Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jun 7;91(12):5306–5310. doi: 10.1073/pnas.91.12.5306

The LW blood group glycoprotein is homologous to intercellular adhesion molecules.

P Bailly 1, P Hermand 1, I Callebaut 1, H H Sonneborn 1, S Khamlichi 1, J P Mornon 1, J P Cartron 1
PMCID: PMC43983  PMID: 8202485

Abstract

The LW blood group antigens reside on a 42-kDa erythrocyte membrane glycoprotein that was purified by immunoaffinity and partially sequenced. From this information, a specific PCR-amplified DNA fragment was used to screen a lambda gt11 human bone marrow cDNA library. Two forms of cDNA were isolated; the first encoded a single spanning transmembrane protein of 270 amino acids, including a 29-amino acid peptide signal and four potential N-glycosylation sites, and the second encoded a shortened protein form of 236 residues devoid of transmembrane and cytoplasm domains. A rabbit antibody raised against the 15 N-terminal amino acids of the predicted protein reacted on immunoblots with authentic LW glycoprotein and in indirect agglutination test with all human erythrocytes except those from LW(a-b-). This showed that the protein encoded by these clones was LW gene product and suggested that the N terminus of the LW protein is oriented extracellularly. Most interestingly, the LW protein was found to exhibit sequence similarities (with approximately 30% identity) with intercellular adhesion molecules ICAM-1, -2, and -3, which are the counter-receptors for the lymphocyte function-associated antigens LFA-1. The extracellular domain of LW consists, like that of ICAM-2, of two immunoglobulin-like domains, and the critical residues involved in the binding of LFA-1 to ICAMs were partially conserved in LW.

Full text

PDF
5309

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beatty P. G., Ledbetter J. A., Martin P. J., Price T. H., Hansen J. A. Definition of a common leukocyte cell-surface antigen (Lp95-150) associated with diverse cell-mediated immune functions. J Immunol. 1983 Dec;131(6):2913–2918. [PubMed] [Google Scholar]
  2. Berendt A. R., McDowall A., Craig A. G., Bates P. A., Sternberg M. J., Marsh K., Newbold C. I., Hogg N. The binding site on ICAM-1 for Plasmodium falciparum-infected erythrocytes overlaps, but is distinct from, the LFA-1-binding site. Cell. 1992 Jan 10;68(1):71–81. doi: 10.1016/0092-8674(92)90207-s. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Bloy C., Blanchard D., Hermand P., Kordowicz M., Sonneborn H. H., Cartron J. P. Properties of the blood group LW glycoprotein and preliminary comparison with Rh proteins. Mol Immunol. 1989 Nov;26(11):1013–1019. doi: 10.1016/0161-5890(89)90065-5. [DOI] [PubMed] [Google Scholar]
  5. Bloy C., Hermand P., Blanchard D., Cherif-Zahar B., Goossens D., Cartron J. P. Surface orientation and antigen properties of Rh and LW polypeptides of the human erythrocyte membrane. J Biol Chem. 1990 Dec 15;265(35):21482–21487. [PubMed] [Google Scholar]
  6. Bloy C., Hermand P., Cherif-Zahar B., Sonneborn H. H., Cartron J. P. Comparative analysis by two-dimensional iodopeptide mapping of the RhD protein and LW glycoprotein. Blood. 1990 Jun 1;75(11):2245–2249. [PubMed] [Google Scholar]
  7. Campana D., Sheridan B., Tidman N., Hoffbrand A. V., Janossy G. Human leukocyte function-associated antigens on lympho-hemopoietic precursor cells. Eur J Immunol. 1986 May;16(5):537–542. doi: 10.1002/eji.1830160513. [DOI] [PubMed] [Google Scholar]
  8. Cartron J. P., Agre P. Rh blood group antigens: protein and gene structure. Semin Hematol. 1993 Jul;30(3):193–208. [PubMed] [Google Scholar]
  9. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  10. Edwards J. B., Delort J., Mallet J. Oligodeoxyribonucleotide ligation to single-stranded cDNAs: a new tool for cloning 5' ends of mRNAs and for constructing cDNA libraries by in vitro amplification. Nucleic Acids Res. 1991 Oct 11;19(19):5227–5232. doi: 10.1093/nar/19.19.5227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fawcett J., Holness C. L., Needham L. A., Turley H., Gatter K. C., Mason D. Y., Simmons D. L. Molecular cloning of ICAM-3, a third ligand for LFA-1, constitutively expressed on resting leukocytes. Nature. 1992 Dec 3;360(6403):481–484. doi: 10.1038/360481a0. [DOI] [PubMed] [Google Scholar]
  12. Giles C. M. The LW blood group: a review. Immunol Commun. 1980;9(2):225–242. doi: 10.3109/08820138009065996. [DOI] [PubMed] [Google Scholar]
  13. Giranda V. L., Chapman M. S., Rossmann M. G. Modeling of the human intercellular adhesion molecule-1, the human rhinovirus major group receptor. Proteins. 1990;7(3):227–233. doi: 10.1002/prot.340070304. [DOI] [PubMed] [Google Scholar]
  14. Hermand P., Mouro I., Huet M., Bloy C., Suyama K., Goldstein J., Cartron J. P., Bailly P. Immunochemical characterization of rhesus proteins with antibodies raised against synthetic peptides. Blood. 1993 Jul 15;82(2):669–676. [PubMed] [Google Scholar]
  15. Konigshaus G. J., Holland T. I. The effect of dithiothreitol on the LW antigen. Transfusion. 1984 Nov-Dec;24(6):536–537. doi: 10.1046/j.1537-2995.1984.24685066821.x. [DOI] [PubMed] [Google Scholar]
  16. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  17. Mallinson G., Martin P. G., Anstee D. J., Tanner M. J., Merry A. H., Tills D., Sonneborn H. H. Identification and partial characterization of the human erythrocyte membrane component(s) that express the antigens of the LW blood-group system. Biochem J. 1986 Mar 15;234(3):649–652. doi: 10.1042/bj2340649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rosenfeld J., Capdevielle J., Guillemot J. C., Ferrara P. In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem. 1992 May 15;203(1):173–179. doi: 10.1016/0003-2697(92)90061-b. [DOI] [PubMed] [Google Scholar]
  20. Simmons D., Makgoba M. W., Seed B. ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM. Nature. 1988 Feb 18;331(6157):624–627. doi: 10.1038/331624a0. [DOI] [PubMed] [Google Scholar]
  21. Sistonen P., Green C. A., Lomas C. G., Tippett P. Genetic polymorphism of the LW blood group system. Ann Hum Genet. 1983 Oct;47(Pt 4):277–284. doi: 10.1111/j.1469-1809.1983.tb00997.x. [DOI] [PubMed] [Google Scholar]
  22. Sistonen P. Linkage of the LW blood group locus with the complement C3 and Lutheran blood group loci. Ann Hum Genet. 1984 Jul;48(Pt 3):239–242. doi: 10.1111/j.1469-1809.1984.tb01020.x. [DOI] [PubMed] [Google Scholar]
  23. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  24. Staunton D. E., Dustin M. L., Erickson H. P., Springer T. A. The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell. 1990 Apr 20;61(2):243–254. doi: 10.1016/0092-8674(90)90805-o. [DOI] [PubMed] [Google Scholar]
  25. Staunton D. E., Dustin M. L., Springer T. A. Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature. 1989 May 4;339(6219):61–64. doi: 10.1038/339061a0. [DOI] [PubMed] [Google Scholar]
  26. Tippett P. Regulator genes affecting red cell antigens. Transfus Med Rev. 1990 Jan;4(1):56–68. doi: 10.1016/s0887-7963(90)70248-9. [DOI] [PubMed] [Google Scholar]
  27. Trask B., Fertitta A., Christensen M., Youngblom J., Bergmann A., Copeland A., de Jong P., Mohrenweiser H., Olsen A., Carrano A. Fluorescence in situ hybridization mapping of human chromosome 19: cytogenetic band location of 540 cosmids and 70 genes or DNA markers. Genomics. 1993 Jan;15(1):133–145. doi: 10.1006/geno.1993.1021. [DOI] [PubMed] [Google Scholar]
  28. Vazeux R., Hoffman P. A., Tomita J. K., Dickinson E. S., Jasman R. L., St John T., Gallatin W. M. Cloning and characterization of a new intercellular adhesion molecule ICAM-R. Nature. 1992 Dec 3;360(6403):485–488. doi: 10.1038/360485a0. [DOI] [PubMed] [Google Scholar]
  29. Williams A. F., Barclay A. N. The immunoglobulin superfamily--domains for cell surface recognition. Annu Rev Immunol. 1988;6:381–405. doi: 10.1146/annurev.iy.06.040188.002121. [DOI] [PubMed] [Google Scholar]
  30. de Fougerolles A. R., Klickstein L. B., Springer T. A. Cloning and expression of intercellular adhesion molecule 3 reveals strong homology to other immunoglobulin family counter-receptors for lymphocyte function-associated antigen 1. J Exp Med. 1993 Apr 1;177(4):1187–1192. doi: 10.1084/jem.177.4.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES