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Abstract

Therapy of cancer can be achieved by artificially stimulating anti-tumor T and NK lymphocytes 

with agonist monoclonal antibodies. T and NK cells express several members of the Tumor 

Necrosis Factor-receptor (TNFR) family specialized in delivering a costimulatory signal on their 

surface. Engagement of these receptors is typically associated with proliferation, elevated effector 

functions, resistance to apoptosis, and differentiation into memory cells. These receptors lack any 

intrinsic enzymatic activity and their signal transduction relies on associations with TRAF adaptor 

proteins. Stimulation of CD137 (4-1BB), CD134 (OX40), and GITR (CD357) promotes 

impressive tumor-rejecting immunity in a variety of murine tumor models. The mechanisms of 

action depend on a complex interplay of cytolytic T lymphocytes, helper T cells, regulatory T 

cells, dendritic cells, and vascular endothelium in tumors. Agonist monoclonal antibodies (mAbs) 

specific for CD137 have shown signs of objective clinical activity in metastatic melanoma patients 

while anti-OX40 and anti-GITR mAbs have entered clinical trials. Preclinical evidence suggests 

that engaging TNFR members would be particularly active with conventional cancer therapies and 

additional immunotherapeutic approaches. Indeed, T cell responses elicited to tumor antigens by 

means of immunogenic tumor cell death are amplified by these immunostimulatory agonist mAbs. 

Furthermore, anti-CD137 mAbs have been shown to enhance NK-mediated cytotoxicity elicited 

by rituximab and trastuzumab. Combinations with other immunomodulatory mAb that block T 

cell checkpoint blockade receptors such as CTLA-4 and PD-1 are also promising.

INTRODUCTION

TNFR family members provide costimulation to T and NK cells

Lymphocyte activation integrates multiple signals carried and delivered across immune 

synapses. Critical signals for activation are dependent on specific antigens, such as T-cell 

antigen receptor (TCR) ligation on T cells or on recognition of antibody-coated target cells 

sensed by FcRγIII (CD16) on NK cells. Costimulatory molecules will subsequently 

determine the outcome of the primary antigen recognition by providing signals that will 

amplify, complement, and modulate those elicited from the TCR or CD16. Costimulation(1) 
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is therefore a pathway of intercellular communication that depends on the expression of 

complementary glycoproteins on the surface of interacting cells.

Four families of molecules play important roles in immune synapses: the immunoglobulin 

superfamily, the integrin superfamily, C-type lectins and the tumor necrosis factor/tumor 

necrosis factor receptor families. Receptor-ligand interactions in the immune synapse are 

important for maintaining structure (adhesion), conveying bidirectional biochemical signals 

for activation or inhibition, reorganizing the cytoskeleton, and reorienting the secretory 

machinery. The role of the costimulatory members of the TNFR family seems to be related 

to signalling. However, it should be noted that many molecular players are acting in a 

structured and concerted fashion at the synapse including receptors, signalling adaptors, 

cytoskeletal components and the distribution of lipids in the interacting plasma 

membranes(2).

T and NK cells express a panoply of cell surface members belonging to the TNFR family 

(Figure 1 and Table 1). Some TNFR members such as CD27 are constitutively expressed. 

However, the expression of other members such as CD137, OX40, and GITR are expressed 

at low levels or not at all in the resting state but are upregulated upon activation (color-

coded in Figure 1). The respective ligands for the TNFR molecules are type II 

transmembrane proteins, primarily expressed on antigen-presenting cells such as 

macrophages, dendritic cells, and activated B cells(3,4). Structural studies have demonstrated 

that TNFR ligands form trimmers and multimerization is essential for cross-linking the 

receptors(4,5).

Knock-out mice for TNFR molecules and their ligands show relatively mild phenotypes 

with partial loss in the ability to fight viral infections controlled by cellular immune 

response(6). However, cells artificially exposed to a TNFR stimulus via mAbs show a highly 

activated phenotype. Most of the basic knowledge of the TNFR molecules comes from T 

cell studies, but additional cell lineages such as NK cells and myeloid cells are known to 

express TNFR molecules. While the primary function of TNFR family is to provide 

adequate costimulation, back-signalling by the ligands can convey a proinflammatory 

stimuli(7). Therefore, using artificial ligands such as mAb to engage TNFR molecules forces 

the receptor system to a point that probably is never reached under physiological conditions 

when these molecules are acting confined to immune synapses during transient cell-cell 

interactions(8).

These families of receptor-ligand pairs are susceptible to multiple layers of regulation 

because of the following following mechanistic facts:

i. The level of surface expression depends on the activation state of the lymphocyte: 

For the immunomodulatory mAb to be effective, expression of the target molecule 

on tumor infiltrating lymphocytes or other anti-tumor T cells is critical.

ii. Differential expression, distribution, and function on naïve versus memory T cell 

subsets.

iii. Differential recruitment to the cytoplasmic tail of members of the TRAF family of 

signalling adaptors where expression is regulated upon activation.
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iv. The level of expression of the ligands is controlled by the activation/maturation 

state of the antigen presenting cells.

v. The existence and regulation of negative feedback mechanisms such as 

deubiquitinases and phosphatases that quench signals from the receptors.

TNFR family member signalling in immune cells

The immunologic outcome of costimulation can be determined by the nature and intensity of 

reversible biochemical signals. Specifically, integrated signals from multiple accessory 

receptors dictate, in a coordinated fashion, the intensity, duration, and quality of the immune 

response(1). Most costimulatory signalling is regulated at the transcriptional level; however, 

additional mechanisms such as chromatin remodelling, stability of mRNAs, and miRNAs 

are very likely to play a role.

The TNF Receptor family is a large group of over 27 members that share sequence 

homology with the tumor necrosis factor (TNF) and lymphotoxin receptors (Table 1). Some 

of the members of the TNFR family were originally discovered in T cells (Figure 1). 

Biochemically, TNFR family member signalling begins by multimerization of the receptors 

that eventually lead to the formation of multiprotein complexes important for conveying 

downstream signalling(9,10). The cytoplasmic tail of these molecules contain TNF receptor 

associated factor (TRAF) binding domains that recruit TRAFs upon receptor-ligand binding 

(Figure 2). TRAF2, TRAF1 and TRAF5 are the primary TRAF adaptors reported to interact 

with the intracellular tails of the costimulatory receptors of the TNFR family (CD137, 

CD134, and GITR)(11). In addition, TRAF3 and TRAF6 may play a role for some of these 

receptors(12). TRAF molecules form heterodimers that associate with the receptors and 

signalling from homo and heterotrimers reportedly have different quantitative and 

qualitative outcomes(11). For instance, TRAF1 is upregulated upon T cell activation and 

would displace homotrimers of TRAF2 generating TRAF2:TRAF1 heterotrimers with 

functional consequences.

TRAF2 has been reported to exert E3 ubiquitin ligase activity through its RING 

domain(13,14) (Figure 2). TRAF2 is constitutively associated with cIAP1 and 2 which are 

endowed with E3 ubiquitin ligase activities(15). Upon ligation of the TNFR molecules, 

TRAF2-asociated E3 activity forms polyubiquitin chains linked via their lysine 63 

residue(16). These polyubiquitins become attached to TRAF2 and additional protein 

substrates and may act as second messengers. K-63-polyubiquitins act as docking sites for 

downstream signalling molecules through recruitment of the TAB1/2-TAK1 complexes that 

ultimately activate the MAP kinase pathway to form Fos/Jun AP1 transcription factors. In 

addition, polyubiquitination promotes NEMO-IKKβ complexes to unleash the canonical NF-

κB pathway transcription factors (Figure 2). K63 ubiquitin chains are kept at bay by specific 

deubiquitinases such as CYLD and A20 whose functional control is not well understood(17) 

(Figure 2). It is clear however, that the deficiency of these enzymes in mice causes 

autoimmunity and hyperinflammation. TRAF5 also contains a RING ubiquitin ligase 

catalytic domain and presumably operates in a similar manner. TRAF1 is induced upon T 

cell activation and complexes with the receptor. Even though the biochemical functions of 
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TRAF1 are not well understood(18), this adaptor is known to be critical for optimal T cell 

memory(19).

CD137-based cancer immunotherapy

CD137 (4-1BB, TNFRSF9) is a surface protein originally discovered on activated, but not 

resting, T cells by B Kwon(20,21). CD137 has only one confirmed ligand (CD137-Ligand, 

TNFSF9) expressed primarily on macrophages, activated B cells and dendritic cells. In the 

mouse, NK cells express CD137 when activated by cytokines in contrast to human cells 

where surface expression requires ligation of CD16(22). Expression of CD137 is also found 

on activated B cells, dendritic cells, myeloid precursors, mast cells, and endothelial cells in 

tumors or inflamed tissues(8). CD137 and CD137-Ligand deficiency do not cause an overt 

immune deficiency but only mild alterations in T cell activation and memory. Mice deficient 

in CD137 signalling weakly control virulent viral infections(23,24).

CD137 agonists such as mAb and soluble forms of the ligand have been shown to enhance 

cytokine production, proliferation, cytolytic effector functions, and protect lymphocytes 

from programmed cell death by upregulating BCL-xL and downregulating BIM(25,26). 

CD137 is also expressed by activated Tregs and ligation of CD137 on Tregs limits the 

suppressive function by a mechanism yet to be elucidated(27). Paradoxically, CD137 ligation 

on Tregs can cause pro-mitogenic effects. Importantly, ligation of CD137 on NK cells 

enhances cytokine release (including IFNγ)(28) and potentiates antibody-dependent cellular 

cytotoxicity (ADCC)(29,30).

CD137 ligation was first used to treat mouse tumors by means of agonist antibodies(31). As a 

monotherapy, CD137 mAbs are effective in controlling tumor growth or promoting 

complete rejection in a variety of transplantable rodent tumors including sarcomas, 

matocytomas, colon carcinomas, and lymphomas. The mechanism clearly involves 

enhancement of cytotoxic T lymphocyte (CTL) function(31,32) and cross-priming of tumor 

antigens by dendritic cells(33) (Figure 3). Interestingly, CD4+ T cells seem to be first 

stimulated and then eliminated by activation-induced cell death (AICD)(34). This is one of 

the explanations for the paradox that the very same mAbs that successfully treat tumors, can 

ameliorate autoimmune diseases by removing autoreactive CD4+ T lymphocytes(35).

Recent reports have shown that CD137 is present on the surface of capillaries in the tumor 

bed but not in healthy vasculature. One of the reasons hypothesized for the ectopic CD137 

expression on vascular cells is hypoxia(36). CD137, on endothelial cells, promotes leukocyte 

infiltration by upregulating the expression of adhesion molecules. Interestingly, CD137 

expression by effector and regulatory T cells in the tumor microenvironment is dependent on 

the HIF1α pathway, which senses hypoxia. Local costimulation may be effective in treating 

tumors because of the selective CD137 expression at this hypoxic peri-tumoral location. 

This point opens up the possibility for local or targeted delivery of CD137 agonists(37).

Apart from immunostimulatory mAbs, CD137-based immunotherapy has been achieved by 

transfecting tumor cells to express CD137 ligand(38) or membrane-bound single chain 

antibodies(39). Multimerizing RNA aptamers (but not monomers), binding selectively to 
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CD137, has also shown anti-tumor efficacy(40) particularly when targeted to a surface tumor 

antigens(41).

A potentially promising aspect of anti-CD137 mAb immunotherapy is combination with 

other treatments (both conventional and immunotherapeutic). Combination with 

chemotherapy(42,43) and radiotherapy(44) is clearly synergistic in pre-clinical models and 

likely dependent on eliciting immunogenic cell death with subsequent cross-priming of 

tumor antigens. Synergistic combinations with vaccines(45) and virotherapy(46,47) also rely 

on the principle that CD137 costimulation must act on ongoing tumor-specific immune 

responses encompassing CD137+ activated lymphocytes. Recently, some intriguing pre-

clinical studies have shown that anti-CD137 mAb therapy synergizes with NK-mediated 

ADCC elicited by antibodies targeting the surface antigens CD20 or HER-2(30,48).

Preclinical toxicity of CD137 ligation, mainly mediated by polyclonal T cell infiltrates in the 

liver (dominated by CD8 T cells), results in mild and reversible transaminase elevations(49). 

In addition, TNFα-mediated myelosupression has been reported(49,50). Fully human and 

chimeric monoclonal antibodies against CD137 have been produced (BMS-663513, 

PF-05082566, GTC biotherapeutics). These reagents effectively upregulate cellular immune 

functions and show tolerable toxicity levels in non-human primates(51).

Clinical trials have only been carried out to completion with BMS-663513 (Table 2). This 

drug has been used in phase I and in multiple dose phase II clinical trials. Indications of 

objective clinical activity in melanoma were reported(50). About 10% of the patients 

developed liver inflammation limiting treatment and two fatalities were reported due to liver 

toxicity at doses greater 1 mg/kg. This speaks to the need to reconsider dose ranges for 

agonist antibodies, which likely require lower doses for efficacy compared with antagonist 

antibodies. Both BMS and Pfizer have resumed clinical trials, implementing dose escalation 

studies that focus on safety (NCT01471210 and NCT01307267).

In the trial with PF-05082566 sponsored by Pfizer (NCT01307267), a combination with 

rituximab is formally planned as an extension to exploit the ADCC potentiating effect. If 

active and safe doses are clinically defined, this will open opportunities for local delivery 

and combinatorial approaches.

OX40 based cancer immunotherapy

OX40 (CD134 or TNFRSF4) is a costimulatory molecule discovered on the surface of 

activated CD4+ T cells in rats(52). Expression of OX40 was later found to be restricted to 

activated CD4+ T cells 24–72 hours after TCR engagement. Subsequent studies revealed 

that OX40 is also found on CD8+ T lymphocytes and other cells such as NK, NKT, and 

neutrophils(53). CD4+ Foxp3+ Tregs constitutively express OX40 in mice, but human cells 

upregulate its expression.

Signalling through OX40 increases T cell survival, promotes clonal expansion, and 

augments pro-inflammatory cytokine production(54). Ligation of OX40 is known to recruit 

TRAF2 and 3, leading to activation of the canonical and non canonical NF-κB 

pathways(55,56). OX40 mediated NF-κB activation subsequently leads to enhanced 
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expression of anti-apoptotic molecules such as Bcl-2, Bcl-xl, and survivin which provide the 

basis for clonal expansion and expanded memory pool of activated T cells(57).

Given that OX40 engagement can expand T cell populations, promote cytokine secretion, 

and support T cell memory, agonists including monoclonal Abs and soluble forms of 

OX40L have been used successfully in a variety of preclinical tumor models. The first 

studies, in which anti-OX40 antibodies showed antitumor activity, were pioneered by Andy 

Weinberg’s group. Mirroring early studies where monoclonal Abs recognizing inhibitory 

and costimulatory molecules induce tumor immunity in rodents (anti-CTLA4 and 

4-1BB(31,58)), an anti-OX40 antibody was shown to be effective in a number of tumor 

models including MC303 sarcomas, CT26 colon carcinomas, SM1 breast cancer, and small 

B16 melanoma(59). Subsequent studies confirmed these observations in additional 

preclinical models (60–62).

As a monotherapy, OX40 engagement has been effective in eradicating primarily 

immunogenic tumors while failing to provide adequate antitumor immunity in established 

and more clinically relevant poorly-immunogenic tumors. Therefore, a variety of 

combinatorial strategies to increase anti-OX40 antibody therapy have been explored. Given 

that OX40 ligation upregulates cytokine receptors on T cells, OX40 antibodies synergize 

with cytokines such as IL-2 or IL-12 alone or with vaccination(63,64). Combining OX40 

agonists with GM-CSF-secreting syngeneic irradiated tumor cells or DNA vaccination 

promotes the expansion of tumor-specific T cells, leading to protection or eradication of 

established cancers (Murata et al(65) and unpublished observations). Furthermore, anti-

OX40 antibodies have been combined with other clinically relevant monoclonal antibodies 

against inhibitory and costimulatory molecules to treat lymphomas and sarcomas(66,67).

Modalities with direct cytolytic capability, such as chemotherapy or radiation have proven 

particularly effective in treating established tumors when used concomitantly with OX40 

agonists(68,69). In combination with cyclophosphamide, engagement of OX40 not only 

expands anti-tumor T effector cells but also reduces Foxp3+ regulatory T cells by promoting 

activation induced cell death. Of interest, elimination and deactivation of Tregs by anti-

OX40 antibodies has been important in the antitumor response in some preclinical 

models(62,68,70,71). Furthermore, given that OX40 ligation can potently stimulate CD4+ T 

cells, adoptive transfer of anti-melanoma CD4+ T cells can eliminate very advanced 

melanomas when combined with an anti-OX40 antibody and cyclophosphamide. The 

potency of the therapy is in part attributed to the newly described ability of OX40 

engagement to trigger a cytolytic program in CD4+ T cells(72,73).

Given the substantial evidence from mouse models showing that OX40 agonists can 

potentiate an anti-tumor immune response in multiple settings, a clinical grade reagent is 

now being developed and tested. A mouse anti-human OX40 monoclonal antibody has 

shown activity in nonhuman primates with induction of enlarged lymph nodes and spleens 

and increased T cell responses(74). This antibody was further tested in phase I clinical trials 

in 30 patients where the mouse anti-human OX40 antibody was given on days 1, 3, and 5 at 

0.1, 0.4, and 2.0 mg/kg (Table 2). The antibody was well tolerated with minimal toxicity and 

observation of some tumor size reduction, although none of the patients demonstrated an 
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objective response by RECIST criteria. However, specific proliferation and activation of T 

cells against KLH or tetanus toxin were observed when these model antigens were co-

injected the anti-OX40 antibodies(75). Given that patients showed elevated levels of 

neutralizing human anti-mouse antibodies, the clinical effectiveness of this antibody is 

significantly limited. For that reason, humanized anti-OX40 antibodies are being prepared 

for future clinical trials.

GITR-based cancer immunotherapy

The glucocorticoid induced tumor necrosis factor receptor (GITR; TNFRSF18) was 

originally discovered on T cell hybridomas that were treated with dexamethasone(76). 

Glucocorticoid treatment, however, was later shown to have no effect on GITR expression 

on human T cells and was not necessary in mice(77,78). GITR is upregulated on T cells 24–

72 hours after activation, although basal expression of GITR is found both on human and 

mouse T cells(79). GITR expression has also been found on NK cells, eosinophils, basophils, 

macrophages, and B cells, particularly upon activation(80).

Similarly to OX40 and CD137, GITR modulates T cell activation by providing a 

costimulatory signal. Unique for a TNFR family member, GITR signals through a complex 

of a single TRAF5 and two TRAF2 molecules, suggesting a non-redundant role for this 

molecule(11). GITR, as a costimulatory molecule, increases proliferation, activation, and 

cytokine production of CD4+ and CD8+ T cells after TCR engagement. Furthermore, it 

appears that GITR engagement supports a Th1 response in CD4+ T cells in a variety of 

disease models(80).

Initial studies with an agonist monoclonal rat anti-mouse GITR antibody (DTA-1) show that 

it can potently stimulate effector T cells while decreasing the suppressive function of 

regulatory T cells leading to autoimmunity (81–83). Subsequently, it was shown that DTA-1 

overrides the suppressive effects of Tregs on T effector cells(84). Thus, anti-GITR can 

potentially overcome tolerance to self and tumor antigens, making it an attractive target for 

development as a cancer immunotherapy. Indeed, DTA-1 has been shown to be effective in 

treating small established B16 tumors(85,86) and 8-day established Meth-A sarcomas(87), 

CT26(88) and A20 lymphoma (unpublished data). An interesting antitumor property of 

DTA-1 is its capacity to promote concomitant immunity(89), suggesting the potential for 

GITR-induced tumor immunity in treating metastatic disease.

DTA-1 has also been successful as an immunologic adjuvant in variety of combinatorial 

settings. Notably, DTA-1 has shown to substantially enhance the potency of xenogenic 

DNA vaccines in a melanoma model where protection is marginal(90). Similarly, dendritic 

cells engineered to express a melanoma antigen showed higher therapeutic potency when 

co-administered with DTA-1 or when DCs are engineered to secrete DTA-1 or soluble 

GITRL(91). Moreover, an adenovirus-based vaccine against human papillomavirus failed to 

provide complete protection unless it was combined with GITR engagement(92).

A humanized agonist anti-human GITR monoclonal antibody (TRX518) has been developed 

by Tolerex Inc (Now GITR Inc). and, similarly to DTA-1, provides potent costimulation to 
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human lymphocytes in vitro. A dose escalation phase I clinical trial has been initiated at 

Memorial Sloan-Kettering Cancer Center using TRX518 (Table 2).

Future perspective

While it is clear that agonist antibodies against members of TNFR family can significantly 

increase anti-tumor immune responses based on preclinical data, these agents are not 

realistically expected to induce complete regressions in cancer patients as monotherapies. 

Therefore, combinatorial modalities should be explored in future clinical trials. One 

attractive strategy is to combine cytolytic chemotherapeutic agents with TNFR agonists. In 

addition to directly killing tumor cells, these agents can lead to release of self antigens and 

TLR agonists that can expand antitumor T cells. In one study, stereotactic radiation is being 

combined with anti-OX40 in patients with metastatic breast cancer (NCT01642290). 

Furthermore, anti-OX40 is being combined with cyclophosmamide and radiation in patients 

with metastatic prostate cancer (NCT01301705).

Another interesting approach is the combination of agonist anti-TNFR antibodies in 

combination with checkpoint blockading antibodies, such as anti-CTLA-4 (ipilimumab) or 

anti-PD-1 (93). Anti-CTLA-4 and anti-PD-1 have shown anti-tumor activity in about 20–

30% of patients tested (94–98). Given the non-redundant signalling of the TNFR and 

checkpoint blockade pathways, it is conceivable that combinations of agonist and antagonist 

antibodies against these pathways can synergize to yield higher response rates.

Safety is a concern when considering agonist immunomodulatory antibody therapy. While 

the phase I anti-human OX40 antibody was well tolerated with low toxicity, trials of anti-

CD137 mAb were temporarily suspended after fatal hepatic events were observed. Such 

studies have now been successfully re-opened using lower doses of agonist antibody 

therapy. Conversely, in some models, the use of TNFR antibodies can cause hyperactivation 

and death of antigen-specific effector T cells(99,90) with the potential of hampering 

antitumor immunity. Therefore, careful design of future clinical trials, identification of 

biomarkers, and lessons from pre-clinical studies will be necessary to guide future therapies 

in our quest to develop potent and well-tolerated treatments.
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Figure 1. Cell surface-attached costimulatory members of the TNF and TNFR superfamilies
Schematic receptor-ligand pair interactions of the costimulatory members of the TNF and 

TNFR families at immune synapses. Receptors are color-coded for activation-dependent 

inducibility and the family of molecules is shape-coded. Plus (+), minus (-) and question 

mark (?) signs placed at the side of the arrows indicate activatory and inhibitory signals or 

unknown functional effects.

The TNF family with at least 18 described members and TNFR family that encompass at 

least 27 members play functions in many other biological functions beyond costimulation 

(Table 1) of T and NK responses. It is well known that some of the TNF members act as cell 

surface-attached molecules and some as soluble cytokines that in some cases can hetero 

trimerize. Soluble forms of the costimulatory members depicted in the figure have been 

described but their functional importance remains elusive. We can classify TNFR family 

members depending on the presence absence of a death domain in the cytoplasmic tail. This 

death domain recruits apoptosis inducing molecules upon ligation of the receptor and is 

absent from the costimulatory members whose main function is to convey proinflamatory 

and activatory signals. The pair CD40/CD40 ligand has not been included since the main 
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role of CD40 is activating antigen-presenting cells and has been reviewed in detail in an 

accompanying review (100).
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Figure 2. Early signal transduction events from CD137
Schematic representation of TRAF-2 and TRAF-1 recruitment by CD137 surface molecules 

perturbed by the natural ligand or agonist mAb. TRAF-2 has associated ubiquitin ligase 

activity (E3) that dictate self ubiquitination and presumably ubiquitination of other protein 

targets. These events lead to recruitment of TAB1/2-TAK1 complexes that downstream 

activate NF-κB and MAP-Kinases. Signals controlled or modulated by TRAF-1 are less well 

understood. K63 polyubiquitin chains are removed by deubiquitinases (i.e: CYLD and A20) 

which keep the pathway under control and therefore offer potential therapeutic targets.
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Figure 3. Schematic representation of the sites and cells on which agonist anti-CD137 mAbs act 
as example of TNFR mAb mechanism
The main mechanism of action is costimulation of CD8+ CTLs crossprimed by DC against 

tumor antigens. CD137 expression on dendritic cells, activated CD4 T cells (including 

Tregs) and on tumor blood and lymphatic vessels could offer additional sites and 

mechanisms of action. Similar mode of action settings can be envisioned for other TNFR 

members suitable for targeted cancer immunotherapy.
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Table 1

Members of TNFR superfamily.

Without death-domain 
(costimulatory and 

proinflamatory)

OX40 (CD34) (TNFRSF4)

CD40 (TNFRSF5)

CD27 (TNFRSF7)

CD30 (TNFRSF8)

CD137 (4-1BB) (TNFRSF9)

HVEM (CD270) (TNFRSF14)

GITR (CD357) (TNFRSF18)

TNFR1B (CD120b) (TNFRSF1B)

Lymphotoxin beta receptor (CD18) (TNFRSF3)

DCR3 (TNFRSF6B)

DCR1 or TRAILR3 (CD263) (TNFRSF10C)

RANK (CD265) (TNFRSF11A)

Fn14 or TWEAKR (CD266) (TNFRSF12A)

TACI (CD267) (TNFRSF13B)

BAFFR (CD268) (TNFRSF13C)

BCM or BCMA (CD269) (TNFRSF17)

TRADE (TNFRSF19)

EDA2R (TNFRSF27)

Death-domain (apoptosis inducing)

TNFR1A (CD120a) (TNFRSF1A)

FAS or APO-1 (CD95) (TNFRSF6)

DR4 or APO-2 or TRAILR (CD261) (TNFRSF10A)

DR5 or KILLER (CD 262) (TNFRSF10B)

DCR2 or TRAILR4 (CD264) (TNFRSF10D)

Osteoprotegerin (TNFRSF11B)

NGFR (CD271) (TNFRSF16)

DR6 (CD358) (TNFRSF21)

APO-3 or DR3 (TNFRSF25)
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