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Abstract

γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the 

longterm, latent phase of infection. During acute infection, specific immune modulatory proteins 

limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as 

those of innate and adaptive immune cells. During latent infection, a restricted gene expression 

program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as 

well as antigenicity of latency-associated proteins. Here, we will review recent progress in our 

understanding of γ-herpesviral immune evasion strategies.

γ-Herpesviruses evolved elaborate strategies to evade and exploit host immune defense 

mechanisms to persist within their hosts. Innate immunity serves as the first line of defense 

against viral infection. The cellular intrinsic innate immune response is achieved through 

signal transduction that initiates pathways to alert neighboring cells (inflammatory 

response), to digest virus (autophagy), or to induce suicide of the infected cells (apoptosis or 

necrosis). The adaptive immune response, conveyed by T cells and B cells, directly targets 

virion particles or virus-infected cells for elimination by phagocytosis and cytotoxic cell-

mediated lysis. As reviewed here, every aspect of the immune response is modulated by γ-

herpesviruses.

Evasion of adaptive cellular immune responses

The fact that T cell depletion by HIV or by iatrogenic treatment leads to reactivation and 

proliferation of γ-herpesviruses, eventually leading to cancers such as KS, strongly suggests 

a key role of T cell control of γ-herpesvirus latency. The switch from acute to latent 

infection is reflected in the T cell response, which initially responds broadly to antigens 

highly expressed during lytic infection, but this short-lived response is then replaced with a 

long-term response to latency-associated antigens [1∙,2]. Limiting antigen expression is thus 

the first and foremost long-term T cell evasion mechanism (Figure 1). Moreover, latency 

© 2013 Elsevier B.V. All rights reserved

Corresponding author: Früh, Klaus (fruehk@ohsu.edu). 

HHS Public Access
Author manuscript
Curr Opin Virol. Author manuscript; available in PMC 2015 April 15.

Published in final edited form as:
Curr Opin Virol. 2013 June ; 3(3): 285–295. doi:10.1016/j.coviro.2013.05.011.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



levels are controlled by T cells since introduction of immunodominant epitopes into latent 

antigens reduces latent viral load [3,4].

Limiting T cell recognition of latently-infected cells seems paramount to maintaining γ-

herpesvirus latency. In the complete absence of gene expression, T cells would not notice 

infected cells since they depend on MHC-I display of viral peptides. However, at least one 

genome maintenance protein is present in all latently infected cells and γ-herpesviruses have 

evolved ingenious methods to protect this Achilles heel from immune exposure [5]. The 

main strategy is to limit the availability of antigenic peptides from latency-associated 

proteins. On a population level, this is achieved by selecting against MHC-I binding motifs 

[6]. Within an infected organism, each virus evolved unique strategies to avoid alerting T-

cells. EBNA-1 of EBV controls its own transcription, translation and degradation to achieve 

minimal protein turnover [5]. Central Gly-Ala repeats encoded by purine-rich codons are 

central for biosynthetic control [5]. In mature EBNA-1 these repeats reduce the rate of 

proteasomal degradation [7] in a position-dependent manner [8]. Gly-Ala repeats 

additionally inhibit EBNA-1 translation initiation thus inhibiting production of defective 

ribosomal products (DRiPs) considered the main source of MHC-I bound peptides [9,10∙,

11]. EBNA-1 mRNA translation might be further restricted by purine-biased codon usage 

[12].

Similar to EBNA-1, the major latency protein LANA-1 of KSHV contains central repeat 

regions that enhance LANA-1 stability and retard protein translation [13]. When fused to a 

heterologous antigen, the central repeat region of LANA-1 prevents antigen presentation 

[14]. Interestingly, inhibition of antigen presentation maps to the CR1 region whereas 

protein levels are regulated by CR2 and CR3 regions [15]. How LANA-1 regulates antigen 

processing in cis is thus still unclear. Even less is known about how non-human γ-

herpesviruses escape T cell clearance during latency, although there is evidence that 

presentation of their respective ORF73 orthologs is limited [4,16].

During lytic infection, global stealth mechanisms limit T cell recognition of virus infected 

cells (Figure 1) Most γ-herpesviruses studied to date (with the notable exception of RRV) 

globally prevent MHC-I antigen presentation as part of the lytic gene expression program 

(for a recent review see [17]). EBV interferes with MHC-I antigen presentation at several 

levels: the protein BNLF2A inhibits peptide transport across the ER membrane by TAP 

[18,19,20∙∙] and thus inhibits antigen presentation of EBV-infected B cells to CD8+ T cells 

[21]. BNLF2A is a small 60AA protein that is post-translationally tail-anchored to the ER-

membrane [22,23]. In addition, MHC-I at the cell surface is endocytosed by BILF1, a 

constitutively signaling G protein coupled receptor [24,25].

KSHV, MHV68 and rhesus fibromatosis herpesvirus (RFHV) hijack members of the 

MARCH transmembrane ubiquitin-ligase family found from yeast to man (for recent 

reviews see: [26,27]). MARCH proteins are transmembrane-spanning and locate to 

subcellular vesicular compartments, including the ER, Golgi, TGN and the plasma-

membrane. They contain a RING-CH-domain structurally and functionally related to the 

RING-domain of E3 ubiquitin-ligases that catalyze the formation of poly-ubiquitin chains in 

the presence of the ubiquitin-activating and ubiquitin-conjugating enzymes. KSHV encodes 
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two MARCH-homologs, K3 and K5, whereas MHV68 and RFHV encode a single homolog 

[28]. All of these proteins share the ability to downregulate MHC-I molecules suggesting 

that inhibition of antigen presentation to CD8+ T cells is the central function of this protein 

family. In addition, co-stimulatory molecules such as ICAM-1 and B7-2 as well as NK-cell 

ligands and cell adhesion molecules are targeted, particularly by K5 (reviewed in Ref. [29]). 

More recently, it was also shown that KSHV-K5 downregulates receptor tyrosine kinases 

and the antiviral protein BST2/Tetherin [30,31]. In vivo, MHC-I-downregulation by the 

MARCH-homolog MK3 of MHV68 did not alter the course of primary infection whereas, in 

the absence of MK3, latent virus levels were reduced in the spleen, which could be rescued 

by CD8+ T cell depletion [32]. Thus, MHC-I inhibition promotes optimal seeding of latency 

sites but does not prevent the induction of a robust and broad T cell response during lytic 

infection [1∙,2]. Moreover, under extreme T cell pressure, the virus is able to mutate 

immunodominant epitopes [33∙].

In addition to CD8+ T cells, MHC-II restricted CD4+ T cells are a major factor in 

controlling the establishment and maintenance of γ-herpesvirus latency [34,35∙,36]. In mixed 

cultures of tonsillar B and T cells, lytic replication of KSHV was suppressed by CD4+ T 

cells, which were essentially driving the virus into latency [35∙]. The finding that CD4+ T 

cells lyse latently MHV68-infected B cells [36], suggests that CD4+ T cells directly control 

latency rather than through helper T cell function. CD4+ T cells seem to be continuously 

stimulated by infected B cells and dendritic cells [34]. However, γ-herpesviruses also 

counteract CD4+ T cell activation. The KSHV vIRF3 protein was shown to inhibit the class 

II transactivator (CIITA) which is essential for transcriptional induction of MHC-II and 

auxiliary proteins [37]. Consequently, PEL cells expressing vIRF3 are not recognized by 

LANA-1 specific MHC-II-restricted CD4+ cells [38]. Adding CIITA restored some 

recognition. In EBV-infected B-cells, MHC-II-dependent antigen presentation is limited by 

BZLF1-mediated downregulation of invariant chain (CD74) [39∙∙]. Similarly, KSHV-

infected endothelial cells were not optimally recognized by MHC-II restricted human CD4+ 

T cells due to inhibition of IFNγ-induced MHC-II transcription [40]. In latently infected 

monocytes, KSHV additionally down-regulates co-stimulatory molecules, which could 

affect T cell priming [41]. In addition, KSHV-infected endothelial cells were shown to 

secrete a factor that inhibits MHC-II expression on neighboring cells [40]. This might aid 

KSHV to prevent T cell stimulation by non-infected APC cross-presenting viral antigens.

Evasion of cell-intrinsic innate immune responses

Evasion of apoptosis

Extracellular apoptosis stimuli induce the oligomerization of death receptors whereas 

intracellular ‘danger’ signals perturb mitochondrial homeostasis. The death-inducing signal 

complex (DISC) and the permeabilization of mitochondrion membrane are key checkpoints 

of extrinsic and intrinsic pathway, respectively. To circumvent apoptosis, γ-herpesviruses 

express viral FLIP (vFLIP) and Bcl-2 (vBcl-2) homologs during the latent and lytic phase 

[42] (Figure 2). Death receptor-mediated apoptosis (triggered by CD95 and TNFa) delivered 

by cytotoxic T cells is counteracted by vFLIP via interfering with the assembly of DISC. 

Counterintuitively, vFLIP potently activates NFkB, which effectively enables the survival of 
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KSHV-infected lymphoma cells [43 47]. Studies using cultured cells and transgenic mouse 

models demonstrated that vFLIP activated the IKK complex and was implicated in KSHV-

associated lymphoproliferative diseases [47 51]. Surprisingly, vFLIP of herpesvirus saimiri 

was shown to be dispensable for viral replication, transformation, and pathogenesis in a 

primate model [52]. It would be interesting to examine the roles of vFLIP in the infection 

and pathogenesis of RRV using nonhuman primate models.

During productive lytic infection, processes of viral replication frequently induce stress 

responses that perturb cellular homeostasis. Cell death or survival is dictated by opposing 

activities between pro-apoptotic and anti-apoptotic factors, known as Bcl-2 homology 

proteins, which reside within the outer membrane of mitochondria (Figure 2). All γ-

herpesviruses express anti-apoptotic Bcl-2 homologs during various stages of their infection 

cycle [53]. Viral Bcl-2 has lost the inhibitory loop that, when cleaved by an activated 

caspase, converts cellular antiapoptotic Bcl-2 into a proapoptotic product via removing the 

N-terminal BH4 domain [54,55]. Thus, viral Bcl-2 proteins either are not cleaved or, even if 

cleaved by caspase, do not behave as apoptosis-inducers. Our understanding of the in vivo 

functions of the antiapoptotic activity of vBcl-2 is largely derived from studies using 

MHV68. Recombinant MHV68 expressing a vBcl-2 mutant that fails to suppress apoptosis 

establishes normal latent infection in splenocytes, but is crippled to reactivate ex vivo [56∙]. 

Thus, viral antagonism of apoptosis is crucial to promote cell survival during early stages of 

lytic infection. Similarly, vBcl-2 expression immediately after infection by EBV promotes 

cell survival by enabling latent infection and transformation of lymphoma cells ex vivo [57∙]. 

The viral mitochondrial antiapoptotic protein (vMAP) of MHV68 displays a two-pronged 

mechanism to counteract intrinsic apoptosis [58]. vMAP binds to Bcl-2 to enhance its 

recruitment to mitochondria and subsequent inhibition of the BH3-only molecules, and 

impedes cytochrome c release through physical association with VDAC, effectively 

negating the mitochondrion apoptotic pathway. Viral infection with recombinant MHV68 

demonstrated that this antiapoptotic activity was important for the lytic phase of infection.

It is also necessary to inactivate p53 during active viral replication and the growing list of 

such proteins includes the KSHV latent nuclear antigen (LANA), the EBV nuclear antigen 

3C (EBNA3C), and the KSHV K7 and vIRF3. KSHV LANA and EBV EBNA3C are major 

latent gene products and both inactivate p53-mediated apoptosis. While KSHV LANA 

induces p53 degradation [59], EBNA3C stabilizes a cellular factor that prevents p53 to 

access DNA and sequestrates a co-activator key for p53-mediated transcription [60,61]. The 

KSHV K7 protein is a lytic gene product that antagonizes apoptosis by multiple mechanisms 

(Figure 2). Anchored in the membrane, K7 interfaces with the mitochondrion-dependent 

apoptotic pathway, the ER stress responses, and the proteasome/ ubiqutin system [62 64]. 

K7 expression protects cells from apoptosis induced by intrinsic stresses, including DNA 

damage and ER stress. Similar to LANA, vIRF4 targets p53 for degradation via two distinct 

mechanisms governing ubiquitination [65]. These findings highlight the importance of 

inhibiting intrinsic apoptosis triggered by viral replication events, danger signals within the 

infected cells.
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Evasion of autophagy

Autophagy is a homeostatic process that engulfs and, upon fusion with lysosomes, digests 

bulk cytoplasm under nutrient-deprived conditions. Recent studies indicate that host cells 

deploy autophagy to defeat pathogen infection. vBcl-2 and vFLIP can inhibit autophagy, 

implying an inherent crosstalk between autophagy and apoptosis. vBcl-2 targets Beclin 1, a 

key regulator of autophagy, to negate autophagy [66]. Subsequently, vBcl-2 was found to 

target UVRAG, an integral component of the Beclin-1-PI3K complex, which arrests the 

PI3K complex and suppresses autophagy [67]. The anti-autophagic activity of viral Bcl-2 is 

conserved within γ-2-herpes-viruses (Figure 2). Using recombinant MHV68 carrying 

mutations that differentially ablate the anti-autophagic or anti-apoptotic activity of vBcl-2, 

Xiaofei et al. showed that inhibition of autophagy by MHV68 Bcl-2 was essential for the 

establishment of latent infection in splenocytes [56]. Viral and cellular Bcl-2 proteins show 

a difference in affinity for Beclin 1. Structural studies illustrated that this difference likely 

stems from the specific sequence of the hydrophobic groove of Bcl-2 that directly contacts 

the BH3 of Beclin 1 [68,69]. Recently, the KSHV vFLIP protein was discovered to bind to 

the LC3-processing enzyme, ATG3 [70]. As such, vFLIP and cellular FLIP molecules 

potently inhibit LC3 processing and autophagosome membrane elongation. Interestingly, 

vCyclin, another latent protein, induces autophagy and senescence, both of which are 

diminished by vFLIP [71]. These data suggest a complex stimulation and inhibition of 

autophagy during the lytic phase of γ-herpesviruses.

Evasion of interferon production

Type 1 interferon (IFN) and IFN-stimulated genes (ISGs) represent the first line of defense 

against virus infection. γ-Herpesviruses interfere with the IFN pathway at several levels as 

reviewed recently [72,73] (Table 1). Virus-infected cells secrete IFN upon recognition of 

specific viral signatures by pattern-recognition receptors (PRR). These PRRs include the 

Toll-like receptors (TLRs), nucleotide-binding and oligomerization, leucine-rich repeat 

(NLR) proteins, retinoic acid inducible gene (RIG)-I-like receptors (RLRs) and C-type lectin 

receptors (CLRs). Via adaptor proteins, these innate sensors in turn activate a family of 

transcription factors, the IFN regulatory factors (IRFs), which translocate to the nucleus to 

initiate transcription of IFN α/β genes. Secreted IFN binds to the type 1 IFN receptor 

(IFNAR) to trigger a signaling cascade that culminates in the expression of ISGs. γ-

Herpesviruses antagonize both the expression and function of different components of the 

IRF pathway.

Interferon regulatory factors—KSHV encodes four homologs of cellular IRFs, vIRF1 

through 4, which interfere with the transactivating activity of specific IRFs. vIRF-1 binds to 

host IRF-1 or the coactivator protein p300, the latter action inhibiting formation of the 

transcriptionally active IRF3-CBP/300 complex [74]. vIRF-2 interferes with the 

transactivational activity of IRF-1 and IRF-3 [75,76] by direct binding to IRF1 and 

degradation of IRF3 via a caspase 3-dependent mechanism [75,77]. vIRF-2 also interacts 

with protein kinase R (PKR), inhibiting its autoactivation and antiviral function [78]. IRF7, 

together with IRF3, constitute the master regulators of type 1 IFN production, and KSHV 

vIRF3 antagonizes IRF 5 [79] and IRF7 [80] via direct inhibitory interactions. vIRF-4 does 

not appear to antagonize IFN-mediated signaling; instead, vIRF4 enhances the degradation 
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of p53 (which is also targeted by vIRF1 and 3) via a stabilizing interaction with the E3 

ubiquitin ligase MDM2 [70,81]. vIRF4 also interacts with CSL/CBF1, potentially 

antagonizing Notch/CBF1 signal transduction, and cooperates with RTA to facilitate KSHV 

reactivation [82,83]. Despite similar functional activities, the vIRFs display differential 

expression patterns, indicating that they may act at different times, and/ or in different cells 

[81]. Interestingly, a recent study identified mechanistic differences between the ability of 

the KSHV vIRFs to inhibit TLR3-dependent IFN signaling [84].

KSHV encodes additional gene products to antagonize host IRFs while EBV and MHV68 

target host IRFs with non-homologous viral proteins. This common strategy underscores the 

importance of the IRF family in antiviral defense. Two KSHV proteins, LANA1 (ORF73) 

and K-bZIP (K8), bind competitively to the IFN-β promoter, preventing IFN-β induction 

during latency and virus reactivation [85,86]. The conserved viral kinase ORF36 inhibits 

IFN production. MHV68 ORF36 binds to nuclear IRF-3 to prevent activation of the IFN-β 

promoter [87]. Importantly, the growth and spread of an ORF36-null MHV68 in 

immunocompetent mice was attenuated, exemplifying the need to antagonize the IFN 

pathway for successful infection. The EBV ORF36 homolog, BGLF4, also binds to IRF3 to 

suppress IRF3-mediated signaling [88]. KSHV ORF45, a conserved tegument and IE 

protein, binds to the inhibitory domain of IRF7 to prevent its phosphorylation and nuclear 

translocation by acting as an alternate substrate for the virus-activated kinases IKKε and 

TBK1 [89 91]. As a virion component, ORF45 could inhibit IFN production at the earliest 

stages of de novo infection, as suggested by studies with an ORF45-null recombinant KSHV 

[92]. MHV68 ORF45 is also essential for an early stage of viral replication, suggesting a 

similar role in evasion of the early IFN response [93]. KSHV RTA (ORF50) also targets 

IRF7, promoting its ubiquitination and degradation [94].

Like KSHV, RRV expresses a set of viral IRFs [95]. As such, the RRV model provides 

insight into the role of the vIRFs in regulating the host response to infection. Accordingly, a 

vIRF deletion clone of RRV that inhibits IFN release from PMC in vitro exhibits attenuated 

replication in vivo and induces a more robust anti-inflammatory and anti-RRV T cell 

response [96,97]. Macaques infected with the vIRF knockout also display diminished B cell 

hyperplasia, a pathology characteristic of acute RRV infection.

While EBV does not express IRF homologs, it encodes several proteins that target host 

IRFs. The EBV IE transactivator protein BZLF1 (Zta) binds to IRF7 and inhibits its 

transactivational activity [98], while BRLF1 (Rta) inhibits transcription of IRF3 and IRF7, 

thus inhibiting IFN-β production during lytic infection [99]. In addition, binding of the 

tegument protein LF2 to IRF7 prevents IRF7 dimerization and IFN-α production [100]. 

Interestingly, a positive regulatory circuit exists between IRF7 and the EBV oncoprotein 

LMP1 [101]. LMP1 possesses potent immune escape functions, including induction of 

immunomodulatory cytokines, receptors and exosomes [102] and induction of miR-146a, a 

cellular miRNA that inhibits IFN response pathways [103,104], and inhibition of TLR9 

expression [105,106] (discussed below). LMP2A and 2B enhance IFN receptor turnover in 

epithelial cells, inciting a broad effect on ISG expression [107]. These LMP functions likely 

contribute to the immune escape of EBV-positive tumors.
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Recent work with MHV68 illustrates a novel mechanism of immunomodulation whereby a 

host IRF is co-opted to establish viral latency [108]. Specifically, transcription of the M2 

protein, which plays a critical role in virus reactivation, is repressed by IRF2, which is in 

turn upregulated by the IFN produced in response to initial virus infection. The authors 

speculate that this IRF-sensing mechanism allows MHV68 to time virus reactivation to 

periods of localized immune quiescence. It is likely that other examples of ‘cooperative 

subversion’ between γ-herpes-viruses and host immune effectors will be identified.

Pattern recognition receptors and adaptor proteins—KSHV modulates TLR 

signaling by influencing the expression of TLRs or their adaptor molecules. Infection of 

monocytes leads to an upregulation of TLR3 and downstream innate immune effectors 

(CXCL10, IRF-1, CCL2, and IFN-β), an event that may facilitate establishment of latency 

[109]. In contrast, infection of endothelial cells results in downregulation of TLR4 mediated 

by the lytic proteins vIRF1 and ORF74 [110]. Interestingly, stimulation of PEL cells with 

agonists to TLR7 and 8 reactivates virus, suggesting a viral strategy to escape from cells 

targeted for immune attack [111]. Recent studies indicate that KSHV targets other PRRs in 

addition to TLRs. Inn et al. show that the tegument protein, ORF64, specifically targets and 

suppresses RIG-I-mediated signaling via its deubiquitinase activity [112]. Gregory et al. 

report that another tegument protein, ORF63, is a functional homolog of NLRP1 that 

disrupts the formation and activity of the NLRP1 inflammasome [113∙∙]. While NLRP1 is a 

cytoplasmic inflammasome, a study by Keruer et al. shows that, during KSHV infection of 

endothelial cells, IFN-γ-inducible protein 16 (IFI16) interacts with a caspase-1 activating 

complex to form a functional nuclear inflammasome, suggesting that KSHV may 

manipulate this pathway to promote latency after nuclear delivery of the viral genome 

[114,115]. These recent studies indicate a broader role for PRRs in sensing γ-herpesvirus 

infection and suggest that additional viral antagonists and strategies remain to be identified.

Similar to KSHV, MHV68 can be reactivated from latently-infected B cells with ligands for 

TLR3, 4, 5 and 9, and reactivation in vivo is accomplished by administration of LPS (TLR4) 

or CpG DNA (TLR9) [116]. Interestingly, LPS/CpG-induced reactivation led to an increase 

in the number of latently-infected splenocytes, suggesting that TLR sensitivity contributes to 

homeostatic maintenance of chronic infection. This phenomenon could also underlie the 

sensitivity of KSHV to TLR7/8 agonists. Alternatively, innate immune signaling pathways 

are hijacked by MHV68 to enable lytic replication that replenishes the latent pool. Indeed, it 

was shown that MHV68 exploits the MAVS-IKKbeta pathway to promote viral 

transcriptional activation and disable antiviral cytokine production [117 119]. It remains 

unclear how the MAVS-IKKbeta pathway is activated during MHV68 infection.

TLR signaling is mediated through one of two adapter proteins, myeloid differentiation 

primary-response protein 88 (MyD88) or Toll-interleukin-1 receptor (TIR) domain-

containing adaptor-inducing b-interferon protein (TRIF) [120]. KSHV targets both adaptors. 

TRIF, an adaptor for TLR 3 and 4, is degraded in the presence of RTA, via either its E3 

ligase activity or an unidentified mediator [121]. MyD88, which transmits signals from 

TLRs 7, 8 and 9, is downregulated by the viral microRNA miR-K9, which also targets a 

critical kinase, interleukin-1 receptor-associated kinase 1 (IRAK1), in the same pathway 

Feng et al. Page 7

Curr Opin Virol. Author manuscript; available in PMC 2015 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[122∙]. These data indicate that KSHV may block TLR7/9-induced IFN-α production via 

miRNA targeting.

In B cells, EBV infection exerts opposite effects on expression of TLR7 and TLR9. In naïve 

B cells, exposure to EBV downregulates TLR9 while inducing expression of TLR7 and key 

downstream adaptor (MyD88) and effector (IRF5) molecules, a scenario that promotes the 

initial phase of B cell proliferation; IRF5 activity is subsequently negatively regulated to 

allow for establishment of latency [123]. EBV proteins responsible for TLR9 

downregulation have been identified: LMP1 downregulates TLR9 through NF-kB-

dependent inhibition of TLR9 transcription [105], while BGLF5 degrades TLR9 mRNA 

[106]. EBV-infected B cells are also unresponsive to TLR7/8 and 9 agonists [124]. In 

plasmacytoid dendritic cells (pDC), EBV infection increases IFNa production by activating 

the TLR9 signaling pathway, but the simultaneous production of IL-10 from the pDC serves 

to blunt the net antiviral effect [125].

Evasion of inflammatory signaling

Inflammatory chemokines and cytokines produced in response to viral infection play an 

important role in the outcome of the immune response. Accordingly, the γ-herpesviruses 

have developed different strategies to imitate or neutralize these inflammatory mediators, 

including production of homologs, receptors and binding proteins.

Virus-encoded chemokines

KSHV encodes three viral chemokines with agonist or antagonist function against host 

chemokine receptors; vCCL1 (ORF K6), vCCL2 (ORF K4), vCCL3 (ORF K4.1). This 

family possess agonist function against CCR8 (vCCL1 and 2), CCR3 (vCCL2) and CCR4 

(vCCL3), indicating a role in chemoattraction of Th2 T cells, which typically downmodulate 

immune responses [126]. Interestingly, vCCL2 also has broad-spectrum antagonist activity, 

binding promiscuously to several CC and CXC chemokine receptors and inhibiting the 

chemotactic responses of monocytes and Th1 T cells [126]. In combination with Th2 T cell 

recruitment, this would provide an effective means of blunting an inflammatory cytotoxic 

antiviral response.

As an alternate strategy for chemokine modulation, the EBV microRNA BHRF1, which is 

expressed in several EBV+ lymphomas, suppresses expression of CXCL11/I-TAC, an IFN-

inducible T cell chemoattractant [127].

Other inflammatory modulators (vCD200 and vIL-6)

KSHV encodes a homolog of CD200, a molecule that negatively regulates myeloid-lineage 

cells [128], and a homolog of IL-6, a multifunctional inflammatory cytokine [129]. KSHV 

vCD200 is encoded by ORF K14 and binds with high affinity to the host receptor CD200R 

with immunosuppressive consequences [130]. KSHV vIL-6 is encoded by ORF K6 and, 

unlike human IL-6, can bind and signal exclusively through gp130 without the need for 

CD126 (gp80) [131,132]. In the presence of gp80 however, vIL-6 signaling is qualitatively 

different from that induced by human IL-6 [133]. These properties have relevance for 
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immune evasion as well as oncogenesis, since IFN-modulation of the IL-6R complex would 

differentially impact virus and host IL-6 activity.

Like KSHV, RRV encodes a CD200 homolog, R15, which inhibits macrophage production 

of TNF [134] and a vIL-6, which signals through gp130 and is expressed in RRV-infected 

rhesus macaques [135,136].

The IL-10 homolog encoded by the EBV BCRF1 gene encodes a functional homolog of 

IL-10 that exhibits diverse immunosuppressive properties, including inhibition of T cell 

function, macrophage activation and synthesis of IRN-γ [137 140]. BCRF1 is functionally 

expressed during the earliest phase of de novo infection of primary B cells, a consequence of 

translation of virion-delivered mRNA, or transduced viral RNA (tvRNA) [21]. Additional 

immunomodulatory EBV tvRNAs were recently identified, including those encoding 

BGLF5, BNLF2a and LMP1; immediate translation of tvRNAs likely contributes to immune 

evasion in a crucial period before de novo gene expression [21]. EBV BARF1 could also 

contribute to immunomodulation via binding and neutralization of the pleiotropic cytokine 

colony-stimulating factor-1 (CSF-1) [141].

The MHV68 M3 protein is a secreted viral protein that binds selected CC and CXC 

chemokines with antiviral activity [142]. While an M3-deficient virus is not impaired in its 

capacity to establish latency in experimental hosts (C57BL/6 or BALB/c mice), when tested 

in a natural host (wood mice) it did attenuate infection and modulate the host inflammatory 

response in a manner consistent with its chemokine-binding properties [143,144∙], indicating 

that specific immunoevasins may only function effectively in the appropriate host.
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Figure 1. 
Evasion of T cell responses by g herpesviruses.
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Figure 2. 
Inhibition of the classical apoptosis and autophagy pathway by γ-herpesvirus proteins. 

KSHV vFLIP and K7 target pro-caspase 8 and activated caspase 3 for inhibition, whereas 

vBcl2 and MHV-68 vMAP antagonize the oligomerization of Bax/Bak and VDAC that 

release cytochrome c (cyto. c). Additionally, KSHV K7 activates CAML in releasing 

calcium from the ER to attenuate stress induced apoptosis. Of the classic autophagy 

pathway, vBcl2 suppresses UVRAG in autophagosome formation. Viral proteins are colored 

in green.
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Table 1

Antagonism of IFN signaling by human γ-herpesvirsues

Virus ORF Gene product Functional mechanism(s)

K9 vIRF-1 Suppresses IRF-1 and IRF-3 transactivational activity; inhibits IRF3 nuclear translocation;
inhibits TLR3-driven IFN-β promoter activation and IFNβ production; downregulates TLR4

K11.1/K11 vIRF-2 Suppresses IRF-1 and IRF-3 transactivational activity; inhibits TLR3-driven IFN-β promoter
activation and IFNβ production; inhibits PKR function

K10.5/K10.6 vIRF-3 Inhibits IRF7 DNA binding and function; Inhibits IRF5-mediated promoter activation

ORF45 ORF45 Prevents phosphorylation and nuclear translocation of IRF7

KSHV ORF50 RTA Promotes IRF7 ubiquitination and degradation; degrades the TLR3/4 adaptor TRIF

ORF63 Disrupts formation and activity of the NLRP1 inflammasome

ORF64 Suppresses RIG-I-mediated signaling

ORF73 LANA1 Prevents IRF3-mediated induction of IFN-β during latency

ORF74 vGPCR Downregulates TLR4

ORFK8 K-bZIP Prevents IRF3-mediated induction of IFN-β during virus reactivation

miR-K9 Downregulates MyD88 and IRAK1

BGLF4 PK Binds and suppresses IRF3 transactivational activity; inhibits of IFN-β production

BGLF5 DNase Degrades TLR9 transcript

BZLF1 Zta Binds and suppresses IRF7 transactivational activity

EBV BRLF1 Rta Inhibits IRF3 and IRF7 transcription; inhibits IFN-β production during lytic infection.

LF2 LF2 Prevents IRF7 dimerization and IFN-α production

LMP1 LMP1 Negatively regulates IFN response via induction of miR-146a; downregulates TLR9

LMP2A/2B LMP2A/2B Enhances turnover of type I/II IFN receptors
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