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Abstract

The central amygdala (CeA) plays a central role in physiological and behavioral responses to 

fearful stimuli, stressful stimuli, and drug-related stimuli. The CeA receives dense inputs from 

cortical regions, is the major output region of the amygdala, is primarily GABAergic (inhibitory), 

and expresses high levels of pro- and anti-stress peptides. The CeA is also a constituent region of a 

conceptual macrostructure called the extended amygdala that is recruited during the transition to 

alcohol dependence. In this review, we discuss neurotransmission in the CeA as a potential 

integrative hub between anxiety disorders and Alcohol Use Disorder (AUD), which are commonly 

co-occurring in humans. Human imaging work and multi-disciplinary work in animals collectively 

suggest that CeA structure and function are altered in individuals with anxiety disorders and AUD, 

the end result of which may be disinhibition of downstream “effector” regions that regulate 

anxiety- and alcohol-related behaviors.

INTRODUCTION

Anxiety disorders and Alcohol Use Disorders (AUD) are highly co-morbid in humans. 

Anxiety disorders often precipitate alcohol abuse, and high anxiety is a hallmark symptom 

of alcohol dependence that manifests during withdrawal. Many anxiety disorders are marked 

by hyperactivity and/or hyperreactivity of the amygdala (1), as supported by neuroimaging 

data, although functional MRI and PET do not yet possess the resolution to reliably 

differentiate amygdaloid nuclei.
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In healthy humans, amygdala activity is increased during fear conditioning (2, 3). Humans 

with post-traumatic stress disorder (PTSD) exhibit higher amygdala activity at rest (4), and 

hyper-reactivity of the amygdala to trauma-related stimuli (5) is predictive of symptom 

severity in PTSD patients (6, 7). Higher levels of amygdala activation are seen in 

generalized anxiety disorder (8, but see 9), social phobia (10), specific phobia (11, but see 

12), and panic disorder (13, but see 14).

Alcohol withdrawal is defined by lasting increases in anxiety (15) that contribute to relapse 

(16, 17). Withdrawal-induced anxiety is attributable to recruitment of both neuroendocrine 

and extra-hypothalamic stress systems in humans and animals (18, 19). Alcohol-dependent 

humans exhibit reduced amygdala volume, which predicts alcohol craving and relapse (20, 

21). Moderate-to-heavy non-dependent drinkers exhibit reduced amygdala activation during 

a risk-taking task (22). Individuals with a family history of alcohol dependence exhibit 

reduced amygdala volume (23) and reduced amygdala activation in response to fearful faces 

(24). PTSD patients that abuse alcohol exhibit altered amygdala blood flow relative to 

normal controls (4). In a cue-reactivity fMRI task, alcohol cues activate amygdala, striatum, 

and cortical regions (25, 26). Amygdala abnormalities may result in disinhibition of 

downstream brain regions that regulate physiology and behavior, as detailed below.

THE CENTRAL AMYGDALA (CeA)

The CeA functions as an integrative hub that converts emotionally-relevant sensory 

information about the external and internal environment into behavioral and physiological 

responses. The CeA is part of the extended amygdala (EA), a collection of limbic forebrain 

structures (including the lateral division of the bed nucleus of stria terminalis [BNST], and 

nucleus accumbens [NAc] shell [27]) that exhibit similar cytoarchitecture, overlapping 

afferents and efferents, and strong inter-connectivity (28, 29). The EA mediates negative 

affective states associated with stress and AUD (30, 31), and is densely populated by pro- 

and anti-stress neuropeptides (32). Here, we discuss CeA dysregulation in anxiety disorders 

and AUD, and the contribution of CeA peptides to these pathologies, with emphasis on the 

pro-stress peptide corticotropin-releasing factor (CRF) and the anti-stress peptide 

neuropeptide Y (NPY).

AMYGDALA CIRCUITRY

The amygdala is a collection of nuclei, including the lateral amygdala (LA), the basolateral 

amygdala (BLA), and the CeA, which contains lateral (CeAL) and medial (CeAM) 

subdivisions (Figure 1A). The amygdala exhibits a lateromedial flow of information from 

the LA/BLA to and through the intercalated cells (ITC), and into the CeA, which sends out 

information through amygdala efferents (33). The LA receives multi-sensory information 

from thalamus (34, 35), integrated sensory information from cortex (36), and noxious 

stimulus information from brainstem regions (37). The CeA also receives noxious stimuli 

information from brainstem regions (38, 39). Glutamatergic neurons in LA synapse onto 

glutamatergic BLA neurons, and onto GABAergic medial ITC cells (40) that separate BLA 

from CeA (41, 42). The LA/BLA sends dense glutamatergic projections to CeA, with the 

LA projecting only to CeAL, and the BLA projecting to both CeAL and CeAM (28, 43, 44). 

Gilpin et al. Page 2

Biol Psychiatry. Author manuscript; available in PMC 2016 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Projections out of BLA also synapse onto ITC GABA cells that in turn synapse on CeA 

neurons (45).

The CeAL and CeAM receive GABAergic afferents from other structures (46), contain local 

GABA interneurons and GABAergic projection neurons (47, 48) that may inhibit each other 

via axon collaterals (49; Figure 1B). The CeAL projects to CeAM, with no reciprocal 

projection from CeAM to CeAL (50). The CeAM is the major output nucleus of the amygdala 

and projects to regions that produce behavioral and physiological responses to emotionally 

relevant events (49, 50, 51), but recent data suggest the CeAL also sends GABAergic 

projections to behavioral and physiological effector regions (52).

Amygdala microcircuitry is critical for emotional processing, especially for interpretation of 

emotionally relevant stimuli or the attachment of emotional relevance to otherwise neutral 

stimuli (i.e., learning). Amygdala microcircuitry receives and integrates complex multi-

modal information to produce behavioral responses. Amygdala dysfunction is implicated in 

both anxiety disorders (53) and substance abuse (30).

CeA AS A HUB FOR ANXIETY AND ALCOHOL CIRCUITS

Origins of Amygdala Afferents

Afferents from thalamus and cortex synapse in LA and ITC, which each project to CeA 

(Figure 1A). Medial prefrontal cortical (mPFC) inputs to amygdala have well-defined 

contributions to pathological behavioral states in humans and animals. Medial PFC 

pyramidal neurons send excitatory projections to the amygdala and are controlled by a 

complex network of GABA interneurons (54, 55). Human and animal studies suggest that 

alcohol and stress affect mPFC function and mPFC-amygdala functional connectivity.

The CeA integrates cortical/sensory inputs with innervation from “downstream” brainstem 

regions (50) including: 1) the ventral tegmental area (VTA), important for reward and 

synthesis of forebrain dopamine; 2) the locus coeruleus (LC) and nucleus of solitary tract 

(NTS), important for stress response, autonomic function and synthesis of brain 

norepinephrine; and 3) the periaqueductal gray (PAG), critical for pain processing. The CeA 

also receives input from the BNST (56), important for anxiety regulation, and is sensitized 

by glucocorticoid feedback following hypothalamic-pituitary adrenal (HPA) axis activation 

(57, 58), in contrast to glucocorticoid-mediated negative feedback in the PVN.

Effector Regions Targeted by CeA Efferents

The CeA integrates cortical, brainstem, and intra-amygdala afferents to coordinate 

behavioral and physiological responses via projections to downstream “effector” regions 

(Figure 1A). The target of specific CeAM projections determines the behavioral 

consequences of changes in amygdala activity, but evidence also exists for a subpopulation 

of CeAL neurons (i.e., oxytocin receptor-expressing neurons) with terminals in CeAM and 

ventral forebrain that dictate whether fear coping behaviors are passive (e.g., freezing) or 

active (e.g., exploratory/risk assessment) (59). Whether CeAM projection neurons exhibit 

mutually exclusive or overlapping targets and activation profiles is not fully understood. 

Basal amygdala projection neurons display anatomical and functional specificity in fear 
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expression versus extinction conditions (60), raising the possibility that CeAM populations 

are likewise differentially activated by specific stimulus conditions.

Periaqueductal Gray (PAG)—The PAG is important for descending behavioral and 

physiological responses to fearful and painful stimuli (61). The CeAM sends dense and 

organized GABAergic projections to PAG (62) that co-localize CRF and substance P (63) 

and gate the anti-nociceptive pain response mediated by opioids in PAG (64, 65). The 

amygdala and PAG are each activated by unconditioned aversive stimuli, and this response 

is dampened by signals predictive of those stimuli (66).

Lateral Hypothalamus (LHA)—The LHA mediates autonomic responses to fearful 

stimuli (61), and houses dopamine (DA) fibers that project from VTA to forebrain and 

mediate brain reward function (67). The CeA sends dense GABAergic projections to the 

LHA (28, 68). Electrical kindling of the CeA increases the sensitivity of LHA to drug-

induced facilitation of brain reward function (69), whereas CeA lesion reduces DA activity 

in LHA (70).

Paraventricular Hypothalamus (PVN)—The PVN regulates the neuroendocrine stress 

response via CRF projections to the pituitary that promote ACTH and cortisol/corticosterone 

production and release. The CeAM, but not the CeAL, sends monosynaptic (71) and 

disynaptic (72) projections to the PVN, which may function as a relay station to brainstem 

nuclei (73). Electrical CeA stimulation activates the HPA stress axis (74), and the CeA 

mediates pro-inflammatory cytokine-induced activation of the HPA axis (75).

Locus Coeruleus (LC)—The LC produces norepinephrine and regulates autonomic 

responses to stress (76). GABAergic projections from CeA to LC (77) often co-localize the 

pro-stress peptides, CRF and dynorphin (78), and synapse onto NE neurons in LC (79), 

creating a feed-forward loop that is activated during stress and alcohol withdrawal (80, 81). 

These CeA neurons also express glucocorticoid receptors, suggesting regulation by 

neuroendocrine feedback from the HPA axis (82).

Dorsal Vagal Complex (DVC)—The DVC is composed of the nucleus of the solitary 

tract (NTS) and the dorsal motor nucleus of the vagus (DMV), and is important for 

autonomic regulation. The CeAM sends GABAergic projections to NTS and DMV (83, 84) 

that mediate autonomic (i.e., parasympathetic) responses to aversive stimuli (85) and 

contribute to chronic stress-induced hypertension (86).

THE CeA IN ANXIETY AND ALCOHOL EFFECTS

CeA Neurotransmission in Regulation of Anxiety Responses

Amygdala activation mediates emotional responses to fearful or anxiety-provoking stimuli 

in healthy humans (87), and this response is specific to stimuli with a negative valence, even 

when the valence is not consciously registered (88). Humans with an anxiety disorder (e.g., 

PTSD) often exhibit hyperactive amygdala responses to these types of stimuli (89). 

Similarly, chronically stressed rats exhibit hyperexcitability of the LA (90) and CeA lesion 

blocks chronic stress-induced increases in anxiety-like behavior (91).

Gilpin et al. Page 4

Biol Psychiatry. Author manuscript; available in PMC 2016 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Within the amygdala, optical stimulation and inhibition of BLA-to-CeA projection neurons 

bi-directionally modulates anxiety-like behavior in rodents (53). This may explain the strong 

correlation between BLA and CeA activation, as measured by ERK phosphorylation, 

observed in previously stressed animals exposed to a stress reminder (92). Human and 

animal studies also suggest that individuals that exhibit high reactivity (i.e., poor coping) to 

traumatic stress exhibit heightened functional connectivity between PFC and amygdala 

nuclei (89, 92).

CeA Neurotransmission in Fear Conditioning

Rodent fear conditioning experiments have significantly contributed to our understanding of 

the circuitry mediating anxiety disorders. Plasticity in the LA has a central role in fear 

conditioning (37), but the CeA also has roles in acquisition, expression, generalization, 

consolidation, and extinction of conditioned fear (93–97). CeAL plasticity contributes to 

acquisition of conditioned fear, and CeAM output neurons are excited by fear stimuli in a 

manner that decays with extinction and that is sensitive to the activity of somatostatin-

positive CeAL neurons (97–99).

Fear extinction relies heavily on descending projections from infralimbic cortex (ILC) to 

amygdala. Intercalated GABA cells are critical for mediating fear extinction via projections 

to CeA (100, 101). For example, CeAM neurons of fear-extinguished animals exhibit greater 

synaptic inhibition by ITC cells, likely due to increased excitatory drive from BLA onto ITC 

cells, an effect that is contingent on ILC activity during extinction (102). The net result of 

fear extinction is reduced inhibitory output from CeAM to brainstem effector regions, an 

effect due to either more inhibitory ITC input onto CeAM neurons, less inhibitory ITC input 

onto CeAL GABA neurons that project to CeAM, or both (40, 103).

CeA Neurotransmission in Acute Alcohol Effects

Relative to the fear and anxiety literature, less is known about the molecular identity and 

projection pattern of specific CeA circuits mediating alcohol effects. Acute alcohol increases 

GABAergic transmission in the BLA via increased pre-synaptic GABA release (104, 105), 

which has implications for downstream CeA neurons via dense excitatory projections to 

CeA (45). An emerging story has been the potentially overlapping role of cortico-amygdalar 

projections in conditioning/extinction processes related to cues and contexts associated with 

both fear and alcohol/drugs. Specifically, prelimbic projections to NAc core and BLA 

facilitate expression of cocaine-seeking behavior and fear, respectively, whereas infralimbic 

projections to NAc shell and CeA (via ITC) facilitate extinction of cocaine-seeking behavior 

and fear, respectively (106). Recent data suggest that prelimbic and infralimbic cortices 

regulate extinction and reinstatement of alcohol-seeking behavior (107), and it is possible 

that these effects are mediated by projections to amygdala.

CeA neurons display two types of inhibition: phasic, which involves inhibitory postsynaptic 

currents (IPSCs) that reflect ‘point to point’ transmission; and tonic, which involves 

persistent inhibitory currents resulting from ambient GABA acting at highly-sensitized 

GABAA receptors (108, 109). Tonic inhibition regulates neural network activity (110), and 

is modulated by both acute and chronic alcohol (111, 112). Acute alcohol dose-dependently 
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and reversibly increases phasic GABA release in the CeA (113, 114), independent of 

GABABR blockade (113). Acute alcohol also increases phasic and tonic inhibition in a 

population of CeA neurons that synapse onto CeAM output neurons, resulting in 

disinhibition of CeA output to BNST (115).

CeA Neuroadaptations in Response to Chronic Alcohol

Offspring of alcohol-dependent humans exhibit reduced amygdala volume and reduced 

amygdala fMRI activation in response to fearful faces (116, 117). Furthermore, moderate-to-

heavy drinking humans exhibit reduced amygdala activation during impulse control tasks 

(118). Alcohol-dependent humans that have endured more detoxifications and exhibit more 

loss-of-control over drinking also exhibit increased PFC-amygdala connectivity during 

attentional and executive function tasks (119).

Much of what is known about alcohol-induced neuroadaptations in CeA comes from studies 

on animals chronically exposed to intermittent bouts of alcohol with repeated withdrawal 

periods. This protocol accelerates the emergence of somatic, affective and motivational 

indices of alcohol dependence (120, 121). Relative to stress models, these dependence 

models may be most appropriately compared to findings from chronic stress studies. Indeed, 

alcohol dependence has been conceptualized in terms of a stress kindling process, in which 

CeA neuroadaptations play a central role (122).

Many studies on chronic alcohol effects on CeA neurotransmission utilize a chronic 

intermittent ethanol (CIE) vapor inhalation model in rodents (123). CIE augments 

spontaneous and evoked CeA GABA release via pre- and post-synaptic mechanisms (104, 

114, 124). Alcohol-dependent rats exhibit increased GABA release in CeA during 

withdrawal, but do not exhibit tolerance to acute alcohol effects on CeA GABAergic 

transmission (114). Reductions in basal pre-synaptic GABABR activity during withdrawal 

may account for increased baseline CeA GABAergic transmission in alcohol-dependent rats 

(125). Gabapentin, a structural analog of GABA, facilitates evoked GABAergic 

transmission in alcohol-naïve rats, an effect that is blocked by a GABABR antagonist. 

Conversely, gabapentin decreases evoked CeA GABA transmission during alcohol 

withdrawal, suggesting that alcohol dependence-induced GABABR neuroadaptations may 

account for the differential behavioral effects of gabapentin in dependent versus non-

dependent animals (125).

CeA STRESS PEPTIDES IN ANXIETY AND ALCOHOL DEPENDENCE

Role of CeA Pro- and Anti-Stress Peptides in Anxiety

Humans with anxiety disorders exhibit altered levels of pro- and anti-stress peptides in the 

CNS and periphery. Here, we discuss a few examples in the context of human PTSD, an 

anxiety disorder that can manifest following an acute traumatic stress event and that is 

highly comorbid with AUD (126). Positive coping and stress resilience in PTSD veterans 

are each predicted by higher plasma levels of the anxiolytic NPY (127). PTSD is also 

associated with polymorphisms and methylation levels for the genes encoding the 

anxiogenic pituitary adenylatecyclase-activating polypeptide (PACAP) and its receptor 

PAC1, and PAC1 mRNA is upregulated in the amygdala of fear-conditioned mice (128).
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As illustrated in Figure 2, CRF and NPY co-localize in the CeA, where CRF promotes 

anxiety-like behavior (131) an NPY reduces anxiety-like behavior (132). The acoustic startle 

reactivity (ASR) test can be used to assess control by specific EA regions (CeA, BNST) 

over generalized anxiety-like or stimulus-specific fear behaviors. NPY dampens basal ASR 

and fear-potentiated startle in rats, and facilitates extinction of fear-potentiated startle, 

effects likely mediated by the CeA (133). CRF increases ASR (134) and mediates stress-

induced enhancement of ASR via CRF1s in BNST (135). Acute restraint or footshock stress 

increases CRF mRNA in rat CeA (136, 137), and CeA CRF is critical for consolidation of 

fear memories (138). Intra-amygdala injection of a CRF agonist produces an aversive state 

resembling that elicited by an environmental stressor, and both effects are blocked by intra-

amygdala injection of NPY (139). Following exposure to predator stress, rats with 

maximally dysregulated behavior (e.g., hyperarousal and high anxiety-like behavior) exhibit 

reduced NPY in the amygdala (140), and treatment with either NPY or a CRF1 antagonist 

reduces behavioral dysregulation in rodents following exposure to predator stress (140,141).

CeA Pro- and Anti-Stress Peptides in Alcohol Dependence

Alcohol withdrawal is defined by a negative emotional state mediated in part by the 

recruitment of pro- and anti-stress peptides in the EA (30). CRF and NPY in CeA play 

critical roles in mediating negative affect and excessive alcohol drinking in dependent 

rodents (Figure 2). CRF and NPY are both likely produced locally in the CeA (142, 143) 

and/or imported to CeA from distal projection neurons, but it is not yet clear which peptide 

pools are dysregulated by alcohol dependence (or stress) to produce heightened anxiety-like 

behavior and escalated alcohol drinking.

CRF increases GABA release in the CeA of rats (124) and mice (144) via activation of pre-

synaptic CRF1s. These effects are exaggerated during withdrawal (124), along with 

concomitant increases in CRF and CRF1 mRNA levels, and increases in CRF release in the 

CeA of alcohol-dependent rats (124, 145). CRF1 antagonism reverses withdrawal-induced 

increases in drinking in alcohol-dependent rats and mice (146, 147) via effects in CeA (148), 

and chronic CRF1 antagonism prevents escalation of alcohol drinking during the transition 

to dependence (124). Binge-like drinking increases CRF immunoreactivity in the CeA of 

mice (149), and CRF1 antagonists reduce binge-like drinking without affecting non-binge-

like alcohol intake (150–152). Interestingly, the ability of CRF to increase CeA GABAergic 

transmission is blunted in binge-like drinking mice (149), in contrast to the sensitized CRF 

effects observed in CeA of alcohol-dependent rats (124). Binge-like alcohol drinking may 

abolish CRF effects on GABAergic transmission in CeA via internalization of CRF1s in 

response to elevated CRF levels in binge alcohol drinkers (149), as seen in the dorsal raphe 

following stress (153).

The complex alcohol effects on local CeA microcircuitry are illustrated in the differential 

ethanol sensitivity of CRF1+ CeA neurons possessing an ethanol-insensitive ongoing tonic 

conductance and CRF1- CeA neurons possessing a tonic conductance that is enhanced by 

acute alcohol (115). Accordingly, acute alcohol decreases firing of CRF1-neurons, but 

increases firing of CRF1+ neurons, suggesting a local CeAM inhibitory microcircuit whose 

constituent neurons are differentially regulated by alcohol, similar to the CeAL inhibitory 

Gilpin et al. Page 7

Biol Psychiatry. Author manuscript; available in PMC 2016 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



microcircuit described in the behavioral expression of conditioned fear (154). Future 

optogenetic studies will dissect the role of CeA microcircuitry in the behavioral 

consequences of alcohol dependence and as a locus for integration of anxiety and alcohol 

abuse.

NPY decreases GABAergic transmission in CeA, and also prevents and reverses acute 

alcohol-induced facilitation of evoked GABAergic transmission in the CeA of naïve and 

alcohol-dependent rats (155). Pharmacological experiments suggest that NPY exerts Y1 

receptor (Y1R)-mediated post-synaptic effects on basal inhibitory transmission in CeA, 

whereas NPY blocks alcohol effects on GABA release in CeA via Y2 receptor (Y2R)-

mediated pre-synaptic effects (155). Alcohol dependence produces neuroadaptations in CeA 

NPY systems, as evidenced by lower NPY levels in CeA of alcohol-dependent rats during 

withdrawal (156), and higher Y1R levels in CeA of chronic alcohol-drinking mice 48 hours 

into abstinence (157). NPY reduces GABAergic transmission in the CeA of binge-like 

alcohol drinking mice, but not in alcohol-naïve mice (158). Chronic ventricular infusion of 

NPY during withdrawals early in the transition to dependence prevents excessive alcohol 

drinking during subsequent withdrawals (155), and NPY infused into the CeA reduces 

excessive drinking by alcohol-dependent rats (159), suggesting that NPY may blunt 

excessive drinking by alcohol-dependent rats via modulation of CeA GABAergic 

neurotransmission.

In summary, CRF and NPY in CeA are recruited during stress and alcohol dependence, and 

exert opposite but convergent effects on anxiety-like behavior and escalated alcohol 

drinking, likely via modulation of CeA GABAergic transmission. CRF1s mediate 

withdrawal-induced increases in anxiety-like behavior (160), alcohol drinking (147), and 

sensitization of anxiety-like behavior over repeated withdrawals (161). In contrast, intra-

CeA NPY reduces withdrawal-induced increases in anxiety-like behavior (155, 159). Y2R 

antagonism attenuates withdrawal-induced increases in anxiety-like behavior but not 

escalated alcohol drinking in dependent rats, suggesting that anxiolytic effects occur via 

Y2R autoreceptor modulation of NPY release, whereas effects on alcohol drinking occur via 

Y2R heteroceptor modulation of GABA release (162). Although NPY antagonizes the 

behavioral effects of CRF in the amygdala, the cellular interactions of NPY and CRF in the 

CeA remain uncharacterized.

CeA Pro- and Anti-Stress Peptides in Stress-Alcohol Interactions

Although humans report drinking alcohol to reduce anxiety (163), animal research has 

produced a complicated picture of stress effects on alcohol drinking. Studies report stress-

induced increases, decreases, and null effects on alcohol drinking according to type/modality 

of stressor, intensity/frequency of stressor, time between stress and alcohol access, species 

and strain of animal tested, and other factors (164). One common procedure utilizes stress to 

reinstate previously-extinguished alcohol-seeking behavior in a session where operant 

responses do not produce alcohol deliveries. Until recently, there has been a lack of studies 

explicitly investigating the interaction between a PTSD-like state (which takes into account 

individual differences in stress reactivity) and alcohol self-administration (165). Recently, 

the stress-enhanced fear-learning (SEFL) model of PTSD was used to show that a single 
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traumatic stress increases acquisition and maintenance of voluntary alcohol consumption in 

previously alcohol-naïve rats but does not alter drinking by rats previously trained to drink 

(166). Another study found that rats with high reactivity to predator odor stress exhibit 

escalated and compulsive-like alcohol drinking (167).

Evidence for the role of CeA stress peptides in stress-alcohol interactions comes from 

human genetics data showing that variation at the CRF1 locus contributes to increased stress 

sensitivity and may be associated with alcohol dependence susceptibility (167, 168). 

Alcohol-preferring rats exhibit increased stress sensitivity, increased extra-hypothalamic 

CRF1 signaling (169, 170), and increased basal spontaneous GABA release in CeA (171). 

Voluntary alcohol drinking by alcohol-preferring rats further increases GABA release and 

reduces sensitivity of the GABAergic system to CRF1 antagonism (171). Interestingly, 

stress-induced reinstatement of alcohol-seeking behavior is blocked by CRF receptor 

blockade and by NPY, but not by opioid receptor antagonists (172,173).

The CeA modulates autonomic and neuroendocrine responses to stress via reciprocal 

projections with LC and PVN (81, 174), suggesting that hypothalamic and extra-

hypothalamic stress responses are coordinated (175). Alcohol-dependent humans exhibit a 

blunted HPA stress response (176, 177), and both alcohol-dependent rats and non-dependent 

drinkers exhibit blunted HPA response to an acute bolus alcohol injection (178). Unlike the 

PVN, abstinence in alcohol-dependent rats up-regulates GRs in CeA, thereby “sensitizing” 

extra-hypothalamic stress systems, which may provide new drug targets depending on the 

timing of therapeutic intervention (179). The critical determinant of whether glucocorticoids 

exert negative or positive feedback over specific brain regions remains unclear, but one 

possibility is that different splice variants of steroid coactivator (SRC)-1 work at GRs to 

negatively regulate gene expression in PVN, while increasing CRF gene expression in CeA 

(180,181).

CeA INTRACELLULAR SIGNALING PATHWAYS IN ANXIETY AND 

ALCOHOL DEPENDENCE

An emerging story is the role of stress peptide interactions with specific protein kinase C 

(PKC) isoforms in anxiety- and alcohol-related behaviors. Endogenous PKC epsilon (PKC) 

promotes anxiety-like behavior and expression of CRF mRNA and peptide in amygdala 

(182), and endogenous amygdalar PKC promotes alcohol consumption in mice (183). The 

PKC signaling pathway in CeA is activated by CRF1s, and the ability of acute alcohol to 

augment GABAergic transmission in CeA is contingent on the integrity of PKCε signaling 

pathways and the contribution of those pathways to vesicular GABA release (184, 185). 

Protein kinase A (PKA), which is activated by CRF1 (via Gs and Gq proteins), also plays an 

important role in facilitating CeA GABA release by acute alcohol (186), and PKA 

antagonists block CRF-induced increases in pre-synaptic CeA GABA release (186). CeAL 

neurons positive for PKC-δ appear to gate the output of CeAM neurons onto downstream 

effector regions (154), and NPY has been linked to PKC-δ signaling in brain (187). Future 

studies should examine potential crosstalk between PKA, PKCε and PKCδ pathways in 

regulating alcohol and peptide effects in CeA, especially as these pathways have been 

implicated in binge-like drinking and alcohol dependence (188, 189).
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CONCLUSIONS

Anxiety disorders and AUDs are highly co-morbid in humans. A pre-existing anxiety 

disorder can precipitate alcohol abuse, and high anxiety is a hallmark symptom of alcohol 

dependence that manifests during withdrawal. Anxiety disorders and AUD in humans are 

both defined by altered amygdala structure and function, the end result of which may be 

disinhibition of downstream “effector” regions that regulate anxiety- and alcohol-related 

behaviors. Because the CeA is ascribed an important role in the aversive states and 

behavioral dysregulation associated with stress and alcohol dependence, it is critical to 

understand the overlapping and/or compounding effects of anxiety disorders and AUD on 

amygdala function. New research techniques combine traditional cellular, pharmacological, 

and anatomical approaches with sophisticated new genetic technologies, and will facilitate 

our understanding of how the amygdala is recruited in anxiety disorders and/or AUD, and in 

the tailoring of future treatment strategies.
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Figure 1. 
(A) Schematic of amygdala circuitry showing inter- and intranuclear connectivity. 

Abbreviations: BLA- basolateral amygdala; CeAM- medial central amygdala, CeAL- lateral 

central amygdala; IN- main intercalated cell cluster; LA-lateral amygdala; mITC 

intercalated cell cluster. B. Microcircuitry of the CeAM illustrating excitatory transmission 

by glutamatergic afferents (green) and phasic and tonic inhibitory transmission by 

GABAergic afferents (dark red) and local interneurons (light red).
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Figure 2. 
Schematic illustrating location of neuropeptides and their receptors in the medial CeA 

synapse, and their proposed roles in stress, anxiety, and alcohol effects. Here and in the text, 

we focus on pro-stress pro-alcohol-drinking CRF and anti-stress anti-alcohol-drinking NPY 

systems, intended to provide a snapshot of what may be (or is) occurring with other stress 

peptides in CeA in response to stress and alcohol. Abbreviations: CeAM- medial central 

amygdala, CRF1- corticotropin-releasing factor receptor 1, NPY- neuropeptide Y, Y1 NPY 

Y1 receptor, Y2 - NPY Y2 receptor.
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