signature genes, which are known
to have a positive impact on prognosis.

Conclusion
Further development of a diagnostic platform using BAGS-assigned subtypes may allow patho-
genetic studies to improve disease management.

J Clin Oncol 33:1379-1388. © 2015 by American Society of Clinical Oncology

INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is consid-
ered to be derived from germinal center cells based
on their histologic features, immunohistochemical
characteristics, and immunoglobulin gene rear-
rangements. Global gene expression profiling allows
alternative determination of cell of origin that re-
flects normal B-cell function and differentiation.

Thus, cell-of-origin assignments enable the catego-
rization of DLBCL into activated B-cell–like (ABC)
and germinal center B-cell–like (GCB) subclasses,
each differing in pathogenesis, signaling pathway
regulation, genetic abnormalities, and survival out-
comes.1 However, this classification is based on only
a fraction of naturally occurring B-cell subsets,
namely germinal center cells containing centroblasts
and centrocytes or in vitro–activated B cells from

JOURNAL OF CLINICAL ONCOLOGY O R I G I N A L R E P O R T

VOLUME 33 � NUMBER 12 � APRIL 20 2015

© 2015 by American Society of Clinical Oncology 1379

http://www.jco.org
mailto:haej@rn.dk
http://dx.doi.org/10.1200/JCO.2014.57.7080


peripheral blood.2 In addition, the ABC and GCB subclasses do not
allow direct identification and isolation of malignant B cells for the
study of heterogeneity and pathogenesis. However, sorting malignant
DLBCL cells based on B-cell differentiation markers indirectly sup-
ports a hierarchical classification3 that recapitulates the spectrum of
physiologic processes, including lineage differentiation and the tran-
scriptional programs of normal lymphopoiesis.

We recently described a procedure for investigating the gene
expression of immunophenotype-based flow-sorted naive, centro-
blast, centrocyte, memory, and plasmablast B cells from human
tonsils.4,5 With statistical modeling, the gene expression profiles can
define subset-specific B-cell–associated gene signatures (BAGS) that,
when applied to clinical tumor samples, allow examination of the
association between DLBCL subtypes and prognosis. This strategy
extends the current cell-of-origin classification and provides a
new tool for generating insight into the stages of clonal differenti-
ation and oncogenesis6,7 and may offer several diagnostic and
prognostic advantages, representing important steps toward indi-
vidualized therapy.

PATIENTS AND METHODS

Normal and Malignant Tissue

Tonsils from eight healthy donors (Health Research Ethics Commit-
tee for North Denmark Region Approval N-20080062MCH; Data Supple-
ment) were sorted by fluorescence-activated cell sorting into five distinct
B-cell subsets (Data Supplement). RNA in the B-cell subset was labeled and
hybridized to Affymetrix GeneChip Human Genome U133 Plus 2.0 Arrays
(Affymetrix, Santa Clara, CA; Data Supplement) and is referred to as the
tonsil data (Data Supplement).

Pretreatment lymphoma tissues (n � 89) were collected during the
diagnostic procedure in accordance with the research protocol accepted by the
Health Research Ethics Committee for North Denmark Region (Approval
N-20100059). The clinical, staging, therapy, and outcome data were registered
in the National Clinical Quality Database for Malignant Lymphoma8,9 (Data
Supplement). Total RNA from tumors was labeled and hybridized to Af-
fymetrix GeneChip Human Genome U133 Plus 2.0 Arrays (Affymetrix; Data
Supplement) and is referred to as CHEPRETRO (Chemotherapy Prediction in
Retrospective Samples).

The CEL files from both the tonsil data and CHEPRETRO were
deposited in the National Center for Biotechnology Information Gene
Expression Omnibus repository (GSE56315) and comply with Minimum
Information About a Microarray Experiment requirements.10 In addition
to CHEPRETRO, we used the following four online data sets: Lymphoma/
Leukemia Molecular Profiling Project (LLMPP) cyclophosphamide, doxo-
rubicin, vincristine, and prednisone (CHOP) and LLMPP rituximab plus
CHOP (R-CHOP)11; International DLBCL Rituximab-CHOP Consor-
tium MD Anderson Project (IDRC)12; and Mayo Clinic, Brigham and
Women’s Hospital, and Dana-Farber Cancer Institute Project (MDFCI)13

(Data Supplement).

Statistical Analysis

All statistical analyses were performed with R version 3.1.114 using Bio-
conductor packages.15 The statistical analysis is summarized here; for full
documentation, see the Data Supplement.16 Before the statistical analysis, the
arrays were background corrected, normalized, and summarized cohort-wise
by robust multichip average.17

The BAGS classification was based on median-centered probe sets from
the tonsil data using regularized multinomial regression with five discrete
outcomes representing B-cell subtypes and the elastic net penalty.18 The reg-
ularization parameters were chosen by cross validation. To compensate for
cohort-wise technical batch effects, each clinical cohort was median centered

and adjusted probe set–wise to have the same variance as in the tonsil data.
Each patient underwent BAGS classification according to the highest predicted
probability score of more than 0.45 or was otherwise unclassified. Both the
robustness of the probe set–wise scaling and the probability cutoff were tested
(Data Supplement).

Survival analyses were performed using the Kaplan-Meier method, log-
rank tests, and simple and multiple covariate Cox proportional hazards regres-
sion. The cohorts were combined into a meta-data set to increase the power of
the study. BAGS was investigated as an independent explanatory variable in
the meta-data set using a Cox proportional hazards model with BAGS, ABC/
GCB classes, the International Prognostic Index (IPI; dichotomized into low
[IPI, 0 to 1] and high [IPI, 2 to 5]), and cohort as potential confounders.
Cohort was not significant and was omitted from the analysis.

Each sample was assigned a drug resistance probability for cyclophosph-
amide (mafosfamide), doxorubicin, and vincristine using resistance gene sig-
nature (REGS) classifiers19-21 (Falgreen et al, submitted for publication).
Briefly, 26 B-cell cancer cell lines were categorized as resistant, intermediate,
and sensitive by systematic in vitro dose-response drug screens.22 REGS clas-
sification was based on cell line gene expression profiles using logistic regres-
sion, with outcomes representing resistant and sensitive cell lines regularized
by the elastic net penalty.18 The regularization parameters were chosen by
leave-one-out cross validation. The chance of complete remission (CR) be-
tween subgroups was compared using relative risk.

The significance level was set to P � .05, and effect estimates were
provided with 95% CIs. P values were adjusted by Holm’s method.23

Biologic Phenotyping

Mutational analysis of MYD88 (L265), CD79B (Y196), and EZH2 (Y641)
included polymerase chain reaction amplification of purified DNA and se-
quencing using previously described primers.24,25 The genotypes of BAGS
subtypes were studied using the Affymetrix Genome-Wide Human SNP Array
6.0 data (Affymetrix)13 of MDFCI CEL files imported into the Partek Genom-
ics Suite’s Copy Number work flow (Partek, St Louis, MO), and the results
were exported as a text file and subsequently loaded into R.14

RESULTS

BAGS Classifier Generation and Clinical

Sample Assignment

The B-cell subset identity was validated by density plots (Fig 1A)
and principal component analysis (Fig 1B) of the intensities of the CD
markers used for fluorescence-activated cell sorting and unsupervised
cluster analysis of gene expression data for classical differentiation and
transcription factor genes (Figs 1C and 1D).26-29 Subset-specific seg-
regation was documented by principal component analysis of the
tonsil data set (Appendix Fig A1, online only).

The B-cell subset classifier with the smallest deviance deter-
mined by cross validation consisted of 327 probe sets representing
223 different genes (Data Supplement). Each B-cell subset signa-
ture contained 54 to 93 probe sets, of which 37 to 76 were unique,
ensuring comparable gene representation for all subsets in the
BAGS classifier.

Lymphoma samples from five independent cohorts (N � 1,139)
of patients with de novo DLBCL8,11-13 were classified into BAGS
subtypes (Data Supplement). The five BAGS subtype frequencies did
not vary significantly between the cohorts (Table 1). We chose 15% of
samples within each cohort to be unclassified, resulting in a probabil-
ity cutoff of approximately 0.45.

The overlap or correspondence between the ABC/GCB classes
and the BAGS subtypes is shown in Table 1. High percentages of
GCB subclasses were assigned as centroblast subtype (30%) or
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Fig 1. Expression of CD markers, transcription factors, and B-cell subset–specific genes. Tonsil B cells were defined as CD20�, CD45�, and CD3– and were further
subdivided according to differential expression of CD10, CD27, CD38, CD44, and CXCR4 into naive cells (blue), centrocytes (purple), centroblasts (green), memory cells
(orange), and plasmablasts (yellow). (A) Normalized histograms of the fluorescence intensities of CD markers based on merged multiparametric flow cytometry
reanalysis of pure sorted populations resulting from five independent sorting procedures. The squares are mean values of the fluorescence intensities for each single
sorted B-cell subset. (B) Principal component analysis of the fluorescence intensities for each sorted cell in all samples. Cells are color coded according to their original
subset. The squares are mean values for each sorted B-cell subset included in the principal component analysis. Surface markers, transcription factors, and B-cell
differentiation–specific genes were identified through a literature review, and their expression across subsets was evaluated. The most varying probe sets were
included in an unsupervised hierarchical clustering analysis (C) of the sorting markers and (D) of transcription factors, surface markers, and B-cell differentiation–specific
genes. The color scale (top) indicates the relative gene expression in each sample, with blue illustrating high gene expression and brown low gene expression.
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centrocyte subtype (50%), whereas ABC did not cluster into spe-
cific subtypes and had a relatively high frequency of unclassified
samples (22%).

Prognostic Impact of Assigned BAGS Subtypes

The BAGS-assigned subtypes in LLMPP, IDRC, and MDFCI
were analyzed collectively in a meta-analysis of the association with out-
comeafterR-CHOPtreatment.30 BAGSassignmenthadsignificantprog-
nostic associations with overall survival (OS) and progression-free
survival (PFS; Fig 2 and Table 2).

The prognostic impact of BAGS subtype was evaluated sepa-
rately in the GCB and ABC subclasses. BAGS subtyping only had an
impact within the GCB subclass (P � .001 for OS and PFS), and the
hazard ratios (HRs) for centrocytes and centroblasts were distinct
(OS: HR, 3.38; 95% CI, 2.08 to 5.50; PFS: HR, 3.18; 95% CI, 1.94 to
5.19). BAGS assignment conferred new superior prognostic infor-
mation to 23% of patients (264 of 1,139 samples) classified as
GCB-centrocyte (GCB-CC) and had an adverse prognostic impact
on 14% of patients (160 of 1,139 samples) classified as GCB-
centroblast (GCB-CB) as evaluated in the 869 R-CHOP–treated
patients in LLMPP, IDRC, and MDFCI.

Cox proportional hazards meta-analysis showed that the BAGS
subtypes added significant prognostic information to the ABC/GCB
subclasses and high and low IPI (Table 2). This finding indicated that
distinct pathogenetic and prognostic knowledge not already explained
by the ABC/GCB classification or IPI could be captured by the BAGS
subtypes. The robustness of the BAGS association with outcome was
evaluated successfully for a wide range of probability cutoffs for the
percentage of unclassified samples (Data Supplement).

Predicting Drug Resistance in

BAGS-Assigned Subtypes

REGS for cyclophosphamide, doxorubicin, and vincristine were
used to assign a probability of drug-specific resistance to individual
samples. The probability of cyclophosphamide-, doxorubicin-, and

vincristine-specific drug resistance was estimated for normal B-cell
subsets (Table 3 and Appendix Fig A2, online only); centroblasts were
predicted to be more resistant to doxorubicin and vincristine than
centrocytes. When tested in all five clinical cohorts in a meta-analysis
(Table 3 and Appendix Fig A3, online only), the centrocyte and cen-
troblast subtypes had resistance patterns as seen in normal B-cell
subsets. In concordance with the survival analysis (Fig 2), the major
differences in estimated doxorubicin and vincristine resistance were
observed between GCB-CB and GCB-CC (Table 3 and Appendix Figs
A3H and A3I). The predicted drug response was supported by a 37%
greater chance of CR30 in GCB-CC than in GCB-CB (relative risk,
1.37; 95% CI, 1.14 to 1.65) as evaluated in LLMPP and IDRC.

Characterization of the Genotypes of BAGS Subtypes

The overall ratios of copy number alterations were examined
across all BAGS subtypes and ABC/GCB/unclassified subclasses in the
MDFCI data set by counting the base pairs affected by deletions or
amplifications in each sample (Appendix Table A1, online only).
Focusing on the germinal center subtypes, GCB-CB had more altera-
tions than GCB-CC (11.9% v 6.9%, respectively).

Monti et al13 used the Genomic Identification of Significant
Targets in Cancer algorithm to identify recurrent chromosomal peaks
and regions with copy number alterations. The distribution of altera-
tions between these chromosomal positions and the assigned
GCB-CC and GCB-CB subtypes in the MDFCI data set (Fig 3 and
Appendix Fig A4, online only) resulted in an overrepresentation of
aberrations in GCB-CB affecting Chr6q, Chr13q14.2, and Chr17p13.1
(Fig 3). Interestingly, Chr17p13.1 containing TP53, KDM6B, and
RPL26 was deleted more frequently in GCB-CB than in GCB-CC (P �
.039, Fig 3C).

Additional genetic support for BAGS classification was ob-
served after the application of clean/complex genotypes, which
were defined by the absence or presence of copy number aberrations
that alter the p53 pathway and cell cycle components,13 because the
centroblast subtype never (zero of 13 samples) had a clean genotype

Table 1. BAGS Classification of Clinical Samples

Clinical Cohort and
ABC/GCB Class

Naive Centroblast Centrocyte Memory Plasmablast Unclassified Total

No. of
Samples %

No. of
Samples %

No. of
Samples %

No. of
Samples %

No. of
Samples %

No. of
Samples %

No. of
Samples %

Clinical cohort
CHEPRETRO, CHOP 2 2 18 20 35 39 4 4 16 18 14 16 89 100
LLMPP, CHOP 10 6 39 22 59 33 25 14 21 12 27 15 181 100
LLMPP, R-CHOP 14 6 41 18 89 38 22 9 32 14 35 15 233 100
IDRC, R-CHOP 32 7 111 24 161 34 44 9 49 10 71 15 468 100
MDFCI, R-CHOP 13 8 38 23 61 36 9 5 21 12 26 15 168 100

Total 71 6 247 22 405 36 104 9 139 12 173 15 1139 100
ABC/GCB class

ABC 41 9 62 14 96 21 75 16 82 18 103 22 459 100
GCB 20 4 160 30 264 50 10 2 28 5 45 9 527 100
Unclassified 9 6 23 15 45 30 19 13 29 19 25 17 150 100

NOTE. First, the distributions and frequencies of assigned BAGS subtypes across five different clinical cohorts are shown. Tests for significantly different
distributions across data sets were done using Pearson’s �2 (�2 � 21, df � 20, and P � .4). Second, BAGS assignment in the five clinical data sets is stratified
according to ABC or GCB classification.
Abbreviations: ABC, activated B-cell–like; BAGS, B-cell–associated gene signature; CHEPRETRO, Chemotherapy Prediction in Retrospective Samples; CHOP,

cyclophosphamide, doxorubicin, vincristine, and prednisone; GCB, germinal center B-cell–like; IDRC, International Diffuse Large B-Cell Lymphoma Rituximab-CHOP
Consortium MD Anderson Project; LLMPP, Lymphoma/Leukemia Molecular Profiling Project; MDFCI, Mayo Clinic, Brigham and Women’s Hospital, and Dana-Farber
Cancer Institute Project; R-CHOP, rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone.
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(Appendix Table A1). TP53 mutation and insertion/deletion status
also correlated with BAGS subtype (Appendix Table A1); centrocytes
were targetedmost frequently(P� .043).TheCHEPRETROdatasetwas
analyzed for mutations in CD79B, MYD88, and EZH2, confirming the
distribution within the ABC/GCB subclasses24,25,31-36 but with no associ-
ation with specific BAGS subtypes (Appendix Table A1).

Characterization of Gene Expression in

BAGS-Assigned Subtypes

Determining the differential expression of individual probe
sets by comparing GCB-CC versus GCB-CB, and GCB-CC ver-
sus GCB-CB, ABC-CC, and ABC-CB within IDRC, revealed
known strong predictors of superior outcome (Data Supplement),
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Fig 2. Meta-analysis of the prognostic impact of assigned B-cell–associated gene signature (BAGS) subtypes. (A, C, E) Overall survival and (B, D, F) progression-free
survival were compared between BAGS subtypes for patients treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). For
overall survival, the following three cohorts were used: Lymphoma/Leukemia Molecular Profiling Project (LLMPP) R-CHOP, International Diffuse Large B-Cell
Lymphoma Rituximab-CHOP Consortium MD Anderson Project (IDRC), and Mayo Clinic, Brigham and Women’s Hospital, and Dana-Farber Cancer Institute Project
(MDFCI). For progression-free survival, only LLMPP R-CHOP and IDRC were used. The comparisons were performed (A, B) overall and according to the (C, D) activated
B-cell–like and (E, F) germinal center B-cell–like subclasses based on Kaplan-Meier survival curves, log-rank test P values, and hazard ratios. For clarity, the naive and
unclassified cells were excluded from the Kaplan-Meier analysis. CB, centroblast; CC, centrocyte; M, memory; PB, plasmablast.
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particularly LMO2,37 which was most significantly upregulated in
GCB-CC (P � .001). Loss of gene expression within the major histo-
compatibility complex class II signature was associated with unfavor-
able prognosis,38 and several members of the HLA family (Data
Supplement) were downregulated in GCB-CB compared with GCB-
CC. Also CD58, an important marker of immune surveillance
through T cells and natural killer cells, was highly expressed in GCB-
CC. Less directly, GCB-CC had high expression levels of IL13RA1, a
gene known to be highly expressed in CD30� DLBCLs with favorable
prognosis.39,40 The unfavorable prognostic marker FOXP1 was signif-
icantly downregulated in GCB-CCs, and several members of the
stromal-1 favorable-prognosis gene signature were upregulated in
GCB-CC11 (Data Supplement). Notably, GCB-CC had significantly
higher expression of MS4A1 (CD20), the target of rituximab, than
GCB-CB.

DISCUSSION

Here, we combined methodologies to visualize the distinct cellular
subsets of the tonsil and generated a classifier that assigns individual
DLBCLs into BAGS-defined naive, centroblast, centrocyte, memory,

or plasmablast subtypes. We hypothesized that this assignment of new
subtypes would allow hierarchical DLBCL classification that associates
normal B-cell phenotype subsets with prognosis.

The BAGS classifier assigned identical frequencies to individual
DLBCL samples from five cohorts across geographic regions, time eras,
and sampling methods, including both formalin-fixed12 paraffin-
embedded and optimal cutting temperature compound.8,11,13 In a
meta-analysis of 871 patients with DLBCL treated with R-CHOP, the
BAGS classification demonstrated a significant prognostic association
with OS and PFS adjusted for ABC/GCB classification and IPI. When
the prognostic impact of BAGS subtype was evaluated separately in the
ABC and GCB subclasses, only the GCB subclass achieved prognostic
stratification, conferring superior prognosis to GCB-CC compared
with GCB-CB. In agreement with the therapeutic outcome, the REGS
classification for doxorubicin and vincristine indicated that centro-
blasts are more resistant than centrocytes. Again, the discrepancies in
drug efficiency were most pronounced within the GCB subclass. Con-
sistently, the CR rate after R-CHOP was higher for centrocytes than
centroblasts (81% v 59%, respectively).

The unfavorable GCB-CB subtype had high total copy number
aberrations and a complex genotype associated with deregulated p53

Table 2. BAGS Assignment and Outcome

Outcome

Simple Cox Regression Multiple Cox Regression

Hazard
Ratio 95% CI P

Hazard
Ratio 95% CI P

OS: IDRC, MDFCI, and LLMPP R-CHOP (n � 506, No. of events � 147)
BAGS subtype

Centroblast 1 1
Centrocyte 0.41 0.28 to 0.60 � .001 0.48 0.33 to 0.71 � .001
Memory 0.74 0.44 to 1.24 .26 0.58 0.34 to 0.99 .047
Plasmablast 0.56 0.34 to 0.94 .028 0.52 0.31 to 0.88 .016

ABC/GCB class
ABC 1 1
GCB 0.53 0.37 to 0.75 � .001 0.62 0.43 to 0.90 .013
Unclassified 0.63 0.36 to 1.10 .1 0.66 0.38 to 1.15 .14

IPI
0-1 1 1
2-5 4.23 2.73 to 6.56 � .001 3.76 2.42 to 5.86 � .001

PFS: IDRC and LLMPP R-CHOP (n � 456, No. of events � 145)
BAGS subtype

Centroblast 1 1
Centrocyte 0.47 0.32 to 0.69 � .001 0.55 0.37 to 0.82 .0029
Memory 0.79 0.47 to 1.33 .37 0.63 0.37 to 1.08 .095
Plasmablast 0.77 0.47 to 1.25 .29 0.73 0.44 to 1.20 .21

ABC/GCB class
ABC 1 1
GCB 0.50 0.36 to 0.71 � .001 0.65 0.44 to 0.95 .026
Unclassified 0.59 0.33 to 1.07 .083 0.63 0.35 to 1.13 .12

IPI
0-1 1 1
2-5 3.54 2.36 to 5.33 � .001 3.13 2.07 to 4.74 � .001

NOTE. BAGS assignment and outcome were analyzed by Cox proportional hazards regression analysis for OS and PFS. For OS, the three cohorts of LLMPP
R-CHOP, IDRC, and MDFCI were used, whereas only LLMPP R-CHOP and IDRC were used for PFS. The analysis excluded the naive and unclassified subsets but
included the unclassified cases from the ABC/GCB classification.
Abbreviations: ABC, activated B-cell–like; BAGS, B-cell–associated gene signature; GCB, germinal center B-cell–like; IDRC, International Diffuse Large B-Cell

Lymphoma Rituximab-CHOP Consortium MD Anderson Project; IPI, International Prognostic Index; LLMPP, Lymphoma/Leukemia Molecular Profiling Project;
MDFCI, Mayo Clinic, Brigham and Women’s Hospital, and Dana-Farber Cancer Institute Project; OS, overall survival; PFS, progression-free survival; R-CHOP,
rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone.
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and cell cycle activity.13 GCB-CC had low total copy number aberra-
tions, high TP53 mutation and insertion/deletion frequencies, and
high expression of LMO2, CD58, and stromal-1–signature and major
histocompatibility complex class II–signature genes with known fa-
vorable prognostic impact.11,37,38,41

Collectively, the results indicate that the BAGS classes have dif-
ferent clinical courses, drug resistance mechanisms, and molecular
pathogenesis. However, further studies are needed to confirm the
observations related to diagnostic phenotyping and individual therapy
in DLBCL, because they involve a range of statistical, biologic, and
clinical considerations.

In this study, restricted multinomial regression was used to esti-
mate the probability of each sample being one of five BAGS subtypes.
Samples with low classification probabilities were considered unclas-
sified. The frequency of unclassified samples in other gene expression–
based cell-of-origin classifications is approximately 15%.11 To ensure
that 85% of the samples were classified by BAGS, a pragmatic proba-
bility cutoff of 0.45 was used, which is well above the random assign-
ment probability of one out of five. The robustness of the BAGS
association with outcome was evaluated successfully for a wide range
of probability cutoffs.

This study followed various guidelines of omics-directed
medicine10,42,43 whenever possible. However, the BAGS classifier
used cohort-based normalization, median centering, and scaling,
implying that it cannot easily be applied in a clinical setting with
one patient at a time. Solutions to this problem have been sug-
gested elsewhere44 and were not pursued in this study. Moreover,
the median centering and scaling transformation could raise con-
cerns that the BAGS-specific probe sets, which are not expressed in
the clinical samples, are generally magnified and blurring the pic-

ture. We investigated this concern by comparing the empirical
distribution of the probe sets in the BAGS classifier in the tonsil
data set with the clinical data sets by two-cohort quantile-quantile
plots (Data Supplement). The skewness of the IDRC data set did
not raise concerns because it had the same underlying BAGS sub-
type frequency distribution. The entire workflow was analyzed
without the probe set–wise scaling, resulting in a classification
accuracy of 89%, further confirming the robustness of the pro-
posed BAGS classification workflow.

The BAGS definition and assignment of malignant sub-
types to DLBCL may explain interindividual disease heteroge-
neity, which likely reflects the often overlooked association
between cellular differentiation and oncogenesis.6,7 Recently, a
standardized n-dimensional flow cytometric immunophenotyp-
ing of hematologic malignancies, including germinal and post-
germinal malignancies, illustrated the potential clinical use of
surface-expressed markers to identify diagnostic tumor clones.45

Accordingly, an integrative analysis of sorted malignant DLBCL
cells based on B-cell differentiation markers and gene expression
profiling documented normal B-lineage differentiation and disease-
specific changes.3

From gene expression– based ABC/GCB classification of
DLBCL, multiple genetic lesions of pathogenetic significance have
been described, illustrating subclasses that rely on distinct onco-
genic mechanisms.33,46,47 The stratification of GCB subclasses into
naturally occurring centrocyte and centroblast subtypes may sim-
ilarly contribute to the pathogenic understanding of DLBCL.

In addition to the possible genetic variations between GCB-CC
and GCB-CB, the GCB-CC expression of LMO2 was high and that of
LEF1 low compared with GCB-CB. High LMO2 expression in
GCB-CC could suppress recycling of centrocytes to centroblasts via
LEF1,48,49 with high proliferation rates and decreased sensing of and
response to DNA damage,50,51 or final differentiation of centrocytes
into memory B cells or plasma cells.27 Nuclear LMO2 is part of Tally’s
immunohistochemical classification of GCB/non-GCB,52 and it could
be relevant to incorporate LMO2 in established immunohistochemi-
cal classifiers of DLBCL12,53-55 to separate GCB-CC from GCB-CB.

R-CHOP treatment still forms the backbone of DLBCL treat-
ments. Patients with relapsed or refractory disease have a cure
rate of less than 50%, indicating a large unmet need for novel
therapies in this setting.56-58 Therefore, increasing the efficacy
of first-line treatment and decreasing the risk of early treatment
failure are important from a clinical perspective. In a prospective
phase I/II study with bortezomib plus standard R-CHOP in previ-
ously untreated patients with DLBCL, the lack of a difference in
outcome between the GCB and non-GCB subclasses suggested
that the bortezomib combination preferentially benefits pa-
tients with non-GCB DLBCL.59 In patients with relapsed or
refractory CD20� DLBCL, the response to salvage therapy with
rituximab, dexamethasone, cytarabine, and cisplatin was better in
GCB-like DLBCL compared with the response to rituximab, ifos-
famide, carboplatin, and etoposide (the Collaborative Trial in Re-
lapsed Aggressive Lymphoma [bio-CORAL] study).57 Because the
prognostic impact of BAGS cannot be explained by association
with ABC/GCB or IPI alone, utilization of the prognostic informa-
tion residing in the individual BAGS subtypes at the time of diag-
nosis may be exploited to guide future patient treatment in the
GCB subclass.

Table 3. Difference in Drug Resistance Between Centrocyte and
Centroblast Subtypes

Drug and Sample

Probability of Resistance

P

Centroblast Centrocyte

Mean 95% CI Mean 95% CI

Cyclophosphamide
Normal tonsil 0.48 0.39 to 0.56 0.65 0.56 to 0.74 .0016
Clinical 0.42 0.39 to 0.45 0.50 0.48 to 0.52 � .001
Clinical, ABC 0.49 0.44 to 0.53 0.59 0.55 to 0.62 � .001
Clinical, GCB 0.37 0.34 to 0.41 0.47 0.45 to 0.50 � .001

Doxorubicin
Normal tonsil 0.94 0.82 to 0.98 0.76 0.63 to 0.85 .05
Clinical 0.99 0.98 to 0.99 0.53 0.44 to 0.63 � .001
Clinical, ABC 0.98 0.95 to 0.99 0.88 0.78 to 0.93 .0013
Clinical, GCB 0.99 0.98 to 1.00 0.34 0.25 to 0.46 � .001

Vincristine
Normal tonsil 0.74 0.67 to 0.8 0.65 0.57 to 0.73 .015
Clinical 0.70 0.68 to 0.72 0.51 0.49 to 0.53 � .001
Clinical, ABC 0.70 0.66 to 0.73 0.63 0.59 to 0.66 .0088
Clinical, GCB 0.71 0.67 to 0.74 0.46 0.44 to 0.49 � .001

NOTE. The data represent mean (with 95% CI) probability of tissue being
resistant to the drugs cyclophosphamide, doxorubicin, and vincristine for the
centrocyte and centroblast subtypes in the tonsil data set and for B-cell–
associated gene signature–defined centrocyte and centroblast subtypes
based on all five cohorts. The P values are based on two-sample t tests for the
logit-transformed probabilities. Effect estimates and CIs are obtained by back
transformation from the logit scale.
Abbreviations: ABC, activated B-cell–like; GCB, germinal center B-cell–like.
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We think that our results support the future inclusion of immu-
nophenotyping and gene expression profiling in randomized pro-
spective clinical trials aimed at improving DLBCL treatment. Our
hypothesis is that classification of the phenotypic cell of origin after
gene signature assignment in malignant B-cell disorders should be
assessed for clinical impact by end points, including diagnosis,
prognosis, and prediction of therapeutic outcome. Future studies
will attempt to prove this concept by implementing BAGS in

studies of prognostic and predictive impact using clinical data sets
from national trials.
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Appendix

Table A1. Characterization of the Genotypes of BAGS Subtypes

Genetic Analysis Naive Centroblast Centrocyte Memory Plasmablast Unclassified Total

Base pairs affected by CNA in MDFCI (n � 165), %�

GCB 1.1 11.9 6.9 1 4 8.3
ABC 9.4 10.1 14.2 12.5 4.2 8.6
Unclassified 3.6 8.3 9.7 2.8 2.4 5
Total 6.4 11.2 9.1 8 3.8 7.7

All samples in MDFCI (n � 165), No.
Clean 5 0 7 0 7 4 23
Complex 3 13 20 3 1 4 44
NA 4 23 34 6 13 18 98

GCB samples in MDFCI (n � 75), No.
Clean 1 0 4 0 1 0 6
Complex 0 9 8 0 0 0 17
NA 2 18 20 1 3 8 52

ABC samples in MDFCI (n � 53), No.
Clean 3 0 1 0 6 3 13
Complex 3 2 7 3 1 3 19
NA 1 2 4 2 6 6 21

TP53 status in MDFCI samples (n � 165), No.
Absent 9 32 45 6 19 23 134
Indel 1 0 2 0 0 0 3
Mutant 0 2 12 2 2 3 21
NA 2 2 2 1 0 0 7

Mutation status in CHEPRETRO samples (n � 61-89), No.
MYD88 mutation 1 2 3 0 2 2 10
MYD88 wt 1 11 22 3 7 7 51
EZH2 mutation 0 4 3 0 0 0 7
EZH2 wt 2 14 32 4 16 14 82
CD79B mutation 1 0 2 1 3 1 8
CD79B wt 1 17 29 3 12 11 73

NOTE. The U133 and SNP6 paired samples (n � 165) from MDFCI data set19 were reanalyzed and assigned to BAGS.
Abbreviations: ABC, activated B-cell–like; BAGS, B-cell–associated gene signature; CHEPRETRO, Chemotherapy Prediction in Retrospective Samples; CNA, copy

number alteration; GCB, germinal center B-cell–like; MDFCI, Mayo Clinic, Brigham and Women’s Hospital, and Dana-Farber Cancer Institute Project; NA, not
analyzed; wt, wild type.

�The average percentage of base pairs affected by copy number changes stratified against ABC/GCB classification and BAGS subtype. The human genome was
set to 3 � 109 base pairs.
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Fig A2. Drug-specific resistance of B-cell–associated gene signature subtypes. The probability of resistance in normal tonsil subsets was sorted and analyzed by
microarray. Box plots indicate the estimated probabilities of resistance to (A) cyclophosphamide/mafosfamide, (B) doxorubicin, and (C) vincristine.
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Fig A3. Drug-specific resistance of B-cell–associated gene signature (BAGS) subtypes in all clinical cohorts. Box plots show the probability of resistance versus BAGS
subtype for all clinical cohorts: (A, D, G) cyclophosphamide, (B, E, H) doxorubicin, and (C, F, I) vincristine in (A, B, C) all clinical cohorts, (D, E, F) activated B-cell–like
subclass, and (G, H, I) germinal center B-cell–like subclass.
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Fig A4. Characterization of the genotypes of B-cell–associated gene signature subtypes. Copy number aberrations (CNAs) in the assigned subtypes were found at
various chromosome positions when studied in 165 samples from Mayo Clinic, Brigham and Women’s Hospital, and Dana-Farber Cancer Institute Project (MDFCI) with
Affymetrix Genome-Wide Human SNP Array 6.0 and Affymetrix Gene Chip Human Genome U133 Plus 2.0 Arrays or U133A�B Arrays. (A) Signed log P values
calculated using Fisher’s exact test for the hypothesis of equal proportions of CNA in germinal center B-cell–like (GCB) centrocyte (CC; n � 32) versus GCB-centroblast
(CB; n � 23) in peaks and regions (as defined by Monti et al13) are plotted against the chromosomal position of the region. Crosses and circles denote genomic peaks
and regions, respectively. Color indicates the type of CNA investigated, as follows: amplification (red) or deletion (blue). Values greater than zero indicate more frequent
CNAs in GCB-CC compared with GCB-CB, and vice versa for negative values. The dashed horizontal lines indicate the 95% and 99% acceptance intervals. (B) Signed
log P values calculated based on t test for the hypothesis of no difference in copy number for each probe set in GCB-CC and GCB-CB samples are plotted against the
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