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Abstract

Background—Powerful computing capabilities in small, easy to use hand-held devices have 

made smart technologies such as smartphones and tablets ubiquitous in today’s society. The 

capabilities of these devices provide scientists with many tools that can be used to improve the 

scientific method.

Method—Here, we demonstrate how smartphones may be used to quantify the sensitivity of 

functional near-infrared spectroscopy (fNIRS) signal to head motion. By attaching a smartphone 

to participants’ heads during the fNIRS scan, we were able to capture data describing the degree of 

head motion.

Results—Our results demonstrate that data recorded from an off-the-shelf smartphone 

accelerometer may be used to identify correlations between head-movement and fNIRS signal 

change. Furthermore, our results identify correlations between the magnitudes of head-movement 

and signal artifact, as well as a relationship between the direction of head movement and the 

location of the resulting signal noise.

Conclusions—These data provide a valuable proof-of-concept for the use of off-the-shelf smart 

technologies in neuroimaging applications.
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1. Introduction

Smart technologies such as smartphones and tablets are ubiquitous in today’s society. These 

devices are equipped with computing power that rivals larger, less portable desktop 

computers, all while being small, portable, and easy to use. Experts predict that by the end 

of 2014, the number of smartphones in circulation will exceed the number of personal 

computers (IDC, 2013). Notably, these devices are highly configurable by downloadable 

applications that are unlimited in scope. As a result, novel uses of smart technologies in 

various aspects of science and medicine are highly sought-after.

Among the documented medical applications of smartphones is their use in remotely 

diagnosing strokes (Demaerschalk, 2012; Mitchell, 2011), presentation of radiographic 

evaluations (Ege et al., 2013), identification of concussion (Curaudeau, 2011; Kutcher, 

2013), detection of irregular pulse (McManus, 2012), managing surgical implants (Fakhar, 

2013), detecting and preventing falls in aging patients (Mellone, 2012; Sposaro, 2009), 

medical monitoring (Dunton, 2011; Isik, 2013; Lee, 2011; Maki, 2011; Van Wieringen, 

2008), characterization of Parkinson’s disease tremors (LeMoyne, 2010), heart rate 

monitoring (Kwon, 2011), and Cobb angle measurement in patients with scoliosis (Shaw, 

2012). Many of these and other smartphone applications rely on sensors that come standard 

in today’s smart devices. For instance, each device is equipped with an accelerometer, which 

measures the acceleration caused by movement and gravity. Importantly, numerous studies 

have demonstrated that such devices are highly accurate and reliable, rivaling the 

performance of stand-alone accelerometers (Balg et al., 2014; Demaerschalk et al., 2012; 

Ege et al., 2013; Izatt et al., 2012; Mellone et al., 2012; Nishiguchi et al., 2012; Ockendon & 

Gilbert, 2012). The precision of the accelerometers in modern smartphones allows for many 

of the findings reported above, such as reliable identification of sudden movements related 

to falling, and real-time measurement of the curve in a scoliosis patients’ spine.

Accelerometers may be used in cognitive neuroimaging as a tool to record a participants’ 

head movement during a scan. The ability to record the timing, magnitude, and direction of 

head motion provides researchers with a valuable tool that may be used to statistically 

remove artifacts within an imaging signal that is caused by head movement (Virtanen et al., 

2011), or to help characterize particular behaviors such as nodding (Lee & Ha, 2001). While 

movement information can be calculated from functional images using rigid body 

transformation in fMRI (Friston, et al., 2011), other imaging devices such as functional near-

infrared spectroscopy (fNIRS) and EEG are not equipped with such features. Moreover, 

stand-alone accelerometers designed for neuroimaging applications may be expensive, and 

depending on their size and components may not be conducive to particular experimental 

designs. The accelerometers within a smartphone may provide an ideal alternative to such 

stand-alone devices, and would provide researchers with a portable, convenient, and easy to 

use method to record patients head motion during experimental sessions.

Here, we provide the first evidence that smartphone accelerometers can be used to 

accurately record participants’ head movement during fNIRS neuroimaging. fNIRS uses 

light projected through a patient’s scalp to measure the oxygen levels of hemoglobin in the 

blood of the cerebral cortex. With an observation rate of 10Hz and a typical optode spacing 
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of 3cm, fNIRS provides greater temporal resolution than fMRI while maintaining greater 

spatial resolution than EEG. While commonly thought of as more tolerant to movement than 

fMRI and EEG, head movement does affect fNIRS signal quality (Aslin & Mehler, 2005). 

However, the degree to which fNIRS signal amplitude fluctuates with head movement is 

unknown. To that end, the current project addresses this topic as well: We hypothesize that 

the magnitude and direction of head motion recorded by an off-the-shelf smartphone 

accelerometer will correlate with abrupt changes in fNIRS signal amplitude (i.e., spikes). 

This project is the first to identify and implement a direct use for smartphones during fNIRS 

neuroimaging and provides a much-needed platform for future applications of smart 

technologies to be adopted in cognitive neuroimaging.

2. Method

2.1 Participants

A total of six adult participants (n female= 3, age range 22-67, mean 37.5 years old) were 

recruited for participation. Each participant was recruited from the campus of Stanford 

University. Written informed consent was obtained from all participants, and the Stanford 

University Institutional Review Board approved the study protocol.

2.2 Experimental procedure

Prior to undergoing fNIRS imaging, the task requirements were given to each participant. 

Participants were sat comfortably at a desk and were told to keep their head upright and 

steady. Throughout the imaging session the participants performed a simple task in which 

they tapped the pointer finger on their right hand on a desk in 10-second blocks, followed by 

20-second blocks of rest. Randomly throughout the tapping blocks, participants were 

instructed, by vocal command, to move their head in a slow and steady manner in one of 

four directions (left, right, forward, or backward), and to move either a short (e.g., ~10°) or 

long (e.g., ~30°) distance from their upright starting point (see Figure 1). Prior to beginning 

the experiment, each participant was allowed to practice performing both short and long 

head movements to. Each short direction was made six times, and each long direction was 

made seven times.

2.3 NIRS data acquisition

An ETG-4000 (Hitachi, Japan) Optical Topography system was used to measure the 

concentration changes in oxygenated (HbO) and deoxygenated (Hb) hemoglobin in the 

primary motor and somatosensory cortex of each participant. Two “4×4” measurement 

patches were attached to a regular swimming cap, which was positioned onto each 

participant’s head (see Figure 1). Specifically, the medial edges of both patches were aligned 

to the midline (i.e., the arc running from the nasion through Cz to the inion).

2.4 Accelerometer data acquisition and analysis

All accelerometer data were recorded on an unmodified Motorola DEFY XT water-resistant, 

dust-proof Android smartphone. The data were gathered from the smartphones’ on-board 

accelerometer by way of an in-house program. The smartphone was attached to the back of 

Cui et al. Page 3

J Neurosci Methods. Author manuscript; available in PMC 2016 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the participants’ head by way of a smartphone exercise armband with a large adjustable 

strap (see Figure 1abc).

The accelerometer in the smartphone we used (and also in most smartphones such as the 

iPhone) continuously measures total acceleration, which is a vector sum of the force of 

gravity and linear acceleration. Since the head motion in our experiments is slow compared 

to gravity (i.e. the linear acceleration is negligible), the accelerometer data recorded is the 

x-, y-, and z-components of gravity in the reference frame of the smartphone (Figure 2). 

Thus, we can calculate the angle of the head at any time point based on the x, y, and z data. 

Each head motions’ amplitude was calculated as the maximal angle of the smartphone 

position during the motion period (typically less than 4s) from the origin (see Figure 3 for 

3D trajectory of head motion).

2.5 NIRS data analysis

All fNIRS data were initially treated with a 0.01 Hz high-pass filter to remove low 

frequency drift. Next, the filtered data were plotted along with the accelerometer data in 

order to visually identify artifacts in the fNIRS data that coincide with peaks along the x-, 

y-, or z-axis of the accelerometer data (Figure 2ab). The amplitude of a signal artifact is 

calculated as the peak amplitude of fNIRS signal normalized by the mean and standard 

deviation of the fNIRS data points in the entire session. The maximal absolute signal artifact 

among all channels is used in identifying the effect of a head movement. As opposed to 

neurobiological sources (Van Dijk et al., 2012; Zeng et al., 2014), abrupt motion-induced 

signal changes in fNIRS (i.e. spikes) are driven by displacement of the optodes on the head 

resulting in variations in the intensity of the near-IR light at the point of contact with the 

scalp (Aslin & Mehler, 2005). Because the degree of optode displacement corresponds with 

the degree of head movement, it is reasonable to hypothesize that signal amplitude change 

provides a suitable correlate of head motion. Based on this relationship, we plotted the 

amplitude of signal artifact against the degree of head motion amplitude to identify the 

sensitivity of fNIRS signal to head motion (Figure 4). To find the relationship between 

fNIRS artifact in different measurement regions and motion direction, we calculated the 

average of the signal artifact across repeats of the same motion type for each channel and 

plotted the heat maps in Figure 5.

3. Results

3.1 Baseline movement

A cohesive clustering of data points near the plot origin is visually apparent within the 

fNIRS signal amplitude plots displayed in Figure 4. These points, marked by blue crosses, 

occurred when the participants were told to hold their heads upright (i.e., in between head 

movements). During these periods the participants had a baseline head motion of roughly 5°, 

and a noticeable variation in fNIRS amplitude is apparent. However, the observed range of 

variation in fNIRS amplitude (i.e., ~.5-3 standard deviations) is expected in a normal 

distribution.
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3.2 Correlation between head movement and signal amplitude change

Our data highlight a positive correlation between the degree of head motion made by the 

participant and the amplitude of the HbO motion artifact. That is, the greater the degree of 

head motion in any direction, the greater amount of noise related to head motion within the 

fNIRS signal. In order to more precisely define this relationship, we employed a series of 

regression analyses. First, linear regression identified a significant linear relationship 

between the degree of head motion and fNIRS signal amplitude for all participants (R2 

range= .35 - .52; p< .0001). However, as seen in Figure 4, fNIRS amplitude increases more 

abruptly (i.e., non-linearly) during long head movements compared to short movements. A 

second regression analysis, which included a quadratic term to capture this curvilinear 

relationship, identified significant beta values for the quadratic term (R2 range= .37 - .55; 

p< .0001) for all participants except number 3. These results suggest that fNIRS signal 

amplitudes increase with head motion, and that the rate of increase is greater during long 

compared to short head movements.

3.3 Correlation between direction of head motion and location of signal amplitude change

Figure 5 highlights a correlation between the directions that participant moved their head 

and the location of the resulting signal artifacts. Such artifacts were greatest in the locations 

of the brain that coincide with the direction of head movement. For example, moving the 

head forward resulted in a large artifact in anterior regions of the fNIRS optode patches, 

whereas moving the head to the right caused a large artifact in the channels within the right 

fNIRS patch. The signal amplitude change in the regions contralateral to the direction of 

head motion was comparatively small. Identical analysis of the “short” head motions did not 

reveal similar patterns of amplitude change.

4. Discussion

Here, we provide the first demonstration of the use of an off-the-shelf smartphone to 

measure head movement during fNIRS neuroimaging. By accessing the spatial position data 

automatically recorded by our smartphone’s accelerometer during an fNIRS scan, we were 

able to identify a relationship between head motion and fNIRS signal noise. Namely, signal 

noise increased non-linearly with increases in head motion. Moreover, the location of signal 

noise was related to the direction of head motion. Taken together, our data help characterize 

fNIRS signal noise caused by head motion, and provide a valuable proof-of-concept for 

smartphones’ use in modern neuroimaging research.

It is important to note that our experimental design, combined with functional regions of 

interest limited to the motor cortex, allowed for relatively easy placement of the smartphone 

onto the back of each participants head by way of a standard exercise armband (see Figure 

1). However, because researchers are free to arrange fNIRS optodes in any configuration 

that is appropriate for their experimental design, generalization of our procedure may require 

alternative methods to affix the smartphone to the participants’ head. However, given the 

accuracy and reliability of smartphone accelerometers across a wide range of tasks, it is 

unlikely that measurement sensitivity and accuracy would vary given different placement 

locations on the head, or given different affixation methods.
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Recent estimates suggest that there are currently more mobile devices in use, including 

smartphones and tablets, than there are people on the planet (VNI, 2014). Importantly, this 

figure is expected to rise 13-fold by 2017 to numbers exceeding 10 billion. As these devices 

become evermore ubiquitous the identification of specialized applications, such as that 

which we describe herein, has the potential to greatly improve the scientific method. For 

example, as demonstrated by Virtanen and colleagues (2011), accelerometer data may be 

used as a regressor to remove artifacts due to movement in an fNIRS signal. Importantly, 

multiple accelerometer apps are available at little to no cost for all smartphone systems by 

searching “accelerometer” in the application stores. Many of these apps collect and save 

accelerometer data locally and can be easily transferred to a computer via a USB port or 

wireless transmission, thus subserving the need for in-house programs. Together with our 

procedure, future researchers may employ smartphone accelerometers to record and 

wirelessly transmit head motion data into a repository where it may be combined with 

hemodynamic data recorded by fNIRS. In this manner researchers may seamlessly integrate 

smartphone-recorded head motion data into their data analysis pipeline.

One justifiable concern that arises when employing smartphones in neuroimaging is 

maintaining adequate timing. Notably, accelerometer reliability across smartphones has been 

shown to be high. In a study by Amick and colleagues (2013), the authors compared the 

accelerometers of five different smartphones and concluded “these devices demonstrated 

consistent sensitivity values across multiple devices as demonstrated by low coefficients of 

variability.” Nevertheless, in a study by Stopczynski and colleagues (2014), which 

employed a smartphone-based brain scanner application for EEG, maintaining consistent 

timing was notoriously difficult. However, it is worth noting that this study relied on a 

smartphone for data acquisition, processing (i.e., filtering, recording, 3D reconstruction), 

and feedback (e.g., 3D brain visualization, stimuli delivery, neurofeedback). Conversely, our 

method relies on a smartphone to record accelerometer data only, which requires much less 

processing power and does not affect the devices’ timing as severely. Moreover, because 

fNIRS measures hemodynamic fluctuations as opposed to electrical impulses, the need for 

perfect synchrony between an event (e.g., head movement) and fNIRS data is not needed.

For our study, simply aligning the fNIRS and accelerometer data based on abrupt “spikes” 

caused by head movements in both data streams was sufficient. Researchers that wish to 

adopt our method need only download an accelerometer app from an application store, then 

identify a feasible approach to affix a smartphone to their participants’ head (e.g., exercise 

arm band, see Figure 1) without disturbing the fNIRS optode arrangement. Next, they may 

instruct each participant to make a head movement that will be easily distinguishable within 

the accelerometer data (e.g., head nod) and the NIRS data immediately after the fNIRS scan 

begins. In this manner, a calibration landmark will be available to align both sets of data 

easily. Within applications wherein real time integration of accelerometer data is not 

necessary, researchers may export these data from the smartphone following the end of the 

scan and integrate the data during post hoc data processing.

Our project made use of standard hardware within a smartphone (i.e., accelerometer) that, 

despite its usefulness for our purposes, is restrictive in its range of possible applications. It is 

important to note that some experimental paradigms require accelerometer performance 
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standards that may not be attainable or guaranteed within smartphones. However, as 

mentioned above, along with the accelerometer that comes standard in modern smartphones, 

the user-developed programs that employ smart technologies’ powerful computing 

capabilities are endlessly flexible, and may ultimately provide researchers with an unlimited 

number of uses that may supersede the need for specialized equipment. To that end, it will 

be important for future researchers to identify, develop, and share these applications so that 

other researchers may also benefit. Importantly, the ability to supplement specialized 

equipment with ubiquitous multi-use technology such as smartphones may have far reaching 

impacts on future scientific endeavors.
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Highlights

• This study provides the first applied use of smartphones in fNIRS neuroimaging

• Data from smartphone accelerometers correlate with motion-related noise in 

fNIRS

• Longer head motion is more likely to induce signal noise in NIRS than shorter 

motions.
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Figure 1. 
Experimental setup. (A, B and C) A participant wearing the ETG 4000 cap and smartphone. 

(D) Cap configuration. Red circles indicate emitters; blue circles indicate detectors. White 

squares indicate measurement channels between emitters and detectors.
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Figure 2. 
Exemplary NIRS and accelerometer data. (A) A participant’s NIRS data (HbO from 48 

channels). Rows from bottom to top are for channel 1 to 48. It’s evident that there are 

numerous motion artifacts (spikes). The black arrow indicates one of such spikes. (B) The 

same participant’s accelerometer data showing the subject’s head position. Because the head 

motion is slow compared to gravity (i.e. the linear acceleration is negligible), the 

accelerometer data recorded is the x-, y-, and z-components of gravity in the reference frame 

of the smartphone. The black arrow indicates one of the head motions and the timing is 

identical to the arrow in (A). (C) A zoom in of accelerometer data of the first head motion 

(“forward big”), and the HbO signal from channel 1. The vertical gray bar indicates the 

timing of motion instruction.
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Figure 3. 
A 3D plot of the trajectory of a participant’s head position measured by a smartphone 

accelerometer. Based on the orientation of the smartphone placement, the y-axis is primarily 

aligned to the vertical direction during rest. Color indicates the instructed motion direction. 

Red means forward, green means backward, blue means left and magenta means right. Open 

circles denotes short motion and solid circle denotes long motion. Based on the figure, it is 

evident that the smartphone accelerometer captures the expected head motion trajectory.
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Figure 4. 
Amplitude of HbO artifacts as a function of the amplitude of head motion. The x-axis gives 

the amplitude of the head motion (unit= degree), the y-axis gives the amplitude of the 

maximal HbO motion artifacts (normalized by the pooled standard deviation). Green circles 

denote “long” motion and red circles denote “short” motion. The blue cross (x) symbols are 

data from the “non-motion” period where the subjects were instructed to remain still. The 

trend line within each subplot highlights a very strong non-linear dependence on head 

motion. The fit of the quadratic (i.e., non-linear) term was significant for all participants 

except Subject 3. Bigger motion is clearly related to bigger HbO artifacts.
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Figure 5. 
Group-level amplitude change heat-maps for “long” head motions describing the location of 

HbO artifacts and direction of head motion. Color indicates the amplitude of the HbO 

motion artifact where red means larger artifact. The figures demonstrate that a motion in a 

direction (e.g. forward) will cause higher artifacts in that direction (e.g. frontal region). 

Identical visual analysis of the “short” head motions did not identify similar patterns of 

amplitude changes and were not displayed.
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